
 

www.aging-us.com 22776 AGING 

INTRODUCTION 
 

Prostate cancer poses a serious threat to the health of 

men all over the world [1, 2]. Although radical surgical 

excision and radiation therapy are effective in treating 

prostate cancer, only lung cancer has a higher mortality 

rate. In China, where prostate cancer screening is 

relatively uncommon, most patients have locally 

advanced or metastatic prostate cancer upon diagnosis. 

In these cases, endocrine therapy is typically used as the 

primary treatment. After about 18 months of endocrine 

therapy, most prostate cancers become resistant to 

hormone treatments, and no other effective clinical 

treatments are currently available. Novel immuno-

therapies are an important development in tumor  

 

treatment, and immune checkpoint inhibitors may be 

particularly effective. However, recent phase II clinical 

trials indicate that immune check point inhibitors are 

only effective against specific types of prostate cancer, 

and the disease control rate does not exceed 20% [3, 4].  

 

The development of resistance to immunotherapies is 

the main reason for their poor efficacy in treating 

prostate cancer. PD-L1+ or VISTA+ M2 macrophages 

are the major drivers of prostate immunotherapy 

resistance [5]. M1 macrophages activated by the 

classical pathway can induce tissue inflammation, and T 

cells activated by inflammation can effectively kill or 

suppress prostate cancer cells. In contrast, M2 

macrophages with anti-inflammatory characteristics can 
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ABSTRACT 
 

In this study, we constructed a model using a Cox proportional hazards model based on the expression of eight 
immune-related genes that were associated with prognosis in prostate cancer: EDNRB, ANGPTL2, TNFSF15, 
TNFRSF10D, EDN2, BMP2, NLRP14, and PLK1. We then identified associations between risk scores calculated with 
the model, tumor microenvironment characteristics, and immune cell infiltration. Prostate cancer patients in the 
high score group had poorer prognoses, and validation with the external GSE54460 dataset confirmed that the 
scoring model predicted biochemical recurrence with AUC values of 0.749 at 1 year, 0.804 at 3 years, and 0.774 at 5 
years. Proportions of infiltrated M2 macrophages and regulatory T cells were increased in the high risk group, while 
CD8+ T cells were increased in the low risk group. Network analysis revealed that PLK1 may be a key regulator of 
the immune-suppressive microenvironment in prostate cancer. Double immunofluorescence labeling of a prostate 
cancer tissue microarray indicated that PLK1 expression correlated positively with numbers of infiltrating 
macrophages. These results indicate that an immune- related, gene-based risk score effectively reflects immune 
microenvironment characteristics and predicts prognosis in prostate cancer. 
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promote tissue repair and immunosuppression. M2 

macrophages exert protective effects in tumors by 

inhibiting tumor antigen presentation. This prevents T 

cells from recognizing tumor antigens and immune 

checkpoint inhibitors, which regulate T cell function, from 

effectively treating prostate cancer [6–8]. Additional 

causes of insensitivity to immunotherapy in prostate 

cancer remain poorly understood. Further explorations of 

the immune characteristics of prostate cancer are therefore 

needed.  

 

Interactions between tumor cells and immune cells are 

complex, and tumor status can alter the tumor immune 

microenvironment. In this study, we examined 

relationships between gene expression and immune cell 

infiltration in prostate cancer. Immune genes associated 

with biochemical recurrence of prostate cancer were 

screened to construct a prognostic model. The effective-

ness of the model was validated using an external dataset. 

Relationships between immune characteristic genes and 

immune cell infiltration in prostate cancer were analyzed. 

Finally, key genes that might induce crucial changes 

in the prostate cancer immune microenvironment were 

identified (Figure 1). The relationship between expression 

of these potential key genes and M2 macrophage 

infiltration was verified in tissue samples. 

 

RESULTS 
 

Weighted correlation network analysis (WGCNA) 

identified prostate cancer-related genes associated 

with biochemical recurrence (BCR) 
 

The TCGA database includes 5132 genes that are 

differentially expressed in prostate cancer compared to 

normal prostate tissue. Among them, 602 were immune-

regulated genes (IRGs). Weighted correlation network 

analysis (WGCNA) was performed using these 602 

candidate genes based on TCGA PRAD cancer sample 

expression profiles (Figure 2). Eight samples with 

abnormal clustering were removed during the screening 

process. The soft-thresholding power in the WGCNA 

(β=5) was determined based on scale-free R2 > 0.85 

(Figure 3A). Eight modules were identified by average

 

 
 

Figure 1. Flow chart of the experimental strategy. 
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linkage hierarchical clustering based the soft-thresholding 

power (Figure 3B). According to the hierarchical 

clustering of modules, there were significant correlations 

between most modules (Figure 3C). A network heatmap of 

all genes is shown in Figure 3D.  

 

Construction of an immunogenetic risk score 

associated with BCR in prostate cancer 
 

We analyzed associations between all modules and 

clinical characteristics of prostate cancer patients. The 

brown, turquoise, pink, and yellow modules were highly 

associated with time to BCR, and the pink and red 

modules were also associated with BCR (Figure 4). 

Further screening of the genes included in these 

modules revealed a correlation coefficients of greater 

than 0.1 between their expression and BCR in prostate 

cancer and of greater than 0.5 for gene expression 

correlations within the modules. In total, 221 immune-

related genes were associated with BCR in prostate 

cancer (Supplementary Table 3). We then performed 

Cox univariate regression analysis to identify 

correlations between the above genes and BCR based 

on clinical information for prostate cancer patients in 

TCGA. A log-rank test revealed that 53 genes were 

associated with BCR in prostate cancer. Among these 

53 genes, eight survival-associated IRGs (EDNRB, 

ANGPTL2, TNFSF15, TNFRSF10D, EDN2, BMP2, 

NLRP14, PLK1) were also identified using lasso 

regression analysis (Figure 5A, 5B). KM curves for 

PLK1, NLRP14, TNFRSF10D, and FGFR2 are shown 

in Figure 5C–5F; lasso regression coefficients for all 

eight IRGs are show in Table 1. 

 

Immunogenetic risk score is associated with BCR in 

prostate cancer 

 

Risk scores for BCR in prostate cancer based on 

corresponding lasso coefficients were calculated for 

each sample in the training cohort (GSE54460). Risk 

score was significantly associated with BCR in prostate 

cancer patients; BCR occurred sooner in the high risk 

group (Figure 6A). An ROC curve was used to assess 

the effect of the Risk score. The AUC (Area Under 

Curve) was 0.749 at one year, 0.804 at 3 years, and 

0.774 at 5 years in the testing cohort (Figure 6B). The 

ROC curve in the TCGA cohort was consistent with the 

curve in the training cohort (Figure 6C). The AUC was 

 

 
 

Figure 2. 602 differentially expressed immune-related genes were identified. (A and B) Volcano plot and heat maps showing 
differentially expressed genes in TCGA prostate cancer samples. (C) The 602 differentially expressed immune genes were considered 
candidate genes for the risk model. 
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0.644 at one year, 0.69 at 3 years, and 0.691 at 5 years 

in the TCGA cohort (Figure 6D). Risk score was 

therefore a useful predictor of BCR in prostate cancer. 

We also performed a multivariate correlation analysis to 

determine the impact of other clinical factors on the 

prognostic power of the risk score. Immune risk score 

was still associated with BCR in prostate cancer after 

multivariate adjustment (p=0.042) (Table 2).  

 

Differences in immune characteristics between high 

and low risk groups 
 

Next, we examined differences in the tumor 

microenvironment between low and high risk patients 

based on prostate cancer mRNA expression data from 

the TCGA database. Genes that were differentially 

expressed between the high and low risk score groups 

are shown in the volcano plot in Supplementary Figure 

1. No significant differences in immune and stroma 

genes were observed between the high and low risk 

score groups (Supplementary Figure 2). However, 

differences were observed in infiltration levels for 22 

types immune cells in CIBERSORT data. Memory B 

cell, regulatory T cell, M2 macrophage, and dendritic 

cell infiltration were higher in the high risk group, while 

plasma cell, CD8+T cell, monocyte, and activated mast 

cell infiltration were higher in the low score group 

(Figure 7A). Overall immune cell infiltration data for 

the high and low risk score groups is shown in Figure 

7B. Expression of immunoregulatory factors in the

 

 
 

Figure 3. (A) Scale-free fit index for soft-thresholding powers. (B) Dendrogram showing all differentially expressed genes clustered based on 
different metrics. (C) Heatmap of correlations between module eigengenes and clinical traits. (D) Visualization of gene networks. 



 

www.aging-us.com 22780 AGING 

 tumor immune microenvironment also differed 

between the high and low risk groups. (Figure 8A); the 

28 factors that differed significantly are shown in 

Supplementary Figure 3. 

 

Identification of pathways and gene ontology (GO) 

terms associated with high and low risk score 

groups 
 

The ClusterProfiler R package was used to perform 

GSEA enrichment analysis on DEGs between the high 

and low score groups using gene sets from MsigDB as 

background genes. Log2(fold change) values from the 

differential expression analysis were used as the 

sorting criterion, and P value < 0.05 was used as the 

screening criterion (Supplementary Table 4). The 

results indicated that there were significant differences 

in “immune effector process,” “immune response,” 

“immune system process,” “innate immune response,” 

“positive regulation of immune system process,” 

“regulation of immune system process,” and 

“regulation of immune system process” between low 

and high risk groups (Figure 8B). GO enrichment 

analysis was also performed using p value < 0.05 and 

overlap > 0.75 as screening criteria (Supplementary 

Figure 4). 

PLK1 may be a key regulator of the immune 

microenvironment in prostate cancer 

 

The LnCeVar database contains transcription factor 

regulation data validated in the literature. As shown in 

Figure 9, PLK1 is part of a rich regulation system. In a 

previous study, we found that infiltration of M2 

macrophages promotes prostate cancer progression. 

Here, risk score was also associated with M2 

macrophages. Among the genes included in the risk 

score, PLK1 had the largest coefficient, indicating that 

it may be the most critical factor in the model. We 

therefore performed double immunofluorescence 

labeling of CD163, a marker of M2 macrophages, and 

PLK1 in a prostate cancer tissue microarray (Figure 

10A). PLK1 was positively correlated with CD163 in 

prostate cancer (Pca) samples (r=0.69, p<0.01), but not 

in benign prostatic hypertrophy (BPH) samples (r=0.12, 

p=0.63) (Figure 10B). Furthermore, PLK1 expression 

was significantly increased in prostate cancer compared 

to prostatic hyperplasia. (p=0.022) (Figure 10C). 

 

DISCUSSION  
 

Current treatments for prostate cancer include surgery, 

radiation therapy, and endocrine therapy. Recent studies

 

 
 

Figure 4. (A) Modular genetic correlation network map. Colors correspond to different modules. (B) Correlations between modules and 
clinical phenotypes. Red indicates positive correlations, blue indicates negative correlations. 
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Figure 5. Construction of the IRG-based prognostic model. (A, B) The number of factors included in the model was determined 
through LASSO analysis. (C–F) KM curves for PLK1, NLRP14, TNFRSF10D, and FGFR2. 
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Table 1. Lasso regression. 

Symbol Lasso regression coefficient 
DNRB -0.057 
ANGPTL2 0.168 
TNFSF15 -0.007 
TNFRSF10D -0.357 
EDN2 -0.123 
BMP2 0.158 
NLRP14 -1.952 
PLK1 0.787 

 

indicate that the tumor immune microenvironment plays 

an important role in the development and progression of 

prostate cancer, and immunotherapy can provide 

significant benefits to some prostate cancer patients. 

However, regulatory T cells, tolerogenic dendritic cells, 

and non-functional T cells (CD4+ and CD8+) can induce 

immunosuppression in the tumor microenvironment [9]. 

Such immunosuppression is the main obstacle to the 

efficacy of immunotherapy-induced anti-tumor immune 

responses. Multi-drug combination therapy, which can 

 

 
 

Figure 6. Validation of the model using external data. (A) KM curve for the external dataset (GSE54460). (B) Time dependent ROC 
curves. The AUC (Area Under Curve) was 0.749 at 1 year, 0.804 at 3 years, and 0.774 at 5 years in the GSE54460 cohort. (C) KM curve for 
TCGA. (D) Time dependent ROC curves. The AUC (Area Under Curve) was 0.644 at 1 year, 0.69 at 3 years, and 0.691 at 5 years in the TCGA 
cohort. 



 

www.aging-us.com 22783 AGING 

Table 2. Multiple regression analysis was used to verify the model generated via lasso regression. 

Variate  Univ HR (95% CI for HR) Univ p value Multiv HR (95% CI for HR) Multiv p value 

Age  1.0064 (0.9593-1.0559) 0.7938 0.9875 (0.9388-1.0388) 0.6265 

Concentration (ng/μl)  1.0071 (1.0034-1.0107) 0.0001 0.9842 (0.9239-1.0484) 0.6207 

Race (W VS B)  1.028 (0.4305-2.4546) 0.9505 1.2058 (0.4565-3.1853) 0.7057 

Ratio 260/230  8.0448 (2.9966-21.5976) <0.0001 4.9789 (0.7663-32.3485) 0.0927 

Rpl13a Ct value  1.2157 (1.003-1.4734) 0.0465 1.1231 (0.8919-1.4142) 0.3234 

Total yield (μg)  1.0909 (1.0402-1.1441) 0.0003 1.2078 (0.538-2.7116) 0.6472 

Immune Risk score  7.2791 (2.3037-22.9999) 0.0007 3.7842 (1.0476-13.6691) 0.0423 

 

 
 

Figure 7. Cibersort was used to calculate infiltration scores for 22 immune cell types based on the TCGA prostate cancer 
expression profile. (A) Infiltration differences (ratio) in high and low risk groups. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05. (B) 
Infiltration profiles in the high and low risk groups. 
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Figure 8. Differences in immune characteristics between the high and low risk score groups. (A) Expression of 75 
immunomodulators in the high and low risk groups. “*” indicates a difference in expression between the high and low risk groups. (B) 
Immune-related GSEA enrichment analysis. 

 

 
 

Figure 9. Regulatory network of the key genes. Red squares indicate key genes, green diamonds indicate microRNAs, and green circles 
indicate lncRNA. Key genes for which literature reporting validated regulatory networks was not available were omitted. 
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increase the impact of immune checkpoint inhibitors by 

regulating the tumor microenvironment, is an important 

method for improving the efficacy of cancer immuno-

therapy [10]. In this study, we examined the immune 

characteristics of prostate cancer to identify potential 

key genes that regulate the tumor immune micro-

environment.  

 

We found that 53 immune-related genes were 

associated with biochemical recurrence in prostate 

cancer. Among these, eight were identified as key genes 

by lasso regression. Validation with an external dataset 

indicated that the prediction model was highly accurate 

(5 year AUC=0.774). Moreover, biochemical recurrence 

occurred sooner and survival rates were lower in the 

high risk score group. Analysis of the LnCeVar 

database indicated that PLK1 had a particularly rich 

regulatory system in prostate cancer among the eight 

key genes.  

 

Decreased expression of EDNRB, TNFSF15, 

TNFRSF10D, EDN2, and NLRP14, as well as increased 

expression of ANGPTL2, BMP2, and PLK1, were 

associated with higher risk scores; EDNRB promoter 

methylation status was also associated with risk score. 

A meta-analysis of 11 similar studies indicated that the 

frequency of EDNRB methylation was substantially 

higher in prostate cancer compared with normal prostate 

tissues (OR = 5.42, 95 % CI = 1.98–14.88, P = 0.001), 

suggesting that EDNRB promoter methylation might 

increase the risk of prostate cancer [11]. Here, 

TNFSF15 expression was inversely associated with 

prostate cancer risk. This is consistent with the role of 

TNFSF15 as a downstream effector of AMPK that 

 

 
 

Figure 10. PLK1 expression correlated positively with M2 macrophage infiltration. (A) Fluorescence imaging of human prostate 
cancer and adjacent noncancerous tissues with FITC-labeled CD163 and Cy3-labeled PLK1. Most green fluorescent signals were observed on 
the cytomembrane, while red fluorescent signals were primarily located in the cytoplasm in prostate tissue. (B) Numbers of green fluorescent 
cells and red fluorescence integral optical density were positively correlated in prostate cancer samples (r2=0.51, p<0.01). (C) PLK1 staining 
was more intense in prostate cancer tissues than in non-cancerous prostate tissues. 
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inhibits prostate cancer growth [12]. TNFRSF10D 

expression is also associated with prostate cancer and 

with the direct p53 effectors and ERK signaling 

pathways; here, TNFRSF10D was inversely related to 

prostate cancer biochemical recurrence risk score. 

Endothelins are involved in the regulation of various 

physiological processes, including plumage 

development in chickens, pigmentation, neural crest 

cell proliferation, differentiation, migration, cardio-

vascular development and functions, and pulmonary 

hypertension [13]. The endothelin EDN2 was 

inversely associated with prostate cancer immuno-

logical risk score in our model. As a member of a 

family of molecules that belong to a signal-induced 

multiprotein complex termed the inflammasome that 

activates proinflammatory caspase-1 and caspase-5, 

NLRP14 may play a regulatory role in the innate 

immune system. NLRP14 is considered an oncogene, 

and increased expression of NLRP14 is associated 

with increases in prostate cancer mortality [14]. This 

contradicts the inverse association found here between 

NLRP14 and risk score, and further study is warranted. 

ANGPTL2 is a secreted glycoprotein with homology 

to angiopoietins that may exert autocrine or paracrine 

effects on endothelial cells. ANGPTL2 also promotes 

M2 polarization of macrophages in non-small cell lung 

cancer [15]. In addition, ANGPTL2 may promote 

acquisition of androgen independence and tumor 

progression in prostate cancer by exerting autocrine 

and/or paracrine effects via the integrin α5β1 receptor 

[16]. Here, we found a positive association between 

ANGPTL2 expression and immune-related risk score 

in prostate cancer. Finally, several studies suggest that 

BMP2 promotes progression and induces biochemical 

recurrence in prostate cancer [17–19], which is 

consistent with the positive association found here 

between BMP2 and risk score.  

 

Our present results demonstrate that memory B cell, 

regulatory T cell, M2 macrophage, and dendritic cell 

infiltration were significantly increased in the high risk 

score group, while plasma cell, CD8+T cell, monocyte, 

and activated mast cell infiltration were higher in the 

low risk score group. M2 macrophages promote prostate 

cancer progression and help establish an immuno-

suppressive state in tumors [20–21]; this might help 

explain the increased M2 macrophage infiltration 

observed in the higher risk score group. In contrast, 

local increases in the density of infiltrating CD8+T cells 

in tumors is a marker of good prognosis; this might 

account for the increased CD8+T cell infiltration 

observed here in the low risk score group with better 

prognoses. Infiltration of these cell types reflects the 

immune microenvironment and can also predict 

prognosis in prostate cancer [22].  

The role of PLK1 in prostate cancer is not clear at 

present [23]. However, numerous studies indicate that 

PLK1 can act as an oncogene, and PLK-1 inhibitors 

can effectively inhibit prostate cancer progression [24–

26]. PLK1 can also inactivate other tumor suppressors 

[27, 28]. Another study suggests that PLK1 is a 

carcinogenic factor [29]. Here, we found that PLK1 

expression was higher in the high risk group that 

experienced earlier biochemical recurrence. Moreover, 

downstream pathways regulated by PLK1 comprised 

the single largest pathway group in our biochemical 

recurrence prediction model for prostate cancer. PLK1 

might therefore be one of the most important immune 

genes that contribute to biochemical recurrence in 

prostate cancer. 

 

MATERIALS AND METHODS 
 

Data acquisition  

 

The training dataset was obtained from TCGA and 

included 498 cancer samples and 52 normal control 

samples; clinical information for those samples is shown 

in Supplementary Table 1. The GSE54460 testing dataset 

containing 106 samples was downloaded from the gene 

expression omnibus database (GEO: https://www.ncbi. 

nlm.nih.gov/geo/); clinical information for those samples 

is shown in Supplementary Table 2. Immune genes that 

were included in our analyses were obtained from 

InnateDB (https://www.innatedb.ca/) and ImmPort 

(https://www.immport.org/home).  

 

Identification of differentially expressed genes  
 

Genes that were differentially expressed between 

normal and prostate cancer samples were identified 

based on the screening criteria of p value > 0.05 and 

log(fold-change) > 1.5.  

 

Weighted gene co-expression network analysis  

 

TCGA expression data for 602 immune-related genes 

was used for WGCNA (weighted gene co-expression 

network analysis) to identify associations between 

gene expression modules and clinical characteristics 

[30]. During sample clustering, eight samples with 

abnormal clustering were identified and removed from 

the analysis (Supplementary Figure 1). The co-

expression network was then constructed and divided 

into modules. A scale-free network coefficient of 

greater than 0.85 was used to ensure that the co-

expression network conformed to the scale-free 

network standards. Gene significance (GS) indicates 

the strength of linear correlations between the 

expression of different gene modules and clinical 

features. Modules with P≤0.01 and higher GS values 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.innatedb.ca/
https://www.immport.org/home
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were identified as survival-related modules and 

included in subsequent analysis. 

 

Univariate Cox regression and lasso regression  

 

The Survival package for R was used to perform 

univariate Cox regression and the KM test. The Glmnet 

package was used for lasso regression. Prognosis related 

genes were screen and correlation regression 

coefficients were obtained. The resulting risk score was 

validated in the GEO dataset (GSE54460). “TimeROC” 

was used to draw receiver operating characteristic 

curves (ROC), and the area under the curve (AUC) was 

calculated. Samples were divided between the high and 

low risk groups using the median risk score (RS) as a 

cutoff value. KM curves were used to evaluate the 

survival of prostate cancer patients. 

 

Comparison of immune cell infiltration between high 

and low risk groups 

 

The “ESTIMATE” package was used to calculate the 

microenvironment score, and the “CIBERSORT” 

package was used to assess the proportions of 22 

leukocyte subtypes based on differences in mRNA 

expression between the high and low risk groups [31]. 

The Wilcox test was used to evaluate differences 

between the high low risk score groups.  

 

Double immunofluorescence 

 

Tissue microarrays (DC-Pro11018, Xian, China) 

including 74 prostate cancer tissues and 6 non-cancer 

prostate tissues, along with associated detailed clinical 

information, were purchased from Alenabio Biotech 

(Xian, China). Clinical information for the prostate cancer 

tissue microarray is shown in Supplementary Table 5. The 

sections were incubated overnight at 4°C with antibodies 

against anti-CD163 (rabbit, 1:100, A8383, Elabscience, 

Wuhan, China) and anti-PLK1 (mouse, 1:50, 

TA500393S, ORIGENE, Rockville, USA). The sections 

were then washed three times with cold PBS and stained 

with Cy3 Goat Anti-Mouse IgG (H+L) (1:100, AS008, 

ABclonal, Wuhan, China) or FITC Goat Anti-Rabbit IgG 

(H+L) (1:100, AS011, AS008, ABclonal, Wuhan, China) 

secondary antibodies. Nuclei were stained with DAPI. 

Stained tissues were visualized using an Olympus IX73 

microscope (Waltham, MA). IOD (integral optical 

density) was calculated using ImageJ (1.46r, National 

Institutes of Health, USA).  

 

Statistical analysis   

 

All statistical analyses were performed using R software 

(version 3.6.3, http://www.R-project.org). A two-sided 

P < 0.05 indicated a statistically significant difference. 
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SUPPLEMENTARY MATERIALS  

 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Volcano map showing genes that were differential expressed between the high and low risk score 
groups. Red dots represent genes that are up-regulated in the high risk group, and blue dots represent genes that are down-
regulated in the high risk group. 

 

 
 

Supplementary Figure 2. (A) Immune scores and (B) matrix scores in the high and low risk groups. 
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Supplementary Figure 3. 28 immunomodulatory factors differentially expressed between the high and low risk score groups. 

 

 

 

Supplementary Figure 4. GO enrich analysis was performed for differentially expressed genes. 
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Supplementary Tables  

 

Please browse Full Text version to see the data of Supplementary Tables 3 and 4. 

 

 

Supplementary Table 1. Clinical information of TCGA prostate cancer samples. 

Characteristics  Counts or percent 

Age median(range) 61(41-78) 

Biochemical_recurrence(BCR)   

 Yes 68(12.8%) 

 No 464(87.2%) 

Days_to_BCR median(range) 708.0(58.0-2459.0) 

Days_to_last_follow_up median(range) 958(23-5024) 

Clinical_T   

 T1a 1(0.2%) 

 T1b 2(0.4%) 

 T1c 212(42.1%) 

 T2 13(2.6%) 

 T2a 72(14.3%) 

 T2b 72(14.3%) 

 T2c 62(12.3%) 

 T3a 48(9.5%) 

 T3b 19(3.8%) 

 T4 2(0.4%) 

Days_to_psa median(range) 518.5(-164.0 - 3447.0) 

Gleason_score median(range) 7(6-10) 

Pathologic_N   

 N0 442(82.2%) 

 N1 96(17.8%) 

Pathologic_T   

 T2a 14(2.3%) 

 T2b 12(1.9%) 

 T2c 211(34.3%) 

 T3a 203(33.0%) 

 T3b 162(26.3%) 

 T4 14(2.3%) 

Psa_value median(range) 0.1(0-323) 

Radiation_therapy   

 NO 448(86.8%) 

 YES 68(13.2%) 

Race.demographic   

 american indian or alaska native 1(0.16%) 

 asian 13(2.09%) 

 black or african american 81(13.00%) 

 not reported 18(2.89%) 

 white 510(81.9%) 
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Supplementary Table 2. Clinical information of GSE54460 prostate cancer samples. 

Characteristics  Counts or percent 

Age median(range) 61.7(43-78) 

Concentration(ng.μl) median(range) 95.39(17.04-757.53) 

race   

 Black 22(31.4%) 

 White 48(68.6%) 

Ratio(260/230) median(range) 0.87(0.16-1.86) 

Rpl13a.Ct.value median(range) 28.61(24.50-30.90) 

Total yield(μg) median(range) 6.55(1.50-25.36) 

BCR   

 0 51(48.1%) 

 1 55(51.8%) 

months to BCR median(range) 21.40(0-154.22) 

months to lastFollow median(range) 68.50(0.70-180.56) 

 

Supplementary Table 3. 221 immune-related genes included in the candidate gene set. 

Supplementary Table 4. Results of GSEA enrichment analysis for the high and low risk score groups. 

Supplementary Table 5. Clinical information of tissue microarray of prostate cancer. 

Characteristics Counts or mean 

Age (years) 68.29±10.20 

T classification (n)  

T1 2 

T2 49 

T3 20 

T4 2 

N classification  

N0 66 

N1 7 

M classification  

M0 69 

M1 4 

Grade  

1 4 

2 18 

2-3 2 

3 38 

unknown 11 

Stage  

I 3 

II 43 

IIB 1 

III 15 

IIIB 1 

IV 10 

 


