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INTRODUCTION 
 

With the large increase in life expectancy, population 

aging has rapidly become a major issue worldwide. 

Aging is one of the most well-known risk factors for 

many diseases and has been associated with increases in 

morbidity and mortality in various lung diseases [1]. 

The incidence and severity of chronic lung diseases 

such as chronic obstructive pulmonary disease (COPD), 

idiopathic pulmonary fibrosis (IPF), and lung cancer 

increase with age [1, 2]. In addition, the prevalence of 

acute lung diseases such as acute respiratory distress 

syndrome (ARDS) and pneumonia increases with age 

[1]. It is well known that measures of lung function  

 

such as vital capacity or diffusing capacity are reduced 

with aging, as observed in COPD patients in Global 

Initiative for Chronic Obstructive Lung Disease 

(GOLD) stage I [3]. In order to understand the decline 

in lung function with aging, it is necessary to elucidate 

the pathophysiology of lung aging. The physiologic 

aging of the lungs is known to be associated with the 

dilation of alveoli including enlarged airspace and 

decreased gas exchange surface area along with the loss 

of supporting tissues for peripheral airways, resulting in 

decreased elasticity and increased residual volume and 

functional residual capacity [3]. In addition to these 

emphysema-like structural changes in the lungs, 

respiratory muscle strength also decreases with aging 
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ABSTRACT 
 

Aging is a multifactorial process that leads to molecular and cellular changes, contributing to the susceptibility 
of most lung diseases. However, the molecular and genetic mechanism of lung aging remains poorly 
understood. Here, we performed RNA-seq transcriptome analysis of the lung tissues of 68 subjects and 
analyzed their gene expression profile to evaluate candidate genes related to lung aging. The subjects were 
classified into two groups (Younger group and Older group) based on their age. Lung tissues were obtained 
from surgically resected specimens, processed, and analyzed with RNA-seq. The median age of the subjects was 
45 years in the Younger group and 74 years in the Older group. Around 71% and 53% of the subjects were 
female in the Younger and Older groups, respectively. After gene quality control and filtering, differentially 
expressed gene analysis showed that MAP3K15, CHRM2, and GALNT13 were upregulated in the Younger group, 
whereas COL17A1 and EDA2R were upregulated in the Older group. Multivariate analysis with adjustment for 
covariates showed that EDA2R was a risk factor for lung aging. Our study identified differences in the gene 
expression of the lungs of older subjects compared with younger subjects. These findings may have implications 
in lung aging. 
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due to intrinsic functional changes in the muscle [4]. 

Changes in the spine and ribs with aging can also affect 

normal lung function [4]. With aging, there is a 

decreased ability to clear mucus from the lungs due to 

reduced cough strength and alterations in the body’s 

ability to clear particles in the airways [4].  
 

In terms of molecular and cellular changes, the nine 

hallmarks of aging have been proposed in a landmark 

paper [5], i.e., genomic instability, telomere shortening, 

epigenetic alterations, loss of proteostasis, dysregulated 

nutrient sensing, mitochondrial dysfunction, cellular 

senescence, altered intercellular communication, and 

stem cell exhaustion. Notably, inflammaging, which 

describes age-related low-grade chronic inflammation 

and immunosenescence, is often suggested as an 

additional conceptual hallmark of aging and identified 

and investigated as an independent conceptual entity in 

aging biology [6]. Senescence of the immune system in 

elderly individuals has been linked to many complex 

changes resulting in systemic immune dysfunction in 

both the innate and adaptive immune systems, which 

can increase susceptibility to infections [4, 7, 8]. 

Therefore, features related to aging may be related to 

chronic lung diseases such as COPD, lung cancer, and 

IPF with different degrees of activity, and there may be 

distinct aging-related characteristics in the patho-

physiology of each chronic lung disease. At present, 

with the evolution of genomic technologies especially 

high throughput technologies, a large number of human 

tissue age-gene expression association studies have 

been conducted [9]. Accumulating evidence suggests 

that accelerated aging processes are major features of 

COPD [8, 10, 11]. One study reported that the 

downregulated aging gene signature in the lungs 

showed the most significant enrichment in genes 

associated with COPD-related biomarkers and 

pulmonary function [9]. Despite these findings, the 

genomic understanding of aging in normal lungs is still 

insufficient. In this study, we identified aging gene 

signatures in normal lung tissues and examined their 

functional characteristics to understand the molecular 

pathophysiology of lung aging by investigating the 

differences in gene expression during aging through 

RNA-seq. 

 

RESULTS 
 

Study subjects 
 

Of the 68 subjects included in this study, 42 (61.8%) 

subjects were female (Table 1). The median age of the 

Younger and Older groups was 45 and 74 years, 

respectively. All subjects had quit smoking at least one 

month before lung resection. The number of subjects 

with past smoking history was higher in the Older 

group, and the amount of cigarette smoking was greater 

in the Older group than in the Younger group. Among 

the study subjects, the most common diagnosis was 

malignant carcinoma of the lungs (primary or 

metastatic) (88.2% of subjects in each group).   
 

Gene analysis 

 

Of 14,775 genes, 4,108 genes were differentially 

expressed between the age groups by Student’s t-test with 

p value < 0.01. After adjusting the p value using the false 

discovery rate (FDR) method, 2,442 genes were 

differentially expressed. Among these genes, 897 genes 

were upregulated in the Older group, and 1,545 genes 

were upregulated in the Younger group. We performed 

linear regression analysis to adjust for the effect of 

smoking, and 3,565 genes were differentially expressed 

between the two groups with p value < 0.01. Of these 

genes, only 158 genes were significantly associated with 

smoking rather than aging; thus, we used the former 

differential gene expression data by the t-test for further 

evaluation due to little effect of smoking on DEGs. 

Hierarchical clustering analysis was also performed, and a 

heatmap for the two groups was generated (Figure 1). 

 

Among the differentially expressed genes (DEGs) with 

significance, the top 10 genes with the largest fold 

changes in both the Younger and Older groups are 

shown in Tables 2 and 3. Among them, genes that could 

be related to aging or the pathogenesis of lung disease 

were selected from each group based on literature 

review. MAP3K15, CHRM2, and GALNT13 from the 

Younger group and COL17A1, MUC16, and EDA2R 

from the Older group were re-tested and validated by 

quantitative reverse transcription polymerase chain 

reaction (qRT-PCR) (Figure 2).   

 

We performed simple and multiple linear regression 

analysis on 5 DEGs that were consistently validated by 

qRT-PCR. In simple linear regression analysis, each of 

the 5 genes was positively or negatively associated with 

aging; however, in multiple linear regression analysis, 

only EDA2R was a significant contributing factor in the 

Older group (Supplementary Figure 1, Supplementary 

Table 2). The expression of EDA2R (p value = 

2.77×10
−8

) was an independent risk factor in the Older 

group after additionally adjusting for history of smoking 

and gender. In addition to EDA2R, GALNT13 (p value = 

0.007) and history of smoking (p value = 0.008) were 

significant risk factors (Supplementary Table 3).  

 

Validation  
 

For technical validation, qRT-PCR was performed to 

identify DEGs (Supplementary Table 1). The mRNA 

expression levels of 6 genes (Younger group vs. Older
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Table 1. Characteristics of subjects in the younger and older groups. 

 Younger (N = 34) Older (N = 34) 

Age, years 45.0 ± 6.1 74.1 ± 2.9 

Female gender, N (%) 24 (70.6%) 18 (52.9%) 

BMI, kg/m
2
 22.2 ± 2.4 22.8 ± 2.8 

Nonsmoker, N (%) 22 (64.7%) 18 (52.9%) 

Past smoker, N (%) 12 (35.3%) 16 (47.1%) 

Smoking amount, pack-years 15.3 ± 8.3 (N = 12) 39.1 ± 11.9 (N = 16) 

Lung function   

FVC, % of predicted value  88.6 ± 4.8 85.1 ± 4.4 

FEV1, % of predicted value 87.3 ±5.1 92.3 ± 4.7 

FEV1/FVC, % 82 ± 5.0 76 ± 4.5 

DLCO, % of predicted value 79.2 ± 9.1 (N = 26) 83 ± 10.6 (N = 18) 

Data are presented as the mean ± standard deviation unless specified otherwise. 
Abbreviations: N, number of subjects; BMI, body mass index; FVC, forced vital capacity; FEV1, forced expiratory volume in 
one second; DLCO, diffusing capacity of the lungs for carbon monoxide. 

 

 
 

Figure 1. Heatmap of gene expression in the lung tissues of the Older vs. Younger groups. The heatmap of 80 genes with 

increased or decreased gene expression is illustrated with the hierarchical clustering of gene expression data for the Older and Younger 
groups.  The colored column sidebar at the top indicates the status of the subjects (blue - Younger group; red - Older group). The information 
has been revised for better flow and readability. Please check if the revised information conveys your intended meaning. 
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Table 2. Top 10 genes with increased expression (based on fold change) in the younger group compared with the 
Older group. 

Gene Gene function 
Fold change log2 

[Older/Younger] 
p value 

Expression level 

in Younger 

(FPKM) 

Expression level in 

Older (FPKM) 

MAP3K15 
Mitogen-activated protein kinase 

kinase kinase 15 
-0.99 4.02×10

−7
 0.79 0.40 

CHRM2 
Cholinergic receptor  

muscarinic 2 
-0.92 1.52×10

−3
 0.69 0.37 

GALNT13 
Polypeptide N-

acetylgalactosaminyltransferase 13 
-0.89 2.75×10

−8
 0.98 0.53 

MATN3 Matrilin 3 -0.87 1.99×10
−9

 2.89 1.58 

ELMOD1 ELMO domain containing 1 -0.87 2.69×10
−4

 0.47 0.26 

SHISA2 Shisa family member 2 -0.83 5.52×10
−6

 0.92 0.52 

FIBIN 
Fin bud initiation factor homolog 

(zebrafish) 
-0.81 2.42×10

−8
 1.81 1.04 

B3GALT2 Beta-1,3-galactosyltransferase 2 -0.80 3.13×10
−6

 0.67 0.38 

P2RY1 Purinergic receptor P2Y1 -0.79 7.84×10
−9

 1.18 0.68 

SLC6A4 
Solute carrier family 6  

member 4 
-0.77 4.72×10

−6
 4.09 2.40 

Abbreviation: FPKM, fragments per kilobase of transcript per million fragments mapped. 

Table 3. Top 10 genes with increased expression (based on fold change) in the Older group compared with the 
younger group. 

Gene Gene function 

Fold change 

log2 

(Older/Young

er) 

p value 

Expression level 

in Younger 

(FPKM) 

Expression level in 

Older (FPKM) 

COL17A1 
Collagen type XVII alpha 1 

chain 
1.80 3.39×10

−7
 0.65 2.27 

MUC16 
Mucin 16, cell surface 

associated 
1.60 1.60×10

−4
 0.61 1.84 

TNS4 Tensin 4 1.48 1.27×10
−3

 0.32 0.90 

EDA2R 
Ectodysplasin  

A2 receptor 
1.47 5.34×10

−10
 0.18 0.49 

PAX9 Paired box 9 1.24 1.15×10
−3

 0.41 0.97 

KRT15 Keratin 15 1.16 1.41×10
−6

 1.45 3.24 

FBXW10 
F-box and WD repeat domain 

containing 10 
1.15 1.47×10

−4
 0.31 0.68 

FAM153A 
Family with sequence 

similarity 153 member A 
1.13 2.69×10

−7
 0.97 2.13 

ZC3H12D 
Zinc finger CCCH-type 

containing 12D 
1.09 5.39×10

−5
 0.21 0.44 

PTPRZ1 
Protein tyrosine phosphatase, 

receptor type Z1 
1.09 2.98×10

−3
 0.37 0.80 

Abbreviation: FPKM, fragments per kilobase of transcript per million fragments mapped. 
 

group) were similar to the results of RNA-seq analysis, 

except for MUC16. Therefore, MUC16 was excluded in 

the additional analysis (Figure 2). We also performed 

qRT-PCR on two genes (ACER2 and CHRM3), which 

have been found to increase in patients with COPD 

with/without emphysema in our previous study, and 

these genes showed no significant difference between 

the two groups in the validation. 
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DISCUSSION 
 

In this study, we identified several genes with increased 

expression in the Older group, and there were 

significant differences in the gene expression between 

the two groups according to the age. One of the genes, 

ectodysplasin A2 receptor (EDA2R), was recently 

reported as a strong candidate gene for aging [11]. 

According to that study, aging strongly affected gene 

expression in the lung tissues. EDA2R was also highly 

associated with aging in the adipose tissues, artery, 

heart, muscle, and skin tissues in the GTEx project, 

which evaluated the aging signature of these tissues  

[9]. In the present study, EDA2R was the most 

differentially expressed according to the p value in the 

Older group compared with the Younger group as well 

as the fourth most upregulated gene according to the 

fold change. Moreover, when multivariate linear 

regression analysis was performed, EDA2R was the 

only significantly different gene in DEG analysis. 

Although little is known about this gene, EDA2R 

belongs to the tumor necrosis factor receptor 

superfamily, which is involved in various signaling 

pathways. It is known to be associated with nuclear 

factor kappa B (NF-kB) and p53 signaling pathways 

and can promote apoptotic signaling through the 

binding of its ligand EDA-A2 [12].  

 

Another gene with increased expression in the Older 

group, collagen type 17 alpha 1 (COL17A1), encodes 

the alpha chain of type XVII collagen, which is a major 

structural component of hemidesmosomes and plays an 

essential role in strengthening and stabilizing the skin. 

Mutations in this gene are associated with both 

generalized atrophic benign and junctional 

epidermolysis bullosa [13]. Recently, patients with 

COL17A1 mutation have been reported to exhibit a 

premature aged skin phenotype, including hair and hair 

loss [14]. Interestingly, COL17A1 was the only 

procollagen gene that was increased with aging among 

8 procollagen genes, which were altered with aging in a 

study of mouse skeletal muscles [15]. However, the role 

of COL17A1 in lung aging remains unknown and 

should be further evaluated. Mucin 16 (MUC16) is 

known as ovarian cancer antigen CA-125. It was 

reported that CA-125 level could be increased in 

chronic medical conditions including cancer. [16, 17]. 

According to a lung transcriptome study, MUC16 was 

one of the genes in a second large cluster that included 

dynein and other MUC genes, which are exclusive to 

the respiratory epithelium and goblet cells of bronchial 

structures [18]. In addition to their normal physiological 

role in protecting epithelial cells, mucins have been 

shown to participate in various diseases including 

cancer. Although MUC16 showed increased expression 

in the Older group compared with the Younger group, 

qRT-PCR did not show consistent results; thus, we 

excluded MUC16 from linear regression analysis. 

 

Cholinergic receptor muscarinic 2 (CHRM2) was 

downregulated in the Older group compared with the 

Younger group. The CHRM2 gene encodes the M2 

muscarinic acetylcholine receptor and belongs to the 

superfamily of G protein-coupled receptors, which 

show functional diversity in various cellular responses 

via the binding of acetylcholine to these receptors [19]. 

Although, CHRM2 is known to activate several 

signaling pathways in the nervous system, and little is 

known about the effect of this gene in pulmonary 

disease. Recent studies of the pathogenesis of allergies 

and asthma have reported that muscarinic receptors may 

modulate airway reactivity [19]. Certain types of 

CHRM2 polymorphism may be associated with disease 

severity, lower lung function test values, frequent

 

 

 

Figure 2. mRNA expression levels of genes as measured by qRT-PCR analysis. The levels of mRNA transcripts that encode aging-

related marker genes are shown. Data are presented as the mean ± standard deviation (N = 32).  
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exacerbations, and poor response to anti-cholinergic drugs 

[20]. CHRM2 has also been reported as a candidate gene 

for nicotinic addiction by modulating presynaptic auto-

regulation in the cholinergic system [21]. Moreover, the 

targeted deletion of CHRM2 showed significantly reduced 

hyperoxia-induced lung injury in a mouse experiment [19]. 

Nevertheless, further studies are needed to identify the role 

of CHRM2 in modulating the response to hyperoxia. 

Polypeptide N-acetylgalactosaminyltransferase 13 

(GALNT13) was another gene with decreased expression 

in the Older group compared with the Younger group. 

GALNT13 belongs to the GalNAcT family of enzymes, 

which initiate the O-glycosylation of mucins. A previous 

study reported that the expression of GALNT13 mRNA 

was the highest in brain tissues, and it may be a strong 

predictor of poor clinical outcome in neuroblastoma 

patients [22]. However, the role of GALNT13 is unknown 

in terms of lung disease. A genome-wide interaction study 

on occupational exposures in relation to the level of lung 

function reported that GALNT13 was one of the candidate 

genes that might be involved in biological pathways 

leading to lung function impairment [23]. 

 

It is well known that cigarette smoking could directly 

affect gene expression; however, gene expression 

differences between smokers and nonsmokers are largely 

reversible after smoking cessation [24]. As the possible 

effects of current smoking on gene expression can be 

relatively large, we included only past smokers who 

stopped smoking at least one month before surgery. This 

could help offset the effects of current smoking on gene 

expression. The results were not significantly different 

after we corrected for the potential confounder (smoking 

status). In addition, for the validation of differential gene 

expression, qRT-PCR of genes in the lung tissues was 

performed on 6 candidate genes, which showed similar 

results in 5 out of 6 genes. 

 

Our study had some limitations. First, the total study 

population was 64; more data would be needed to verify 

candidate genes for aging. Second, the study had a 

retrospective nature as the study cohort was not originally 

designed for genetic analysis. The clinical features of the 

cohort who underwent lung resection might be not 

suitable for evaluating and comparing genetic differences 

between younger and older individuals. Moreover, the 

mean age of the Younger group was not too low but 

relatively lower (45 years in the Younger group compared 

with 72 years in the Older group). In addition, most 

patients had malignancy; however, it was in the early 

stage (stage I or II, 88.2%). This may be explained by the 

characteristics of the cohort, which consisted of patients 

who underwent surgery because of the presence of 

nodules in the lungs. However, the proportion of patients 

with malignancy was similar in both groups, and most 

patients (88%) who had malignancy remained at stage I or 

II. This could offset the effect of cancer on gene 

expression in the two groups.   

 

In conclusion, we identified several genes that may be 

associated with normal lung aging by RNA-seq. EDA2R 

was an independent factor after confounder adjustment 

for subjects without chronic lung disease in the Older 

group. Further larger studies are needed to validate 

these results.  

 

MATERIALS AND METHODS 
 

Study subjects and specimen 

 

The subjects were selected from a registered in-house 

tissue storage system (the Asan Biobank), in which lung 

tissues for this study had been stored from 2012 to 

2016. The lungs were resected mostly due to the 

presence of tumors (either benign or malignant). 

Immediately after the resection, lung tissues were 

obtained at a site as far away as possible from the tumor 

tissues and stored under -170°C of vaporized nitrogen in 

the Asan Biobank. Subjects who had abnormal lung 

function before lung resection or any history of chronic 

lung diseases (asthma, COPD, interstitial lung disease 

(ILD), lungs destroyed by tuberculosis, or 

bronchiectasis) were excluded. Current smokers who 

smoked within one month before lung resection were 

also excluded. Subjects finally diagnosed as having a 

malignancy with TNM stage II or higher after lung 

resection were excluded. To compare differences in the 

gene expression of the lungs according to age, the 

subjects were classified into two groups based on their 

age: the Younger group and Older group. Among the 

subjects who met the inclusion criteria, we chose two 

contrasting groups consisting of younger subjects 

(Younger group) vs. older subjects (Older group) with 

an appropriate number of sample size in each group (see 

below). We excluded subjects with intermediate ages.  
 

Justification of sample size  

 

The hypothesis of this study was that there would be a 

significant difference between the Younger and Older 

groups. Based on a level of significance of α = 0.05 and 

a power of 80% for detecting a difference in the 

expression level of a gene(s) of two times higher, the 

sample size per group was calculated to be 17. 

Considering additional adjustment for smoking and 

gender, the final sample size was determined as 34 per 

group with a total sample size of 68 for two groups.  
 

RNA preparation and sequencing 
 

Total RNA was isolated from apparently normal fresh 

frozen lung tissues that were remote from the lung 
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cancer. RNA integrity was assessed using an Agilent 

Bioanalyzer system, and RNA purity was assessed 

using a NanoDrop spectrophotometer. The total RNA (1 

µg) was used to generate cDNA libraries with the 

TruSeq RNA Library Prep Kit. The protocol consisted 

of poly A-selected RNA extraction, RNA 

fragmentation, reverse transcription using random 

hexamer primers, and 101 bp paired-end sequencing 

using the Illumina HiSeq 2500 system.  
 

Quality control and data management  
 

For quality control, read quality was verified using 

FastQC, and read alignment was verified using Picard. All 

samples had a Phred score higher than 20. To preprocess 

RNA-seq data, we removed the adapter sequence using 

Trimmomatic and removed reads with a Phred score 

below 15. UCSC hg19 human genome and transcriptome 

references were used to map the cDNA fragment obtained 

from preprocessing. We used bowtie2 aligner and 

HISAT2 to map reads and used StringTie to calculate the 

fragments per kilobase of transcript per million mapped 

reads (FPKM). We only used genes with a FPKM value 

above 0 in at least one sample. Further analysis was 

conducted on 14,775 out of 27,685 genes after filtering for 

genes with 0 counts in the whole samples, noncoding 

genes, and low-variance genes.  
 

qRT-PCR analysis  
 

For technical validation, we re-tested some of the genes 

that were differentially expressed by qRT-PCR. Gene 

expression in the lung tissues was quantified by qRT-

PCR using LightCycler 480 (Roche, Mannheim, 

Germany) with LightCycler 480 SYBR Green I Master 

(Roche, Mannheim, Germany). Total RNA was isolated 

using the RNeasy Plus Mini Kit (Qiagen, Valencia, CA, 

USA), and 1 μg of each sample was reverse-transcribed 

using the Maxima First Strand cDNA Synthesis Kit 

(Thermo Scientific, Waltham, MA, USA) for real-time 

qRT-PCR.  
 

Statistical analysis 
 

Clinical statistical analyses were performed using SPSS 

v26.0 (SPSS; Chicago, IL, USA). We performed 

quantile normalization to adjust for between-sample 

bias using the preprocessCore R library. Linear 

regression was performed using Python StatsModels 

0.10.2 to identify DEGs between the Younger and Older 

groups and correct the effects of smoking. 
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Supplementary Figure 1. Box plots of the expression profile (based on FPKM value) of the top 5 DEGs that showed significant 
differences in DEG analysis according to the age group.  
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Supplementary Tables 
 

 

 

Supplementary Table 1. Primer sequences for qRT-PCR analysis. 

Gene symbol Forward Reverse Accession number 
MAP3K15 CCTTCTACGACGCAGATGTTG GCATCGGTGTCATGGTACAAGA NM_001001671 
CHRM2 AACTCCTCTAACAATAGCCTGGC GTTCCCGATAATGGTCACCAAA NM_000739 
GALNT13 TTGCCCTTAATAGAAGTCTGCCA TGGGGAACGATTTATCACACTG NM_052917 
COL17A1 ACCAGCAATGGCTATGCTAAAA GCCTCGTGTGCTTCCAGTT NM_000494 
EDA2R TCCAAGGATTGTGGTTATGGAGA AGCACAGGTGATGCAACTCTG NM_021783 

 

Supplementary Table 2. Results of multiple linear regression analysis of 5 genes associated with aging . 

Model Summary
b 

Model R R square Adjusted R square 
Standard error of the 

estimate Durbin-Watson 
1 0.743

a
 0.552 0.516 10.716 0.960 

a. Predictors: (Constant), EDA2R, CHRM2, COL17A1, MAP3K15, GALNT13. 
b. Dependent variable: Age. 

 

ANOVA
a 

Model Sum of squares df Mean square F Sig. 

1 Regression 8783.068 5 1756.614 15.298 0.000
b
 

Residual 7119.402 62 114.829   

Total 15902.471 67    

a. Dependent variable: Age. 

b. Predictors: (Constant), EDA2R, CHRM2, COL17A1, MAP3K15, GALNT13. 

 
Coefficients

a 

Model 
Unstandardized coefficients 

Standardized 
coefficients t Sig. 

Collinearity statistics 

B Std. error Beta Tolerance VIF 

1 

(Constant) 53.153 4.946  10.747 0.000   
MAP3K15 0.021 4.733 0.001 0.004 0.997 0.504 1.984 
CHRM2 -1.822 2.736 -0.069 -0.666 0.508 0.676 1.479 

GALNT13 -6.203 4.538 -0.188 -1.367 0.177 0.380 2.628 
COL17A1 0.037 0.111 0.031 0.335 0.738 0.837 1.195 
EDA2R 43.459 8.211 0.581 5.293 0.000 0.600 1.668 

a. Dependent variable: Age. 

Abbreviation: VIF, Variance inflation factor; Std., Standard; Sig., Significance. 
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Supplementary Table 3. Results of multiple linear regression analysis of 5 genes associated with aging with 
adjustment for history of smoking and gender. 

Model Summary
b 

Model R R square Adjusted R square 
Standard error of the 

estimate 
Durbin-Watson 

1 0.772
a
 0.596 0.549 10.342 1.140 

a. Predictors: (Constant), EDA2R, CHRM2, COL17A1, MAP3K15, GALNT13, History of smoking, Gender. 

b. Dependent variable: Age. 

 

ANOVA
a 

Model Sum of squares df Mean square F Sig. 

1 Regression 9484.607 7 1354.944 12.667 0.000
b
 

Residual 6417.863 60 106.964   

Total 15902.471 67    

a. Dependent variable: Age. 

b. Predictors: (Constant), EDA2R, CHRM2, COL17A1, MAP3K15, GALNT13, History of smoking, Gender. 

 

Coefficients
a 

Model 
Unstandardized coefficients 

Standardized 
coefficients t Sig. 

Collinearity statistics 

B Std. error Beta Tolerance VIF 

1 

(Constant) 57.028 5.978  9.539 0.000   
MAP3K15 1.125 4.590 0.028 0.245 0.807 0.499 2.004 
CHRM2 -0.344 2.704 -0.013 -0.127 0.899 0.645 1.551 
GALNT13 -9.289 4.543 -0.282 -2.045 0.045 0.354 2.827 
COL17A1 -0.007 0.109 -0.006 -0.064 0.949 0.804 1.243 
EDA2R 46.831 8.081 0.626 5.795 0.000 0.577 1.734 
History of smoking -7.636 3.667 -0.246 -2.082 0.042 0.483 2.070 
Gender -0.879 3.625 -0.028 -0.242 0.809 0.507 1.973 

a. Dependent variable: Age. 

Abbreviation: VIF, Variance inflation factor; Std., Standard; Sig., Significance. 
 


