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INTRODUCTION 

Radiation therapy can be adopted to effectively 

malignant tumors. Radiation not only has a killing 

effect on tumor cells but also has a powerful destructive 

effect on normal tissue cells in the irradiation field. 

During radiotherapy treatment, to a certain extent, a 

wide range of radiation doses, various radiation, energy 

of the radiation, treatment time of the radiation, and 

course of treatment overall affected the patient. Patients 

having undergone radiotherapy may develop different 

skin damage as impacted by their different ages, 

physical conditions, skin types, as well as location and 

duration of exposure. Numerous advanced radiotherapy 

technologies for tumors have developed rapidly and 

been progressively applied in clinics. Despite the 

increasing accuracy of radiation therapy, normal tissues 

are still unavoidably exposed. The main causes of RSI 

include nuclear radiation accidents, tumor radiotherapy, 

and occupational exposure. In tumor radiotherapy, the 

incidence of RSIs has also been gradually elevated, and 

nearly 85%–95% of tumor patients have developed 

different degrees of skin damage attributed to 

radiotherapy. Accordingly, the quality of life is 

seriously deteriorated, and huge psychological and 

economic pressure is exerted on the patient, while 

radiotherapy, and thus, the treatment are interrupted [1, 

2]. On the whole, RSIs consist of two types, i.e., acute 

and chronic. Acute RSIs involve dry and wet 

desquamation, skin necrosis, ulcers, as well as bleeding 

[3]. Chronic RSIs cover chronic ulcers, radiation-

induced keratosis, telangiectasias, fibrosis, as well as 

skin cancer [4]. Compared with skin damage that is 

attributed to other factors, RSI is characterized by 

incubation period, timeliness, potentiality, progress and 

persistence. Unlike ordinary burns and ulcers, radiation 

directly damages the skin as well as its deep tissue cells, 

causing dryness, loss of elasticity, pigmentation, soft 

tissue fibrosis, capillary dilatation, and radiation 

dermatitis in irradiated areas. Moreover, it irreversibly 

www.aging-us.com AGING 2020, Vol. 12, No. 22 

Review 

Radiation-induced skin injury: pathogenesis, treatment, and 
management 

Xiaojing Yang1,*, Hanru Ren2,*, Xiaomao Guo3,4, Chaosu Hu3,5, Jie Fu1 

1Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 
China 
2Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai,  
China 
3Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China 
4Shanghai Medical College, Fudan University, Shanghai, China 
5Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China 
*Equal contribution

Correspondence to: Jie Fu; email: fujie74@sjtu.edu.cn 
Keywords: radiation, skin injury 
Received: May 10, 2020 Accepted: July 30, 2020 Published: November 16, 2020 

Copyright: © 2020 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

ABSTRACT 

Radiation-induced skin injury (RSI) refers to a frequently occurring complication of radiation therapy. Nearly 
90% of patients having received radiation therapy underwent moderate-to-severe skin reactions, severely 
reducing patients' quality of life and adversely affecting their disease treatment. No gold standard has been 
formulated for RSIs. In the present study, the mechanism of RSI and topical medications was discussed. Besides, 
this study can be referenced for clinicians to treat RSIs to guide subsequent clinical medicine. 

mailto:fujie74@sjtu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 23380 AGING 

damages microvascular and small blood vessel 

endothelial cells in skin tissue. As a result, patients’ 

damaged skin does not heal for a long time, and it 

exhibits susceptibility to infection. The lesion 

eventually develops into fibrosis of the skin tissue and 

even becomes cancerous, significantly deteriorating 

patients’ quality of life. Numerous existing 

medicaments and dressings worldwide are available to 

prevent and treat radioactive skin damage (e.g., 

corticosteroids, hyaluronic acid, triethanolamine, 

sucralfate cream, aloe, calendula cream, as well as 

water-based cream). The conclusions of various studies 

often appear to contradict each other and lack 

universality for the lack of high-quality large-sample 

studies and uniform assessment standards. Clinically, 

the prevention and management of RSI is commonly 

based on personal experience, without scientific 

evidence [5]. 

 

Pathophysiology and mechanism 
 

Fibrosis 

 

The pathophysiological variations in RSI consist of 

erythema and desquamation that occur shortly, as well 

as chronic skin atrophy, ulcers, telangiectasias and 

fibrosis [6, 7]. Progressive endometritis occurs for 

gradual occlusion of the microvasculature and hypoxia 

attributed to fibrosis. The wound healing in the 

illuminated area is limited as impacted by the disruption 

of the natural process of overlapping wound healing [8]. 

Radiation fibrosis refers to a harmful chronic disease 

that appears weeks to years after radiation [8]. Despite 

the rapid development of radiation therapy technology, 

radiation fibrosis is an irreversible procedure that 

significantly impairs the progress of radiation therapy 

and reduces the quality of life of patients [9]. Pandya et 

al. [10] tested specimens from 27 patients with oral 

squamous cell carcinoma who underwent radiation 

therapy for the jaw and neck. They reported significant 

tissue atrophy and atypical hyperplasia, increased 

fibrous exudative necrosis, thickened blood vessel 

walls, as well as dilated oropharynx of the salivary 

glands. Moreover, for the same patients, dense fibrosis 

with thick fibers was commonly identified in post-

radiation tissues. It was inferred that similar findings 

elsewhere were due to increased tissue fibrosis and 

hypoxia for microvascular damage. Glands in the 

dermis were similarly damaged. The mentioned 

findings again confirmed the characteristics of 

microvascular thrombosis and tissue fibrosis of the final 

ulcer attributed to skin variations after radiation [11]. 

Radiation fibrosis is a sophisticated reaction that 

involves multiple stages. It consists of inflammation, 

proliferation and remodeling. It is an abnormal wound 

healing process attributed to the imbalance of 

proinflammatory and profibrotic cytokines [12]. 

Increased connective tissue causes fibrosis and leads to 

organ dysfunction [13]. Fibroblast-derived 

myofibroblasts critically impact fibrosis development 

by continuously synthesizing ECM and secreting type I 

collagen and α-smooth muscle actin [14]. Facilitated 

synthesis and deposition of ECM and accumulation of 

fibroblasts are considered the characteristics of skin 

fibrosis. Several mechanisms are involved in skin 

fibrosis, including fibroblast differentiation [15], 

epithelial-to-mesenchymal transition (EMT), [16] and 

leukocyte recruitment [11]. 

 

Tissue damage repair and subsequent fibrosis involve 

multiple molecules and signaling pathways (e.g., 

transforming growth factor (TGF)-β, and Wnt/β-

catenin) [17, 18]. TGF-β acts as a clear fibrosis driver. 

Radiation-induced TGF-β is expressed in skin tissue in 

a radiation dose–dependent manner [19]. TGF-β is 

combined with its receptor to form a trimeric complex, 

causing tissue fibrosis [20]. The TGF-β/Smad pathway 

is a significant signaling pathway involved in skin 

fibrosis. Activated Smad protein leads to the nucleus 

translocation, activates specific transcription, and 

triggers fibrosis in the nucleus [21]. Activated TGF-β 

regulates fibrotic target genes by phosphorylating 

Smad2/Smad3 proteins. The TGF-β signaling pathway 

has acted as a therapeutic target for radiation fibrosis 

[22]. Ionizing radiation is exerted on skin cells to cause 

apoptosis and generate free radicals and reactive oxygen 

species, primarily causing skin damage. The Wnt/β-

catenin signaling pathway is vital to the physiological 

processes of early embryonic development, organ 

formation, and tissue regeneration in animals. Mutations 

in vital proteins in this signaling pathway can cause 

abnormal signal transduction, causing abnormal 

development or tissue regeneration [23]. A schematic is 

presented in Figure 1. 

 

Changes of skin lipid metabolism 

 

Skin fat represents the main building block of human 

skin. Skin lipids have a radioprotective role. Radiation 

modulates skin lipid metabolism by downregulating 

multiple pathways. It also reduces the amount of skin 

fat and variations in lipid metabolism. Mature 

adipocytes promote the migration of co-cultured 

keratinocytes and fibroblasts, but do not promote their 

proliferation. Fatty acid–binding protein 4 can be 

incorporated into skin cells and promote the repair of 

DNA damage in irradiated skin fibroblasts. Radiation 

induces skin lipid remodeling, and skin fat cells have 

protective effects on radiation-induced skin damage 

[24]. Radiation-induced skin damage is depicted by a 

chronic inflammatory state and an increase in ROS 

synthesis. Ionizing radiation facilitates the synthesis of 
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reactive nitrogen and oxygen species (RNS/ROS) for 

the radiolysis of water [25]. The mentioned reaction can 

induce oxidative damage and cytotoxicity, thereby 

causing acute or chronic skin damage. The use of 

antioxidants can reduce the damage attributed to 

radiation [26]. For instance, superoxide dismutase and 

its mimetics reduce ROS levels and RSI. Rare is known 

regarding the underlying mechanisms by which 

radiation generates and amplifies ROS. Nitric oxide 

(NO) is critical to the homeostasis of the functioning of 

the skin and has become the target of treatment for 

specific skin diseases [27]. In mammals, NO is 

synthesized by L-arginine, NADPH, as well as NO 

synthase (NOS) in oxygen. NOS isoforms are identified 

in the skin, and 5,6,7,8-tetrahydrobiopterin (BH4) acts 

as an important cofactor for NOS [28]. ROS synthesis 

may hinder the use of BH4 for the oxidation of BH4 to 

dihydrobiopterin (BH2). Accordingly, uncoupling of 

NOS may be caused, and the synthesis of oxidative 

superoxide radicals can be facilitated [29]. The 

inhibition of GCH1 in vivo increases oxidative stress 

and down-regulates the white blood cell count after 

radiation [30]. Radiation destroys BH4, thereby 

enhancing the ROS cascade response. GCH1 revives 

BH4 levels and ROS synthesis [31]. 

Apoptosis 
 

Ionizing radiation is capable of affecting G2- and M-

phase cells in the cell cycle, thereby causing apoptosis 

and impaired cell proliferation and migration; as a 

result, an overall cell depletion is caused. Ionizing 

radiation can damage collagen structures. Cell 

proliferation is suppressed in irradiated wounds. 

Increased matrix metalloproteinases (MMPs) that are 

not counteracted by tissue inhibitors of MMPs (TIMP) 

cause abnormal degradation of ECM. Under decreased 

angiogenesis and increased transforming growth factor-

β (TGF-β) levels, blood vessels show variations, 

causing increased endothelial fibrosis; subsequent 

occlusion of the vascular lumen causes tissue hypoxia. 

The low expression level of apoptosis-inhibiting gene 

Ras and the over-expression of apoptosis-inducing 

genes p35 and others attributed to radiation during 

radiotherapy causes excessive apoptosis in patients’ 

bodies; thus, their skin is damaged. Existing studies 

reported that considerable radiation is generated during 

radiotherapy, and the reactive oxygen species and free 

radicals generated by the radiation can seriously 

damage the basal cells of the human body. Moreover, 

radiation inhibits the basal cell division and migration 

 

 
 

Figure 1. Schematic diagram of related molecular mechanisms that may be involved in RSI. 
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of keratinization function, inducing RSI in patients 

having received radiotherapy [32]. Moreover, radiation 

can lead to high expression levels of p53 and Bax 

proteins; it causes apoptosis and necrosis of local tissues 

(e.g., vascular endothelial cells, fibroblasts and 

epidermal cells); it adversely affects the process of 

neovascularization, wound margin contraction, as well 

as wound epidermalization [33]. Existing studies 

revealed that cytokines are directly or indirectly 

involved in radiation-induced damage [34]. IL-10 is 

capable of inhibiting the inflammatory response and 

reducing the activity of macrophages [34]. Neutrophils 

refer to the first cells that intrude the wound site within 

minutes after injury. They undergo apoptosis and are 

phagocytosed by macrophages 24–48 h after injury. The 

mentioned macrophages engulf cell debris and secrete 

growth factors that are critical to wound healing.  

 

Ionizing radiation boosts the synthesis of reactive 

nitrogen and oxygen species (RNS/ROS) as impacted 

by the radiolysis of water [25]. The mentioned reaction 

causes oxidative damage and cytotoxicity, thereby 

causing acute or chronic skin damage. The use of 

antioxidants can mitigate the damage attributed to 

radiation [26]. For instance, superoxide dismutase and 

its mimetics down regulated ROS levels and RSI. The 

underlying mechanisms by which radiation generates 

and amplifies ROS are rarely known. Nitric oxide (NO) 

is critical to the homeostasis of the functioning of the 

skin, which has become the target of treatment for 

specific skin diseases [27]. In mammals, NO is 

synthesized by L-arginine, NADPH and NO synthase 

(NOS) in oxygen. NOS isoforms are identified in the 

skin, and 5,6,7,8-tetrahydrobiopterin (BH4) acts as a 

crucial cofactor for NOS [28]. The ROS synthesis may 

reduce the use of BH4 due to the oxidation of BH4 to 

dihydrobiopterin (BH2). This may cause uncoupling of 

NOS and lead to increased synthesis of oxidative 

superoxide radicals [29]. The inhibition of GCH1 in 
vivo increases oxidative stress and reduces the white 

blood cell count after radiation [30]. Radiation destroys 

BH4, thereby increasing the ROS cascade response. 

GCH1 revives BH4 levels and ROS synthesis [31].  

 

Changes of the process of neovascularization 
 

Radiation can also cause a reduction in the expression 

levels of angiogenic factors. It up-regulates the 

expression levels of proinflammatory cytokines IL-1, 

IFN-γ, TNF-α, and IL-6, prevents collagen deposition, 

and induces TGF-beta1 expression by 

macrophage/stromal cell activation. Elevated levels of 

TGF-beta1 break down collagen and stimulate 

microvascular variations [8]. Neovascularization 

requires signaling through the vascular 

endothelial growth factor (VEGF) family [35]. VEGF 

refers to a marker of neovascularization. After exposure 

to 10 Gy irradiation, the synthesis of angiogenic factor 

VEGF in the blood of rat tumor carriers was 

significantly hindered [36]. Low levels of VEGF after 

radiotherapy indicated that targeted VEGF treatment 

enhanced vascular repair. Preclinical studies supported 

this by showing that irradiated rat bladder administrated 

with VEGF resulted in a marked reduction in fibrotic 

tissue and enhanced tissue angiogenesis [37]. PlGF 

refers to a member of the VEGF family and is involved 

primarily in pathological angiogenesis, including cancer. 

PlGF helps in wound healing by provoking blood vessel 

formation, macrophage recruitment, keratinocyte 

migration, and formation of granular tissue [38]. bFGF is 

an angiogenic growth factor with the ability to induce 

endothelial cell proliferation and migration. It is capable 

of expediting the healing of second-degree burn wounds 

and improving scar quality [39]. In burns, dermal 

components are required for surface resurfacing, and 

bFGF enhances wound healing and elevates the number 

of skin-derived mesenchymal stem cells in a dose-

dependent manner under serum-free conditions [40]. In 

surgery, bFGF is immediately used for skin grafts and 

artificial dermal reconstruction after debridement [41]. 

Early use in local tissue may effectively protect 

radiation-damaged cells from cell death [42]. 

 

General management 
 

RSI management should start with patient education in 

skin care before, after and during radiation treatment 

(e.g., skin care, psychological care and diet care).  

 

Skin care 
 

Skin care refers to the cleaning and care of patients’ skin, 

capable of effectively preventing wound infections as 

well as reducing the physical symptoms of discomfort to 

ensure the subsequent treatment of patients. Patient 

education should promote personal and wound hygiene, 

facilitate comfort, prevent trauma to the damaged skin, 

and manage radiation dermatitis. First of all, soft cotton 

clothing should be selected for the patient to prevent 

large friction to patients’ skin. Applying all kinds of 

irritating drugs or cosmetics is strictly prohibited. The 

body should not be scrubbed with soap, iodine, etc. Also, 

the use of ice or heat should prohibited. The hair in the 

exposed area of the body should not be shaved. The skin 

in the skin-irradiated area should be kept dry and clean. 

Certain basic hygiene habits are beneficial for managing 

radiation-induced skin toxicity. Intensive studies have 

been conducted on warm soapy water and warm water 

washing, which has now been recommended by clinicians 

[42]. Reports showed a marked reduction in itching and a 

lower RTOG radiation dermatitis score in moderate soap 

and water washing compared with no washing [43]. 
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Psychological care 
 

Overall, patients have different levels of fear before 

receiving radiotherapy, which is quite normal. The 

nursing staff of the hospital should provide the patient 

knowledge regarding radiotherapy, various precautions, 

possible adverse reactions of various types in the body, 

and also skin care timely. Timely and effective 

communication can alleviate patients’ internal stress, 

and the patients can have a more relaxed attitude 

towards treatment. 

 

Diet care 
 

A high-fat diet increases skin fat and increases 

resistance to RSI [24]. It is recommended that patients 

increase the amount of high-fat foods during treatment. 

 

Therapy 
 

Methods and possible mechanisms for treating RSI are 

showed in Table 1. 

 

Physical therapy 
 

Hyperbaric oxygen therapy (HBOT) 

HBOT refers to treatment with 100% oxygen at 

pressures above atmospheric pressure [44]. Studies have 

shown that the slow wound healing of patients results 

from hypoxemia for the fractured surface of the wound 

blood vessels. Oxygen therapy on skin lesions of 

patients can effectively increase the oxygen supply 

function of the skin lesions, reduce the inflammatory 

exudation of the wound, and accelerate the drying and 

healing of the wounds. 

 

Herbal 
 

Calendula 
Calendula exerts antibacterial, anti-inflammatory and 

antioxidant effects, and it is capable of promoting 

angiogenesis. For this reason, it can repair wounds [45]. 

Pommier et al. delved into the effect of calendula on 

radiation-induced skin damage. Compared with 

triethanolamine, calendula significantly lowered the 

incidence of dermatitis. Moreover, patients administrated 

with calendula had fewer interruptions during radiation 

therapy and less radiation-induced pain [46].  

 

Catechins 
Catechin is a natural phenolic compound. For its 

antioxidant activity, it can heal the skin damage from 

UV rays [47]. Epigallocatechin-3-gallate (EGCG) is 

the primary component of catechins. Studies have 

demonstrated its ability to inhibit radiation-induced 

damage to human skin cells and mouse skin [48]. 

EGCG protects cells from ROS by scavenging 

hydroxyl free radicals, superoxide anions, as well as 

hydrogen peroxide [49]. It can effectively mitigate 

radiation-induced damage. Clinical trials have 

confirmed the security of EGCG as well as its 

capability to avoid serious RSI. EGCG can 

continuously weaken tenderness, itching, pain and 

burns [50].  

 

Aloe vera 
Aloe vera is considered a natural anti-inflammatory herb 

that mitigates radiation-induced skin damage [51]. 

Traditional Chinese medicine believes that RSI is 

primarily attributed to heat poisoning. Hence, heat 

treatment and detoxification should be employed as the 

major methods in traditional Chinese medicine treatment. 

As revealed from the results of traditional Chinese 

medicine treatment, evenly applying fresh aloe vera juice 

to the affected area daily can effectively mitigate the skin 

damage of patients. Aloe vera is not only cheap and 

effective, but also easy to use. Despite the mentioned 

encouraging properties, aloe vera has not been shown to 

decrease serious radiation-induced skin damage [52]. 

Compared with aqueous lotions in large randomized 

controlled trials (RCTs), it is less effective in alleviating 

patients' symptoms [52]. 

 

Chamomile 

Chamomile is derived from a medicinal plant with anti-

inflammatory, antibacterial, and antispasmodic effects 

[53]. Despite the mentioned encouraging properties, the 

study of Ferreira et al. failed to illustrate the benefits of 

chamomile in treating RSI [54].  

 

β-Sitosterol 

β-Sitosterol acts as a vital composition of sesame oil 

and beeswax. It is a herbal preparation with analgesic, 

antibacterial and anti-inflammatory components [55]. 

Compared with triethanolamine, it exhibits no major 

discrepancy to treat grade 2 and grade 3 dermatitis. 

However, the use of β-sitosterol significantly down 

regulated the incidence of severe itching and local skin 

pain [56].  

 

Topical vitamins 
 

Ascorbic Acid (ASC) 
ASC (vitamin C) serves as an antioxidant and scavenges 

free radicals. ASC is capable of maintaining the 

enzymatic activity in patients' body, enhancing the 

tissue function of the biofilm and mitochondria, 

removing free radicals from the human body, and 

effectively treating the radiation-caused skin damage. 

Moreover, ASC can be involved in the normal 

metabolism of the human body, helping the body repair 

skin epithelial cells [57]. Halperin et al. delved into the  
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Table 1. Methods and possible mechanisms for treating RSI. 

Treatment References Mechanism 

HBOT Bassetto, F., et al. 2019 [44] increase the oxygen supply, reduce the inflammatory 

exudation 

Calendula Gilca, M., et al. 2018 [45] antibacterial, anti-inflammatory, antioxidant, and 

promote angiogenesis 

Catechin Scalia, S., et al. 2013 [47] antioxidant 

Aloe Vera Surjushe, A., et al. 2008 [51] anti-inflammatory 

Chamomile Aggag, M.E., et al. 1972 [53] anti-inflammatory, antibacterial and antispasmodic 

β-Sitosterol Atiyeh, B.S., et al., 2002 [55] analgesic, antibacterial, and anti-inflammatory 

ASC Aubertin, A. 1991 [57] antioxidant 

Pantothenic Acid Aubertin, A. 1991 [57] promote epithelial regeneration 

HA Liguori, V., et al. 1997 [59] prevent ROS injury 

EGF Haubner, F., et al. 2012 [60] induce the proliferation of fibroblasts, epidermal stem 

cells, and keratinocytes 

GM-CSF Cioffi, W.G., et al. 1991 [64] lymphokine 

PTX Kumar, D., et al. 2018 [66] anti-inflammatory; inhibit the TGF-β expression 

Plasma Lee, J., et al. 2019 [69] enhance cell function through AKT signaling 

Interleukins Wei, J., et al. 2019 [70] inflammatory 

SODs Kumar Soni, S., et al. 2019 [74] endogenous enzymatic antioxidants 

Triethanolamine cream Lessmann, H., et al. 2009 [77] reduce dryness,  inflammation and edema  

Corticosteroids Haruna, F., et al. 2017 [78] anti-inflammatory 

Statins Khattri, S., et al. 2013 [80] immunomodulatory, anti-inflammatory, metabolic, 

antioxidant and antibacterial 

Trolamine Coulomb, B., et al. 1997 [83] recruit macrophages and stimulate granulation tissue 

Sucralfate Kouloulias, V., et al. 2013 [88] anti-inflammatory and antibacterial 

SSD Shanmugasundaram, N., et al. 2009 

[89] 

anti-inflammatory 

Silver Nylon Dressing Niazi, T.M., et al. 2012 [91]; 

Aquino-Parsons, C., et al. 2010 

[92] 

anti-inflammatory; barrier-enhancing 

Silver-containing foam 

dressings with Safetac 

Davies, P., et al. 2017 [93] provide a moist healing environment 

Abbreviations: RSI: Radiation-induced skin injury; HBOT: Hyperbaric oxygen therapy; ASC: Ascorbic Acid; PTX: Pentoxifylline; 
HA: Hyaluronic Acid; EGF: Epidermal Growth Factor; GM-CSF: Granulocyte Macrophage-Colony Stimulating Factor; SODs: 
Superoxide dismutases; SSD: Silver Sulfadiazine 
 

workable shielding part of ASC in radiation therapy. 

However, the data failed to indicate any advantage of 

ASC in treating skin damage attributed to radiation 

therapy [57].  

 

Pantothenic Acid 
Pantothenic acid (i.e., vitamin B5) is critical to 

metabolism and to maintain skin integrity. The lack  

of pantothenic acid can cause dermatitis, while  

its excess can promote epithelial regeneration.  

The data showed that topical fentanyl cream did not 

exert a protective effect on radiation-induced 

dermatitis [57].  

Endogenous agents 
 

Hyaluronic Acid (HA) 
HA is a carbohydrate polymer throughout the 

connective tissue. It is a vital component in ECM of the 

dermis [58]. A preliminary study using cultured 

fibroblasts showed that topical application of HA 

prevented ROS injury attributed to radiation. In one 

study, HA significantly decreased the occurrence of 

serious skin injuries [59]. However, Pinnix et al. 

discovered that the discovered that the area 

administrated with oil was better than that administrated 

with HA [58]. 
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Biologic preparations 
 

Epidermal Growth Factor (EGF) 
EGF is important in inducing the proliferation of 

fibroblasts, epidermal stem cells, and keratinocytes 

[60]. Reports have demonstrated that platelet, 

macrophages, and fibroblasts release EGF in acute 

wounds and adjuvant treatments [61]. EGF is capable of 

expediting the local healing of diabetic foot ulcers [62]. 

Kang et al. confirmed that the topical use of EGF down-

regulated the incidence of grade 2 toxicities in patients 

with radiotherapy [63].  

 

Granulocyte Macrophage-Colony Stimulating Factor 

(GM-CSF) 

GM-CSF is a lymphokine that facilitates the 

chemotacticity of monocytes into tissues, thus 

hampering the progress of macrophages. Macrophages 

secrete plasminogen activator in the presence of GM-

CSF [64]. Patients administrated with steroids and GM-

CSF had lower radiation dermatitis scores and less pain 

compared with those administrated with topical steroids 

alone [65].  

 

Pentoxifylline (PTX) 

PTX refers to a competitive nonselective 

phosphodiesterase inhibitor. For its anti-inflammatory 

effect, it has been widely used in skin diseases; it can 

repair the radiation-induced damage by inhibiting the 

TGF-β expression [66]. Existing studies reported that a 

combination of pentoxifylline and alpha-tocopherol 

mitigates fibrosis for at least 6 months [67]. 

Microparticles loaded with pentoxifylline and succinate 

D-α-tocopherol act as a novel topical formulation that 

locally targets inflammatory cytokines and oxidation 

pathways, which are applied to the skin after local laser 

ablation [68].  

 

Plasma 
Platelet-rich plasma (PRP) can improve the healing of 

skin wounds. Lee et al. studied the regeneration 

function of PRP by locally irradiating the back skin of 

mice. As revealed from the results, PRP enhances cell 

function via AKT signaling, thereby facilitating the 

regeneration of irradiated skin. The ability of PRP to 

promote skin healing is worth conducting clinical 

research and application [69]. 

 

Interleukins (ILs) 
Proinflammatory cytokines are critical to the adverse 

effects of early and late ionizing radiation. 

Inflammatory bodies are capable of maturing the pro-

inflammatory cytokines (IL-6, IL-18, IL-22, and IL-1β), 

as well as exacerbating radiation damage [70–72]. It can 

be seen that inhibiting the expression of inflammatory 

factors can promote skin repair. However, IL-12 has a 

radioprotective effect on radiosensitive systems such as 

bone marrow and gastrointestinal tract and it is a 

potential mitigator of RIS [73]. 

 

Superoxide dismutases (SODs) 

SODs are endogenous enzymatic antioxidants that can 

act as an indicator to assay radiation-induced skin 

damage [74]. Existing studies suggested that oral 

administration of SOD-gliadin or SOD/catalase mimetic 

can prevent or mitigate radiation-induced skin fibrosis 

and injury in mice [75, 76]. 

 

Pharmaceuticals 
 

Triethanolamine cream 

Triethanolamine cream is a compound preparation with 

good hydration. Applying it to the damaged area of the 

patients' skin can drains and cleans the area, as well as 

effectively reducing patients’ skin dryness, decreasing 

body inflammation and edema response, facilitating 

patients’ body microcirculation and enhancing skin 

tolerance, thereby expediting the healing of the wound 

[77]. 

 

Corticosteroids 

Corticosteroids have anti-inflammatory effects. They 

are commonly employed to treat radiation-induced 

dermatitis because of its ability to prohibit radiation-

induced cytokine proliferation [3]. Haruna et al. showed 

that the use of corticosteroids avoided the occurrence of 

wet desquamation and lowered the severity of RSI. The 

beneficial role of corticosteroids in preventing RSI has 

been verified [78]. Ho et al. demonstrated topical 

corticosteroids to be effective to reduce eczema peeling, 

reduce the frequency of serious skin toxicity and delay 

the occurrence of grade 3 dermatitis [79].  

 

Statins 

On the whole, statins are adopted to treat 

hypercholesterolemia and prevent heart disease. They 

also have immunomodulatory, anti-inflammatory, 

metabolic, antioxidant and antibacterial characteristics 

[80]. Existing studies reported that statins can improve 

skin-related diseases and promote wound healing in 

ulcers [81]. Ghasemi et al. divided patients into the 

atorvastatin group and the placebo group for analysis, 

and the results showed that the reported use of 

atorvastatin mitigated primarily radiation-induced breast 

swelling, itching and pain [82].  

 

Trolamine 

Trolamine is a topical oil-in-water emulsion widely 

used to treat RIS in the clinic. Trolamine acts as a 

nonsteroidal anti-inflammatory drug by recruiting 

macrophages and stimulating granulation tissue [83]. 

Multiple RCTs reported that triethanolamine in aloe 
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vera–, vitamin-, and lipid-based creams or placebos 

could treat RD [84, 85]. As demonstrated by Abbas et 

al., the incidence of RTOG grade 3 dermatitis was 

down-regulated in patients with squamous cell 

carcinoma of the head and neck using triethanolamine 

emulsions [86]. Moreover, triethanolamine mitigated 

patient discomfort compared with β-sitosterol [56].  

 

Sucralfate 

Sucralfate refers to the primary aluminum salt of 

sucrose octasulfate and an ordinary anti-ulcer drug 

when taken orally. Sucralfate exerts a significant barrier 

effect and exhibits anti-inflammatory and antibacterial 

properties; it can facilitate angiogenesis as well. Three 

studies were conducted to determine the clinical effect 

of sucralfate to treat RIS, with mixed results. In clinical 

studies, however, sucralfate significantly mitigated the 

severity of dermatitis or alleviated the symptoms of 

patients [87]. Fortunately, Kouloulias reported the 

conducive functions of sucralfate in a small and 

nonrandomized study [88].  

 

Metallic ointments and dressings 
 

Silver Sulfadiazine (SSD) 

The topical antibacterial agent SSD is used primarily as a 

topical cream for serious burns. SSDs have displayed anti-

inflammatory characteristics; they strengthen the barrier to 

protect the skin from infections [89]. When employed to 

manage RD, the overall RTOG dermatitis grade of SSD 

was lower than that of the control group [90].  

 

Silver nylon dressing 
Silver nylon dressing is a nonadhesive nanocrystalline 

material. It is used clinically as a burn dressing. 

However, recent studies showed that nylon silver 

dressings helped control skin toxicity attributed to 

radiation [91, 92]. Compared with SSD, nylon silver 

dressing was superior in reducing the average dermatitis 

score and had a better effect. Compared with steroids, 

humectants, and SSD, it mitigated itching, pain and 

burning [91, 92].  

 

Silver-containing foam dressings with Safetac 

Silver-containing foam dressings with Safetac is 

considered a transparent dressing that can gently be 

adhered to various skin surfaces. It can provide a moist 

healing environment for wounds and effectively protect 

and repair damaged skin [93], without interfering with 

the radiation dose. Several studies exploited this 

dressing to achieve good results [94, 95]. However, the 

sample size of the mentioned studies was generally 

small, the evidence strength was insufficient, and the 

credibility was low. For the mentioned reason, the 

conclusions were difficult to generalize directly to the 

clinic. Some researchers considered that self-adhesive 

soft silicone film dressings were not practical and 

suitable for all radiotherapy sites. Existing studies on 

self-adhesive soft silicone film dressing worldwide  

are basically limited to the prevention stage of radiation 

dermatitis [95, 96]. Some researchers exploited a  

novel type of soft silicone foam dressing to treat 

radiation-induced skin injuries and achieved effective 

results [97].  
 

Future directions 
 

Stem cells 
 

Studies have reported that stem cells are a promising 

way to treat refractory skin damage. Human fetal skin 

stem cells (hFSSC) cover considerable stem and 

progenitor cells for development, which help treat skin 

damage. hFSSC is less antigenic and less likely to be 

rejected by transplant recipients [96]. Because of the 

mentioned characteristics, hFSSC can promote skin 

repair in vivo and is beneficial for skin damage [98]. 

Because of these characteristics, hFSSC can promote 

skin repair in vivo and is beneficial for skin damage 

[99]. Fetal skin in the uterus applies to scar-free tissue 

repair. Adult skin wounds heal slowly and form scars. 

The unique characteristics of hFSSC can promote 

scarless repair of wounds [100]. Stem cells can promote 

the repair of radiation-induced skin damage. Chao et al. 

used adipose-derived stem cells (ADSCs) as seed cells 

and HA as a carrier to prepare stem cell complexes to 

treat radiation-induced skin damage in rats [101]. Akita 

et al. performed a local injection of ADSCs covered 

with artificial skin to treat an elderly woman having 

developed chronic radiation–induced skin ulcers after 

radiotherapy of uterine cancer 40 years ago, achieving 

good results [102]. Recent studies identified that 

subcutaneous fat also exhibits endocrine functions; it 

can secrete various cytokines and participate in 

adjusting the biological behavior of epidermal cells and 

fibroblasts, thereby facilitating the wound healing 

quality [103]. ADSCs can promote the healing of 

radioactive skin injuries and provide hope for the 

treating radioactive skin injuries [104].  

 

Dermaprazole 
 

Animal studies have shown that dermaprazole can 

improve the appearance of irradiated skin and 

accelerate wound healing. Histopathological results 

confirm that both prophylactic and therapeutic 

dermaprazole have anti-inflammatory and anti-fibrotic 

effects. Gene expression data indicate that 

dermaprazole downregulates some pro-oxidant, 

proinflammatory, and fibrotic genes. Esomeprazole's 

topical formulations can effectively mitigate skin 

inflammation and fibrosis [105].  
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Subsequent research 
 

Given the mentioned information, bevacizumab as a 

novel type of drug to treat radiation brain injury exhibits 

a higher overall treatment efficiency, and it may be 

more in-depth thinking and exploration in the future. 

For instance, some patients may show the recurrence of 

edema after being administrated with bevacizumab. 

Thus, a question is raised that whether it is effective to 

be applied bevacizumab again. If the answer is yes, how 

should we grasp its optimal dosage and course of 

treatment? The mentioned research can be deepened. 

 

Prognosis 
 

Patients' prognosis will be generally determined by 

several factors, primarily based on the degree of 

radiation damage of grade 1, 2, 3, or 4 and the 

associated comorbidities [8].  

 

CONCLUSIONS 
 

In brief, RSI is a more common radiation therapy 

complication. This type of skin protection and care is of 

great significance. Generally accepted guidelines for 

necrotic tissue management, infection prevention and 

treatment, wound exudate management, and re-

assessment of treatment plans based on observation of 

wound progress should be conducted to treat full-

thickness wounds resulting from delayed radiation 

injury. Patient education should consist of daily skin 

and wound care management and topical medications. 

More cost-effective protective measures exerting fewer 

side effects should be developed to effectively protect 

the interests of patients, ensure smooth chemotherapy, 

as well as improving the quality of life of patients. 
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