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INTRODUCTION 
 

Sepsis, caused by dysregulated host response to 

infection, is deemed as a whole-body inflammatory 

response, which contributes to extensive tissue damage 

and multiple organ disorders. It has been the leading 

cause of death in intensive care units (ICUs) [1]. Acute 

kidney injury (AKI) is one of the most severe and usual 

complications that occurs during the progress of sepsis, 

responsible for more than 50% cases of AKI patients in 

ICUs [2]. Despite the development of clinical care and 

intensive care, a specific and effective therapy for AKI 

is still inadequate. According to the statistics, the 

incidence rate of AKI is up to 70%, and about 5% of the 

patients develop acute renal failure. Moreover, the 

morality of AKI is about 50%, and 15% of survivors 

still depend on renal replacement therapy (RRT) after 

discharge, seriously threatening the life of people and 

troubling family and society [2, 3]. Therefore, 

excavation of new effective strategies for sepsis-

induced AKI is important and urgently required. 

 

Geniposide (GE) is a major active ingredient in the 

fruits of Chinese herbal medicine Gardenia jasminoides 
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ABSTRACT 
 

Acute kidney injury is one of the most common complications that occurs in septic shock. An effective 
therapeutic intervention is urgently needed. Geniposide has been reported to possess pleiotropic activities 
against different diseases. However, the effect of geniposide on sepsis-induced kidney injury is unexplored. Our 
study aims to illustrate the mitigative effects of geniposide on sepsis-induced kidney injury and its relevant 
mechanisms. Sepsis was induced in mice undergoing cecal ligation and puncture (CLP) surgery. Mice were 
intraperitoneally injected with geniposide (10, 20 and 40 mg/kg) for treatment. The results showed that 
geniposide ameliorated kidney injury and dysfunction in CLP-induced septic mice, accompanied by reduction of 
inflammatory response and oxidative stress. We also found that geniposide significantly reduced vascular 
permeability and cellular apoptosis of the kidney, with increase of Bcl-2 and decrease of Bax and cleaved 
caspase-3. Moreover, PPARγ was found to be upregulated with the increasing concentration of geniposide. The 
protection of geniposide against inflammation and apoptosis was recovered by inhibition of PPARγ. 
Collectively, these results indicate that geniposide could significantly ameliorate acute kidney injury in CLP-
induced septic mice and LPS-stimulated HK-2 cells by activating PPARγ. Geniposide might be a potential drug 
candidate for sepsis-induced kidney injury. 
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Ellis (also named as “Zhizi” in China), which is widely 

applied for stroke treatment in clinic. GE has been 

confirmed to partake in various biological and 

pharmacological activities, including anti-inflammatory, 

anti-tumor, anti-diabetic, neuroprotective, anti-

oxidative, anti-apoptotic and hepatoprotective activities 

[4–10]. Thus, GE is possibly effective and promising 

for developing novel drugs. The current evidence has 

proved that GE has protective effects on sepsis-induced 

myocardial dysfunction by blocking NLRP3 

inflammasome-mediated cardiomyocyte apoptosis and 

pyroptosis [11]. Besides, GE could directly bound to 

lipopolysaccharide (LPS) and neutralize it in vitro, and 

protected sepsis model mice through regulating the 

cytokine levels [12]. Furthermore, GE could protect 

renal intrinsic cells, including renal tubular epithelial 

cells, podocytes and renal collecting duct epithelial 

cells, from kidney disease [13, 14]. Although these 

protective functions of GE have been reported, there is 

no evidence elucidating the effects of GE on sepsis-

induced AKI. 

 

On the foundation above, the present study aimed to 

explore the effects of GE in sepsis-induced AKI, and 

understand the involved molecular mechanisms. 

 

RESULTS 
 

Effects of GE on sepsis-induced kidney injury and 

dysfunction 
 

The severity of CLP surgery-caused kidney injury was 

determined by HE and PAS staining. The result showed 

that the structure of glomerulus was clear and complete, 

and the kidney tubules were tightly packed in control 

and sham group. However, in CLP group, glomerulus 

was shrunken and the kidney tubules exhibited diffuse 

expansion. Then, GE treatment weakened these 

histological changes with a dose-dependent way, in 

agreement with the quantified result (Figure 1A, 1C). 

Besides, PAS staining showed a severe histological 

kidney injury as glomerular basement membranes 

markedly thickened companied with glomerular 

hypertrophy in CLP group, which was attenuated by GE 

treatment (Figure 1B).  

 

NGAL, KIM1, Scr, BUN, ScysC, IL-18, α-GST and 

albumin are identified to be markers in acute kidney 

[15, 16]. As shown in Figure 2A–2G, the levels of 

KIM1, Scr, BUN, ScysC, IL-18, α-GST and albumin 

were similar in each group before CLP surgery, 

respectively. 24 h after surgery, levels of these 

markers were increased significantly, and an obvious 

decrease of them were observed in GE group, 

especially at 20 mg/kg and 40 mg/kg. Besides, protein 

expressions of NGAL and KIM1 were both 

upregulated in CLP group, but downregulated after 

the treatment of GE with a dose-dependent manner 

(Figure 2H–2I). 

 

Effect of GE on sepsis-induced inflammatory 

response and oxidative injury 

 

Inflammatory cytokines in blood were detected by 

ELISA assay. The results in Figure 3A–3E displayed 

that CLP surgery markedly increased the levels of pro-

inflammatory mediators such as TNF-α, IL-6, IL-1β, 

and MCP-1, and decreased the level of anti-

inflammatory mediator such as IL-10, while these 

changes were significantly reversed by introduction of 

GE. Additionally, the oxidative stress-associated factors 

were also assessed by corresponding test kits. The 

results in Figure 3F–3H showed that the levels of ROS, 

SOD and MDA were higher, and the level of GSH-px 

was lower in CLP group than those in control group, 

hinting the severe oxidative stress after CLP surgery. As 

expected, while GE treatment reversed the effects 

caused by CLP surgery. These results together 

suggested that GE could effectively alleviated sepsis-

induced inflammatory response and oxidative injury. 

 

Effect of GE on sepsis-induced vascular permeability 
 

Changes in vascular permeability are important in the 

pathogenesis of sepsis-induced organ injury [17]. 

Therefore, we investigated the changes of kidney 

vascular permeability using Evans blue dye. The 

kidney tissues isolated from mice showed that the 

kidney in CLP group exhibited black, compared with 

the control tissues, and after the treatment of GE (20 

mg/kg and 40 mg/kg), the kidney turned to be nearly 

normal (Figure 4A). Then the amount of Evans blue 

dye leakage reflected the degree of kidney vascular 

permeability. As shown in Figure 4B, CLP 

significantly increased kidney vascular permeability, 

which was alleviated by GE. These results suggested 

that GE could effectively ameliorate sepsis-induced 

kidney vascular permeability. 

 

Effect of GE on sepsis-induced kidney tissue 

apoptosis 
 

As an important reason for sepsis-induced kidney 

injury, apoptosis of cells in kidney could result in 

damage to the septic kidney [3]. The apoptotic cells 

were detected using TUNEL assay. Compared to the 

control group, significant promotion of the number of 

TUNEL-positive cells was observed in CLP group. 

However, GE obviously declined the number of 

TUNEL-positive cells at a dose-dependent manner 

(Figure 5A). Besides, the positive cells were quantified 

to indicate cellular apoptosis of the kidney tissue 
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Figure 1. Effect of GE on sepsis-induced kidney injury. Sepsis-induced kidney injury model in BALB/c mice was conducted using cecal 
ligation and puncture (CLP) surgery, and the mice were received GE 1 h after the CLP surgery at different doses (10 mg/kg, 20 mg/kg and 40 
mg/kg) three times (once every 6 h). 24 h after the surgery, H&E staining and PAS staining were performed to observe the histopathological 
changes (A, B). The histological injury was quantified (C). ***p<0.001 vs the sham group. ###p<0.001 vs the CLP group.  
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(Figure 5B). Consistent with the results of TUNEL 

assay, the CLP surgery also provoked reduction of Bcl-

2 and elevation of Bax and cleaved caspase 3, and the 

treatment of GE remarkably increased the expression of 

Bcl-2 and decreased the expression of Bax and cleaved 

caspase 3(Figure 5C–5F). These results displayed that 

GE could dramatically reduce apoptotic activity in the 

cells of the kidney during sepsis. 

 

 
 

Figure 2. Effect of GE on sepsis-induced kidney dysfunction. Levels of serum creatinine (Scr) (A), blood urea nitrogen (BUN) (B) and 
serum cystain C (ScysC) (C) in serum and α glutathione S transferase (α-GST) (F) and albumin (G) in urine were measured by an automatic 
biochemical analyzer. The levels of kidney injury molecule-1 (KIM1) (D) and IL-18 (E) were determined using their corresponding ELISA kits. 
The mRNA level and protein expression of NGAL were measured using qRT-PCR and western blot, respectively (H, I). ***p<0.001 vs the sham 
group. #, ##, ###p<0.05, 0.01, 0.001 vs the CLP group.  
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Effect of GE on PPARγ expression 
 

To further understand the mechanism of GE in sepsis-

induced kidney injury, we measured the effect of GE on 

PPARγ signaling using western blot and immune 

histochemical analysis. In immunohistochemical 

analysis, the expression of PPARγ was markedly 

reduced in CLP group in contrast to the control  

group, which was increased by the GE treatment 

(Figure 6A). Besides, the western blot assay also 

exhibited a similar change as the protein expression of 

PPARγ was distinctly lowered after CLP surgery, and 

the decrease was alleviated by the treatment of GE 

(Figure 6B). 

 

Inhibition of PPARγ abolished the effect of GE 

 

To investigate whether the activation of PPARγ plays 

an indispensable role in the protective function of GE in 

sepsis-induced kidney injury, GW9662, a PPARγ 

 

 
 

Figure 3. Effect of GE on sepsis-induced inflammatory response and oxidative injury. The concentrations of inflammatory 
cytokines in blood including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, IL-1β, and monocyte chemotactic protein 1 (MCP-1) in 
blood were measured using ELISA kit (A–E). Superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-px) and 
reactive oxygen species (ROS) were measured using their corresponding test kits (F–I). ***p<0.001 vs the sham group. #, ##, ###p<0.05, 0.01, 
0.001 vs the CLP group. 
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antagonist, was introduced into HK-2 cells. Here, 

LPS-induced HK-2 cells were used to simulate sepsis-

induced kidney injury. In LPS-induced HK-2 cells, 

the mRNA level of PPARγ was decreased, which was 

improved under GE treatment in a dose-dependent 

manner (Figure 7A). The detection of inflammatory 

mediators of each group showed that LPS 

significantly increased the levels of TNF-α, IL-6, IL-

1β, and MCP-1, and decreased the level of IL-10, 

consistent with those results discovered in mice with 

sepsis-induced kidney injury. The treatment of GE 

significantly reversed the expression changes of TNF-

α, IL-6, IL-1β, and MCP-1, and IL-10 (Figure 7B–

7F). In addition, GE alleviated the elevated cell 

apoptotic rate induced by LPS (Figure 7G, 7H). 

However, the suppressive effects of GE on 

inflammatory response and cell apoptosis were 

significantly diminished by GW9662, suggesting that 

the activation of PPARγ was necessary for GE to 

exert its function, and GE might exert the protective 

role in kidney injury by activating PPARγ. 

 

DISCUSSION 
 

Sepsis is a syndrome of acute impairment of function 

and organ damage, which is associated with long-time 

adverse outcomes and dependent on the extent of 

acute injury superimposed on underlying organ 

reserve [18]. Kidney is one type of susceptible organ 

in response to sepsis, and acute kidney injury is 

frequently one complications of sepsis. GE, an active 

constituent of Gardenia jasminoides Ellis, possesses 

various biological activities such as anti-

inflammation, anti-oxidation and anti-apoptosis [4, 5]. 

Besides, oral administration of GE is distributed 

rapidly in vivo and the concentration of GE in the 

kidney is the highest among all the tissues [19]. 

Moreover, GE develops kidney protection in both 

streptozotocin-induced diabetic nephropathy and 

insulin resistance-induced chronic kidney diseases 

[14, 20]. However, few studies have investigated the 

protective of GE in sepsis-induced kidney injury. To 

our knowledge, this was the first study which 

investigated (a) the effect of GE on sepsis-induced 

kidney injury and (b) its potential pharmacological 

modulation mechanism. Our study clearly indicated 

that GE played a significantly protective role in 

sepsis-induced kidney injury with a dose-dependent 

manner. CLP mouse model could reflect many 

features of human sepsis, thus it is considered as 

optimal sepsis model and mostly widely used. Herein, 

we adopted CLP surgery to conduct sepsis model. GE 

was validated to alleviate kidney histopathological 

changes and kidney dysfunction, as well as reduce the 

oxidative stress and excessive pro-inflammatory 

cytokines-caused inflammatory response. Besides, GE 

also decreased kidney vascular permeability and 

apoptotic cells that were induced after CLP surgery. 

Mechanically, expression of PPARγ was significantly 

decreased after CLP surgery, and GE treatment 

alleviated the reduction. Using HK-2 cells as an in 
vitro model, GE was also affirmed to suppress 

inflammatory response and cell apoptosis triggered by 

LPS. However, the inhibition of PPARγ dramatically 

 

 
 

Figure 4. Effect of GE on sepsis-induced vascular permeability. Evans blue dye was injected intraperitoneally into the mice, and 
kidney tissues were collected and observed after 24 h (A). The amount of Evans blue dye in the supernatant of kidney tissue was analyzed by 
detecting absorbance at 620 nm (B). ***p<0.001 vs the sham group. ##, ###p<0.01, 0.001 vs the CLP group. 
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diminished the anti-inflammatory and anti-apoptotic 

effects of GE. Therefore, from the results above, it 

can be concluded that GE has significantly inhibitive 

impacts on inflammatory response, cell apoptosis,  

and vascular permeability in sepsis-induced kidney 

injury through activating PPARγ, and that GE might 

be a potential drug candidate for sepsis-induced 

kidney injury. 

 

 
 

Figure 5. Effect of GE on sepsis-induced kidney tissue apoptosis. The apoptosis of cells in kidney was detected using TUNEL assay (A). 
The TUNEL-positive cells were quantified (B). The expression levels of apoptosis-related proteins such as Bcl-2, Bax, cleaved caspase 3 and 
caspase 3 were measured with western blot (C–F). ***p<0.001 vs the sham group. #, ##, ###p<0.05, 0.01, 0.001 vs the CLP group. 
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The essence of sepsis is systemic inflammatory 

reactions [21]. In sepsis, the uncontrolled inflammatory 

response is one of the main factors causing multiple 

organ dysfunction syndrome. The inflammatory 

cytokines such as TNF-α and IL-1β are of diagnostic 

and predictive values, and mice deficient in IL-1β was 

partially protected against damage induced by CLP 

surgery [22]. In our finding, it was displayed that the 

pro-inflammatory cytokines such as TNF-α and IL-1β 

were significantly lessened and the anti-inflammatory 

cytokine IL-10 was obviously increased after GE 

treatment in kidney injury in vivo and in vitro, 

suggesting that GE had inhibitive influence on 

uncontrolled inflammatory response in sepsis-induced 

kidney injury. Additionally, aberrant inflammatory 

response could destroy the balance of oxidant/anti-

oxidant system, thereby producing oxidative stress 

injury. Meanwhile, the excessive production of cellular 

ROS in turn aggravates inflammatory reaction by 

activating key inflammatory signaling pathways such as 

NF-κB pathway [23, 24]. The results in our study 

presented that the excessive production of ROS induced 

by sepsis was attenuated by GE treatment. The 

downregulated level of SOD and the upregulated levels 

 

 
 

Figure 6. Effect of GE on PPARγ expression. The expression of PPARγ in kidney tissue of each group was determined by 
immunohistochemical analysis (A). Besides, western blot was performed to determine the protein expression of PPARγ (B, C). ***p<0.001 vs 
the sham group. ###p<0.001 vs the CLP group. 
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Figure 7. Inhibition of PPARγ abolished the effect of GE. LPS-induced HK-2 cells was utilized to simulate sepsis-induced kidney injury. 
Cells were treated with GE (100 μg/ml, 200 μg/ml, 300 μg/ml), and the mRNA level of PPARγ was detected by qRT-PCR (A). GW9662, a PPARγ 
antagonist, was employed to treat HK-2 cells, and then the concentrations of inflammatory cytokines including TNF-α, IL-6, IL-10, IL-1β, and 
MCP-1 in each group were measured using ELISA kit (B–F). Cell apoptotic rate in each group was determined via usage of flow cytometry 
analysis (G, H). **, ***p<0.01, 0.001 vs the control group. ##, ###p<0.01, 0.001 vs the LPS group. $$, $$$ p<0.01, 0.001 vs LPS+GE. 
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of MDA and GSH-px induced by sepsis were also 

weakened after GE treatment, indicating that GE could 

alleviate sepsis-induced oxidative stress. Moreover, the 

increased vascular permeability is one hallmark of the 

sepsis-caused systemic inflammation. After 8 and 24 h 

of CLP surgery, the vascular permeability increases in 

all organs of mice [25]. In agreement with the previous 

reports, our findings discovered that CLP surgery 

markedly increased vascular permeability of kidney, 

however GE treatment decreased the vascular 

permeability in the kidney after 24 h, hinting that  

GE could mediate vascular permeability during 

systemic inflammation. Therefore, the results above  

in our study suggested that GE had potent suppressive 

effects on inflammatory response, oxidative stress  

and vascular permeability to protect kidney from 

sepsis. 

 

Compelling evidence has demonstrated that cell 

apoptosis, especially apoptosis of renal tubular cells, is 

involved in the pathogenesis and progression of sepsis-

induced kidney injury [26]. The apoptosis of renal 

tubular epithelial cells is found in the patient’s renal 

biopsy specimen, in accordance with those of animal 

septic models where apoptosis emerged as a key factor 

in the pathogenesis of kidney failure [27, 28]. Also, in 

CLP surgery-induced sepsis in mouse model, more 

apoptotic cells in kidney tissues were viewed than the 

control tissues, and the protective role of baicalin 

against acute kidney injury in pediatric sepsis might be 

due to its inhibition on renal cell apoptosis [29]. In the 

present study, a higher proportion of apoptotic cells in 

kidney tissues was also observed after CLP surgery in 

vivo as well as in HK-2 cells triggered by LPS in vitro. 

However, the treatment of GE exhibited an obvious 

inhibitive effect on cell apoptosis. Bcl-2 family 

proteins are key regulators of apoptosis. The anti-

apoptotic protein Bcl-2 and pro-apoptotic protein Bax 

are two important proteins of this family, which 

determine the activation of caspase-3 and the severity 

of apoptosis [21, 30]. The present study disclosed that 

the expression of Bcl-2 was decreased and the 

expressions of Bax and cleaved caspase-3 were 

increased after CLP surgery, which were markedly 

abrogated by the treatment of GE. These findings 

demonstrated that GE possessed potent anti-apoptotic 

activity against sepsis-induced kidney injury. 

 

PPARγ is a member of the nuclear receptor family, 

belonging to the steroid hormone nuclear receptor 

family. It has been demonstrated that activation of 

PPARγ has great effects on modulating inflammatory, 

immune, fibrotic and proliferative pathway, which are 

mediated through renal parenchymal and infiltrating 

cells. When PPARγ is activated, various target genes 

expressing PPARγ response elements are influenced. 

For example, activated PPARγ inhibited the 

expression of pro-inflammatory mediators by 

inflammatory cells [31]. PPARγ agonist significantly 

attenuated renal injury by inhibiting oxidative stress 

and apoptosis in mice through activation of UCP1 

[32]. In addition, PPARγ has been proved to hamper 

inflammation response in sepsis [33]. The previous 

studies have been reported that in vivo treatment with 

PPARγ ligands inhibit neutrophil recruitment in major 

organs of rats with polymicrobial sepsis [34]. The 

activation of PPARγ reduces sepsis-induced lung 

injury and inflammatory cell infiltration into intestinal 

tissues, and also prevents sepsis-induced myocardial 

dysfunction through reducing pro-inflammatory 

cytokines, apoptosis and necroptosis [35, 36]. It is 

interesting that GE has been reported to enhance the 

phosphorylation of PPARγ and accelerate the release 

of phosphorylated FoxO1 from nuclear fraction to the 

cytosol [37]. FoxO1, as a main nucleus factor that 

regulates transcriptions of genes related to cell 

metabolism, can bind to the PPARγ promoter region to 

regulate PPARγ expression and regulate cell cycle 

distribution and apoptosis of tubular epithelial cells of 

rat kidney [38], indicating that GE might alleviate 

kidney injury through regulating PPARγ/FoxO1. Thus, 

the activation of PPARγ was considered as an optional 

approach for ameliorating organ damage by inhibiting 

inflammation and apoptosis, which might be the main 

approach for the protective role of GE in sepsis-

induced AKI in this study. In the present work, the 

expression of PPARγ in kidney tissues or HK-2 cells 

was promoted due to the treatment of GE, meaning 

that GE could improve the expression of PPARγ. 

However, whether GE generates its function through 

PPARγ still needs exploration. GW9662, a PPARγ 

antagonist was employed in HK-2 cells, along with GE 

treatment to study the role of PPARγ in the protective 

effect of GE. It could be seen that pre-treatment of 

GW9662 significantly reversed the protective effects 

of GE against inflammatory response and cell 

apoptosis triggered by LPS, indicating that the effects 

of GE were mediated through activation of PPARγ. 

GE might develop its protective role in sepsis-induced 

kidney injury through activation of PPARγ. 

 

CONCLUSIONS 
 

Taken together, the results of this study demonstrated 

that kidney dysfunction, inflammatory response, 

oxidative stress, vascular permeability and cell 

apoptosis were inhibited by the treatment of GE in 

sepsis-induced kidney injury. Furthermore, the 

therapeutic effects of GE on sepsis model in vivo and in 
vitro may act by activating PPARγ. Accordingly, GE 

might be a promising drug candidates for sepsis-

induced kidney injury. 
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MATERIALS AND METHODS 
 

Experimental animals and experimental design 

 

All BALB/c mice (male; 25-30 g) were obtained from 

Vital River Laboratories Co., Ltd. (Beijing, China) and 

kept in a pathogen-free room with standard laboratory 

diet and water ad libitum, with stable room temperature 

(22-24 °C) and 12 h light/dark cycle. All animal 

experiments were performed following Nursing and Use 

Guidance for Animal Experiment Operation of National 

Institutes Health. 

 

Mice were anesthetized by intraperitoneal injection of 

ketamine (100 mg/kg) and xylazine (10 mg/kg). Sepsis 

was induced in mice undergoing cecal ligation and 

puncture (CLP) surgery as previously described [39]. 

Briefly, the abdominal area was shaved and disinfected, 

and a midline vertical incision of 2 to 3 cm was made in 

the abdomen. The cecum was then ligated from the top 

and punctured twice by piercing the cecum with an 18-

gauge needle. After a small amount of stool was 

squeezed from the puncture hole, the cecum was 

reinserted afterwards into the abdominal cavity and the 

incision was sutured. Pre-warmed saline was then 

administrated intraperitoneally for resuscitation. The 

sham-operated mice underwent CLP surgery except 

cecal ligation and perforation. To explore the protective 

effect of GE, GE groups received an intraperitoneal 

injection of GE (NO. #SML0153; Sigma-Aldrich, St. 

Louis, MO, USA) 1 h after the CLP surgery at different 

doses (10 mg/kg, 20 mg/kg and 40 mg/kg) three times 

(once every 6 h). 24 h after the surgery, mice were 

euthanized, and blood samples and kidney tissues were 

gathered for further analysis. 

 

Analysis of inflammatory cytokines and oxidative 

stress-associated factors 
 

The concentrations of inflammatory cytokines including 

tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-

10, IL-1β, and monocyte chemotactic protein 1 (MCP-

1) in blood were measured using corresponding 

enzyme-linked immunosorbent assay (ELISA) kits 

(R&D System, Minneapolis, MN, USA). Superoxide 

dismutase (SOD), malondialdehyde (MDA), and 

glutathione peroxidase (GSH-px) and reactive oxygen 

species (ROS) were measured using their corresponding 

test kits (Nanjing Jiancheng Bioengineering Institute, 

Nanjing, China).  

 

Real-time quantitative PCR analysis 

 

Total RNA was extracted from kidney tissues of 

different groups using TRIzol reagent, and then 

reversely transcribed into cDNA using PrimeScript 

Reagent Kit (Takara, Dalian, China). Subsequently, 

Real-time PCR was performed using the SYBR Mixture 

(Takara) to determine the gene levels. GAPDH was 

utilized as an internal control, and the quantification of 

relative transcript levels was assessed with the 

comparative threshold (Ct) method.  

 

Western blot  
 

Total protein was extracted from kidney tissues of 

different groups using RIPA cell lysis buffer, and then 

quantified using a BCA kit. The same amount of protein 

was separated by 10% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and 

transferred onto polyvinylidene difluoride (PVDF) 

membranes. Subsequently, the membranes were 

blocked with 5% nonfat milk and next incubated with 

primary antibodies at 4 °C overnight, followed by rinse 

with PBS for three times and incubation with anti-rabbit 

and anti-mouse horseradish peroxidase-conjugated 

secondary antibodies. The bands were developed using 

enhanced chemiluminescence reagents (Pierce, 

Rockford, IL, USA).  

 

Determination of kidney function 

 

Blood samples were made by centrifugation at 3000 

rpm for 10 min, and then levels of blood urea nitrogen 

(BUN), serum creatinine (Scr) and serum cystain C 

(ScysC) in serum and α glutathione S transferase (α-

GST) and albumin in urine were measured by an 

automatic biochemical analyzer (AU400, Olympus, 

Japan). The levels of kidney injury molecule 1 (KIM1) 

and IL-18 were determined using their corresponding 

ELISA kits (R&D System). The expression of 

neutrophil gelatinase-associated lipocalin (NGAL) and 

KIM1 was determined using western blot.  

 

Histopathological examination 
 

Kidney tissue samples were collected 24 h after surgery, 

fixed in 10% paraformaldehyde, embedded in paraffin, 

and cut into sections with 4 μm-thickness. The sections 

were then stained with hematoxylin and eosin (H&E). 

Additionally, the sections were stained with periodic 

acid-schiff (PAS). The histological changes of kidney 

were observed under a light microscope (Olympus 

IX71, Tokyo, Japan) at 200X magnification.  

 

TUNEL analysis 
 

The apoptosis of kidney tissues was measured using 

TUNEL Assay Kit (KeyGEN BioTECH, Jiangsu, 

China) as the manufacturer instructed. After 

deparaffinization and hydration, the sections were 

washed with PBS, and treated with proteinase K 
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working solution. After that, sections were cultivated 

with TUNEL reaction mixture at 37 °C for 60 min, 

followed by incubation with DAPI for 10 min. The 

results were observed through the fluorescence 

microscope (Olympus, Japan).  

 

Evans blue staining  
 

To study vascular leakage from kidney tissues, Evans 

blue dye (Sigma-Aldrich, St. Louis, MO, USA) was 

injected intraperitoneally into the mice 30 minutes 

before sacrifice, and kidney tissues were collected and 

viewed. Then, Kidney tissues were weighed and 

homogenized in 1 ml formamide and incubated at 55 °C 

for 18 h. After centrifugation, the supernatant was 

collected, and the amount of Evans blue dye in the 

supernatant was analyzed by detecting the absorbance at 

620 nm and calculated according to a standard curve of 

Evans blue dye. 

 

Immunohistochemical analysis 
 

Kidney tissues were fixed with paraformaldehyde, 

embedded in paraffin, and cut into sections for 

immunostaining with antibody against PPARγ. 

Subsequently, sections were deparaffinized using a graded 

series of ethanol, and stained using primary antibody 

against PPARγ. After washing with PBS, sections were 

incubated with EnVision+/HRP/Rb (DAKO, Glostrup, 

Denmark) for 30 min at room temperature. The staining 

was visualized using 3, 3’-diaminobenzidine (DAB) 

substrate and then counterstained with hematoxylin for 30 

s. All sections were photographed using an Olympus BH2 

microscope (Olympus).  

 

Cell culture and treatment  
 

HK-2 cells were obtained from China Center for Type 

Culture Collection (CCTCC, Wuhan, China) and 

cultured in RPMI 1640 medium supplemented with 

10% fetal bovine serum (FBS) at 37 °C in a humidified 

atmosphere with 5% CO2. 

 

For experimental study, HK-2 cells were pretreated with 

GE (300 μg/ml) for 1 h, or 10 μM GW9662 (a PPARγ 

antagonist) for 30 min before GE incubation (100,  

200 and 300 μg/ml) and stimulated with LPS (1 μg/ml) 

for 24 h.  

 

Flow cytometry  
 

For apoptotic rate analysis of LPS-induced HK-2 cells, 

flow cytometry was performed using an Annexin-V-

FITC Apoptotic Detection kit (KeyGEN) as guided by 

the manufacturer. Briefly, after treatment for 24 h, cells 

were rinsed with PBS and stained with PI/FITC-

Annexin V in the presence of RNase A (Sigma-

Aldrich). Next, cells were grown for 30 min at room 

temperature in the dark. A FACScan flow cytometer 

(BD Biosciences, San Jose, CA, USA) was employed to 

detect apoptosis within 1 h.  
 

Statistical analysis 
 

All data were analyzed using Graphpad 4.0 software 

(Graphpad software, Inc., CA, USA) and SPSS 18.0 

software (SPSS Inc., Chicago, IL, USA) and expressed 

as mean ± standard deviation (SD) from at least three 

independent experiments. Differences between groups 

were examined for statistical significance by variance 

analysis (ANOVA). A P value<0.05 was accepted as 

statistically significant. 
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