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INTRODUCTION 
 

N6-methyladenosine (m6A) RNA methylation, the most 

prevalent modification of messenger RNAs (mRNAs), 

accounts for almost half of the total methylated 

ribonucleotides [1]. In general, m6A modification is 

present in the transcripts of over 7,000 genes in 

mammalian cells, and it prefers to occur at the consensus 

RRACH motif (R = G or A; H = A, C, or U). 

Transcriptome-wide m6A site mapping reveals more 

details on its localization which preferentially enriches at 

coding sequence (CDS), around stop codon, and 

3’untranslated region (3’UTR) in the transcriptomes [2, 

3]. The formation of m6A is catalyzed by a 

multicomponent methyltransferase complex (MTC), 

among which methyltransferase-like 3 (METTL3), 

METTL14, and Wilms’ tumor 1-associating protein 

(WTAP), Vir Like M6A Methyltransferase Associated 

(KIAA1429), RNA Binding Motif Protein 15 (RBM15), 

and Zinc Finger CCCH-Type Containing 13 (ZC3H13) 

have been detected [4–8]. The m6A is a reversible 

modification that can also be removed by RNA 

demethylases, including fat mass and obesity-associated 

protein (FTO) and alkylated DNA repair protein alkB 

homolog 5 (ALKBH5) [9, 10]. In addition, m6A modified 

mRNAs can be bound by multiple specific RNA binding 

proteins, of which the known ones are YTH Domain-

Containing Protein 1 (YTHDC1), YTH Domain Family, 

Member 1/2/3 (YTHDF1/2/3), Insulin-Like Growth Factor 

2 MRNA Binding Protein 1/2/3 (IGF2BP1/2/3) [11–15].  
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ABSTRACT 
 

N6-methyladenosine (m6A) RNA methylation is the most prevalent modification of messenger RNAs (mRNAs) 
and catalyzed by a multicomponent methyltransferase complex (MTC), among which methyltransferase-like 3 
(METTL3) and METTL14 are two core molecules. However, METTL3 and METTL14 play opposite regulatory roles 
in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas (TCGA) database and Gene Expression 
Omnibus (GEO) database, we conducted a multi-omics analysis of METTL3 and METTL14 in HCC, including RNA-
sequencing, m6ARIP-sequencing, and ribosome-sequencing profiles. We found that the expression and 
prognostic value of METTL3 and METTL14 are opposite in HCC. Besides, after METTL3 and METTL14 knockdown, 
most of the dysregulated mRNAs, signaling pathways and biological processes are distinct in HCC, which partly 
explains the contrary regulatory role of METTL3 and METTL14. Intriguingly, these mRNAs whose stability or 
translation efficiency are influenced by METTL3 or METTL14 in an m6A dependent manner, jointly regulate 
multiple signaling pathways and biological processes, which supports the cooperative role of METTL3 and 
METTL14 in catalyzing m6A modification. In conclusion, our study further clarified the contradictory role of 
METTL3 and METTL14 in HCC. 
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METTL3 and METTL14, two core components of 

MTC, colocalize in nuclear speckles, and catalyze the 

covalent transfer of a methyl group to adenine in a 

heterodimer form [16]. The unusual m6A modification 

caused by differentially expressed METTL13 or 

METTL14 plays a critical role in the malignant 

progression of various cancers, such as bladder cancer, 

gastric cancer, and hepatocellular carcinoma (HCC) 

[17–19]. Interestingly, emerging evidence indicated an 

opposite regulatory role of METTL3 and METTL14 in 

several cancers, such as glioblastoma [20, 21], HCC 

[19, 22], and colorectal cancer (CRC) [23, 24]. 

METTL3 was demonstrated to be upregulated in CRC 

and to facilitate CRC progression by maintaining the 

SRY-Box 2 (SOX2) mRNA stability [23]. However, 

our recent study proved that METTL14 is significantly 

downregulated in CRC and suppresses cell growth and 

metastasis via regulating primary miR-375 processing 

[25]. Consistently, METTL3 serves as an oncogene, but 

METTL14 is a tumor suppressor in HCC [19, 22]. 

Study in vitro showed that both METTL3 and 

METTL14 have a methyltransferase domain to 

methylate RNA and the m6A methyltransferase activity 

is much higher in METTL3/METTL14 complex than 

that in either subunit alone [4]. However, the crystal 

structure and biochemical evidence suggested that 

METTL3, rather than METTL14, is the unique catalytic 

subunit, and METTL14 functions in structural 

stabilization and RNA substrate recognition [26]. 

Therefore, it is urgently needed to further clarify the 

characterization of METTL3 and METTL14 in cancers. 

 

In this study, based on The Cancer Genome Atlas 

(TCGA) database and Gene Expression Omnibus 

(GEO) database, we conducted a multi-omics analysis 

of METTL3 and METTL14 in HCC. We validated the 

reverse expression and prognostic value of METTL3 

and METTL14 in HCC and discovered that most of 

the mRNAs and associated signaling pathways and 

biological processes regulated by METTL3 and 

METTL14 are different, which may be partly 

responsible for their contrary functions in HCC. 

However, these mRNAs whose stability or translation 

efficiency (TE) are affected by METTL3 or 

METTL14 in an m6A dependent manner, jointly 

regulate multiple signaling pathways and biological 

processes, such as TGF-beta signaling pathway, 

protein ubiquitination, and cell cycle. 

 

RESULTS 
 

The opposite expression and prognostic value of 

METTL3 and METTL14 in HCC 
 

To verify the expression of METTL3 and METTL14 

in HCC, we analyzed the TCGA database and two 

GEO datasets. TCGA database and GSE14520 [27] 

analysis showed an increased expression of METTL3 

in HCC tissues compared to normal liver tissues (NTs) 

(Figure 1A, 1B). In contrast, The TCGA database and 

GSE54236 [28] analysis exhibited a downregulated 

expression of METTL14 in HCC tissues (Figure 1C 

and 1D). IHC analysis validated the overexpressed 

METTL3 and downregulated METTL14 expression in 

HCC (Figure 1E). Besides, we discovered that HCC 

patients with higher METTL3 expression have shorter 

overall survival (OS) time, relapse-free survival (RFS) 

time, progression-free survival (PFS) time, and 

disease-specific survival (DSS) time compared to 

those with low METTL3 expression (Figure 1F). 

Conversely, HCC patients with low METTL14 

expression undergo poorer OS rate, RFS rate, PFS 

rate, and DSS rate compared to those with high 

METTL14 expression (Figure 1G). These results 

demonstrated an opposite expression and prognostic 

value of METTL3 and METTL14 in HCC. 

 

These differentially expressed genes regulated by 

METTL3 and METTL14 knockdown participate in 

different signaling pathways and biological processes 

 

To explore the regulatory role of METTL3 and 

METTL14 on mRNA expression, we analyzed 

GSE90642 and GSE37001 datasets [2, 15] The RNA 

sequencing data of GSE90642 showed that 329 and 530 

mRNAs were downregulated and overexpressed in 

HepG2 cells after METTL14 knockdown, respectively 

(Figure 2A). In addition, METTL14 knockdown resulted 

in 705 mRNAs with downregulated m6A modification. 

Interestingly, 270 mRNAs with upregulated m6A 

modification were also observed (Figure 2A). GSE37001 

analysis revealed that 1147 downregulated mRNAs and 

812 overexpressed mRNAs after METTL3 knockdown 

in HepG2 cells (Figure 2A). Intriguingly, when 

overlapping these differentially expressed genes (DEGs), 

we found that only a small number of DEGs (n=101) 

were co-regulated by METTL3 and METTL14, of which 

51% even showed an opposite expression (Figure 2C). 

Thereafter, we conducted a KEGG analysis of these 

DEGs. Kyoto Encyclopedia of Genes and Genomes 

(KEGG) analysis revealed that the DEGs regulated by 

METTL14 (M14DEGs) were significantly enriched in 

ten signaling pathways, such as MAPK, PI3K-Akt, and 

TGF-beta signaling pathways (Figure 2D). Meanwhile, 

these DEGs regulated by METTL3 (M3DEGs) were 

significantly enriched in twenty signaling pathways, such 

as p53, TNF, and TGF-beta signaling pathways (Figure 

2E). As expected, only three signaling pathways were 

jointly regulated by METTL3 and METTL14, including 

MAPK, TNF, and TGF-beta signaling pathways. 

Subsequently, we carried out Gene Ontology (GO) 

analysis of M14DEGs and M3DEGs, respectively 
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(Additional file 1: Supplementary Table 1, 2). In line 

with KEGG analysis results, only a small part of 

biological processes (n=22) was jointly regulated by 

METTL3 and METTL14, such as cell migration 

(GO:0016477) (Figure 2F, 2G). Taken together, we 

concluded that most M3DEGs and M14DEGs as well as 

associated signaling pathways and biological processes 

are different in HCC. 

 

 
 

Figure 1. The opposite expression and prognostic value of METTL3 and METTL14 in HCC. (A, B) The expression of METTL3 in HCC 
tissues and NTs based on the TCGA database and GSE14520 analysis. (C, D) The expression of METTL14 in HCC tissues and NTs based on the 
TCGA database and GSE14520 analysis. (E) IHC analysis of METTL3 and METTL14 in HCC tissues and adjacent NTs. (F) The associations 
between METTL3 expression and OS, RFS, PFS, and DSS of HCC patients. (G) The associations between METTL14 expression and OS, RFS, PFS, 
and DSS of HCC patients. * p<0.05, *** p<0.001. 
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The signaling pathways and biological processes of 

m6A modified M3DEGs  
 

To investigate whether those M3DEGs were m6A 

modified genes, we first analyzed m6ARIP-sequencing 

data in HepG2 cells by using GSE37003 [2] which 

revealed a total of 12424 m6A peaks in 7180 transcripts. 

Chromosome location analysis showed that these m6A 

peaks were enriched in all chromosomes (Figure 3A). 

Besides, most transcripts (82%) had only one or two 

m6A peaks (Figure 3B). Consistent with previous 

reports, most m6A peaks (85%) located in CDS, around 

stop codon, and 3' UTR of mRNAs (Figure 3C). 

Unexpectedly, when we overlapped m6A modified 

transcripts with M3DEGs, we found that only 37% of 

M3DEGs had m6A peaks (Figure 3D). KEGG pathway 

analysis showed that these m6A modified M3DEGs 

were enriched in 18 signaling pathways, such as p53 

signaling pathway, signaling pathways regulating 

pluripotency of stem cells, and TGF-beta signaling 

pathway (Figure 3E). After that, we conducted a protein-

protein interaction (PPI) network of these m6A modified 

M3DEGs which detected four functional molecular 

clusters (Figure 3F). KEGG pathway analysis of these 

clusters exhibited three common signaling pathways, 

including cell cycle and p53 signaling pathway of cluster 

2, Glycosaminoglycan biosynthesis-chondroitin 

sulfate/dermatan sulfate of cluster 3. In addition, Cluster 

1 and cluster 4 revealed two unique pathways, including 

Ubiquitin mediated proteolysis and the MAPK signaling 

pathway (Figure 3F). Consistent with KEGG pathway 

analysis, GO enrichment analysis showed that cluster 1 

was involved in protein polyubiquitination and 

ubiquitination, that cluster 2 was involved in the cell 

cycle, that cluster 3 was involved in dermatan sulfate 

biosynthetic process, and that cluster 4 was involved in 

MAPK activity (Figure 3G). Moreover, all top 30 hub 

genes among m6A modified M3DEGs belonged to 

cluster 1 and cluster 2 (Figure 3H). Meanwhile, the 

expression of most hub genes was positively correlated 

with METTL3 expression in HCC (87%) and 

significantly associated with the OS of HCC patients 

(73%) (Additional file 2: Supplementary Table 3, 4). 

Based on the above data, we believed that METTL3 

directly regulates a small number of genes’ expression in 

an m6A dependent manner and that these m6A modified 

M3DEGs are mainly involved in protein ubiquitination 

and cell cycle. 

 

The signaling pathways and biological processes of 

m6A modified M14DEGs  
 

To analyze the m6A modified M14DEGs, we 

overlapped m6A modified genes with M14DEGs. We 

found that 54% of M14DEGs were m6A modified 

mRNAs (Figure 4A). KEGG pathway analysis showed 

that these m6A modified M14DEGs were enriched in 

only 4 signaling pathways, including the MAPK 

signaling pathway, Hippo signaling pathway, 

Endocytosis, and TGF-beta signaling pathway (Figure 

4B). PPI network of these m6A modified M14DEGs 

revealed three functional molecular clusters (Figure 4C). 

KEGG pathway analysis of cluster 3 showed a common 

signaling pathway, Endocytosis. Interestingly, cluster 1 

and cluster 3 revealed three unique pathways, including 

Ribosome biogenesis in eukaryotes, RNA transport, and 

Focal adhesion (Figure 4C). GO enrichment analysis 

showed that cluster 1 was associated with protein 

polyubiquitination and ubiquitination, and that cluster 2 

was associated with regulation of epithelial cell 

proliferation, and that cluster 3 was associated with cell 

proliferation, migration, and adhesion (Figure 4D). 

Furthermore, all top 30 hub genes among m6A 

modified M14DEGs belonged to cluster 1 and cluster 2 

(Figure 4E). Moreover, consistently, the expression of 

most hub genes was positively correlated with 

METTL14 expression in HCC (73%) and significantly 

associated with the OS of HCC patients (50%) 

(Additional file 3: Supplementary Table 5, 6). Overall, 

our results indicated that METTL14, liking METTL3, 

directly regulates part of genes’ expression in an m6A 

dependent manner and that these m6A modified 

M14DEGs mainly participate in protein ubiquitination 

and cell proliferation. 

 

These genes with changed TE regulated by METTL3 

and METTL14 knockdown participate in distinct 

signaling pathways and biological processes 

 

To further investigate the regulatory role of METTL3 

and METTL14 on mRNA translation, we analyzed 

GSE63591 [12] and GSE121952 [29] datasets. 

Ribosome sequencing data of GSE63591 showed that 

the TE of 690 mRNAs was significantly downregulated 

while the TE of 1330 mRNAs was significantly 

upregulated after METTL3 knockdown (Figure 5A). 

GSE121952 analysis exhibited that after METTL14 

knockdown, the TE of 844 and 1613 mRNAs was 

significantly downregulated and upregulated, 

respectively (Figure 5B). As expected, when we 

overlapped these TEGs, we found that only a small part 

(n=163) was regulated by METTL3 and METTL14 

collectively (Figure 5C). As shown in Figure 5D, 

KEGG pathway analysis showed that these TEGs 

regulated by METTL3 (M3TEGs) were significantly 

enriched in 23 signaling pathways, such as Lysosome, 

cell cycle, and p53 signaling pathway, and that these 

TEGs regulated by METTL14 (M14TEGs) were 

significantly enriched in 21 distinct signaling pathways, 

such as cAMP signaling pathway, Spliceosome, and 

Protein digestion and absorption (Figure 5E). 

Subsequently, GO enrichment analysis of these TEGs 
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Figure 2. The DEGs regulated by METTL3 and METTL14 knockdown participate in different signaling pathways and biological 
processes. (A, B) The DEGs regulated by METTL3 and METTL14 knockdown. (C) Integrated analysis of M3DEGs and M14DEGs. (D, E) KEGG 

pathway analysis of M3DEGs and M14DEGs. (F) The number of biological processes regulated by M3DEGs and M14DEGs. (G) The common 
biological processes regulated by M3DEGs and M14DEGs. 
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Figure 3. The signaling pathways and biological processes of m6A modified M3DEGs. (A) The chromosome location of transcripts 
having m6A peaks in HepG2 cell. (B) The number of genes with various m6A peaks. (C) The distribution of m6A peaks in transcripts. (D) 
Integrated analysis of M3DEGs and mRNAs with m6A peaks. (E) KEGG pathway analysis of m6A modified M3DEGs. (F, G) KEGG pathway and 
GO enrichment analysis of functional molecular clusters among the PPI network of m6A modified M3DEGs. (H) The top 30 hub genes among 
m6A modified M3DEGs. 
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was analyzed (Additional file 4: Supplementary Table 

7, 8), which demonstrated that only a small part of 

biological processes (n=5) was regulated by METTL3 

and METTL14 corporately, including regulation of 

transcription (GO:0000122, GO:0045944, GO:0045892, 

and GO:0045893) and cell proliferation (GO:0008284) 

(Figure 5F, 5G). Together, we proved that most of 

M3TEGs and M14TEGs are different and involved 

 

 
 

Figure 4. The signaling pathways and biological processes of m6A modified M14DEGs. (A) Integrated analysis of M14DEGs and 

mRNAs with m6A peaks. (B) KEGG pathway analysis of m6A modified M14DEGs. (C, D) KEGG pathway and GO enrichment analysis of 
functional molecular clusters among the PPI network of m6A modified M14DEGs. (E) The top 30 hub genes among m6A modified M14DEGs. 
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with distinct signaling pathways and biological 

processes in HCC. 

 

The signaling pathways and biological processes of 

m6A modified M3TEGs  

 

To analyze these M3TEGs with m6A modification, we 

overlapped m6A modified transcripts with M3TEGs, 

which showed that 44% of M3TEGs were directly 

regulated by m6A modification (Figure 6A). KEGG 

pathway analysis showed that these m6A modified 

M3TEGs were significantly associated with 15 

signaling pathways, including Lysosome, Cell cycle, 

TGF-beta signaling pathway, Chronic myeloid 

leukemia, Proteoglycans in cancer, Focal adhesion, 

Pathways in cancer, Transcription misregulation in 

cancer, Signaling pathways regulating pluripotency of 

stem cells, Progesterone-mediated oocyte maturation, 

Bladder cancer, p53 signaling pathway, Melanoma, 

Notch signaling pathway, and Colorectal cancer (Figure 

6B). PPI network of these m6A modified M3TEGs 

revealed three functional molecular clusters (Figure 

6C). KEGG pathway analysis of cluster 2 and cluster 3 

exhibited five common signaling pathways, including 

Cell cycle, Lysosome, Bladder cancer, Pathways in 

cancer, and Focal adhesion. Besides, cluster 1 and 

cluster 3 revealed several unique pathways, including 

Ubiquitin mediated proteolysis, PI3K-Akt signaling 

pathway, Non-small cell lung cancer, and Spliceosome 

(Figure 6C). GO analysis showed that cluster 1 

regulated protein polyubiquitination and ubiquitination, 

and that cluster 2 regulated cell cycle, and that cluster 3 

regulated cell division and adhesion (Figure 6D). 

Furthermore, all top 30 hub genes among m6A 

modified M3TEGs were enriched in cluster 1 and 

cluster 2 (Figure 6E). In addition, the expression of 

most hub genes was positively correlated with METTL3 

expression in HCC (97%) and significantly associated 

with the OS of HCC patients (67%) (Additional file 5: 

Supplementary Table 9, 10). The data described above 

suggested that METTL3 directly regulates part of 

mRNAs TE through catalyzing m6A modification, and 

that like m6A modified M3DEGs, these m6A modified 

M3TEGs are also mainly involved with protein 

ubiquitination and cell cycle. 

 

The signaling pathways and biological processes of 

m6A modified M14TEGs  

 

To explore the m6A modified M14TEGs, we 

overlapped m6A modified genes with M14TEGs, which 

showed that only 20% of M14TEGs were m6A 

modified (Figure 7A). KEGG pathway analysis 

exhibited that these m6A modified M14TEGs were 

significantly enriched in 7 signaling pathways, 

including pathways in cancer, RNA transport, 

Spliceosome, Ribosome biogenesis in eukaryotes, 

Shigellosis, Basal cell carcinoma, and Protein digestion 

and absorption (Figure 7B). PPI network of these m6A 

modified M14TEGs revealed four functional molecular 

clusters (Figure 7C). KEGG pathway analysis of cluster 

1 and cluster 3 showed two common signaling 

pathways, including Ribosome biogenesis in eukaryotes 

and Spliceosome. Additionally, cluster 2 and cluster 4 

added two unique pathways, including Cell cycle and 

Ubiquitin mediated proteolysis (Figure 7C). GO 

enrichment analysis showed that cluster 1 participated 

in rRNA processing and ribosomal large subunit 

biogenesis, and that cluster 2 participated in cell 

division and microtubule-based movement, and that 

cluster 3 participated in mRNA splice and processing, 

and that cluster 4 participated in ubiquitin-dependent 

protein catabolic process, protein polyubiquitination and 

ubiquitination (Figure 7D). Moreover, all top 30 hub 

genes among m6A modified M14TEGs were enriched 

in cluster 1 and cluster 3 (Figure 7E). Meanwhile, the 

expression of most hub genes was positively correlated 

with METTL3 expression in HCC (90%) and associated 

with the OS of HCC patients (60%) (Additional file 6: 

Supplementary Table 11, 12). All in all, our data 

indicated that METTL14 directly regulates a small 

number of mRNAs TE through catalyzing m6A 

modification and that m6A modified M14TEGs not 

only are associated with ribosome biogenesis and 

mRNA splice but also regulate cell cycle and protein 

ubiquitination in collaboration with M3TEGs. 

 

DISCUSSION 
 

Despite chemical modifications of DNA and histones, 

epigenetic regulation also contains hundreds of distinct 

post-transcriptional modifications in cellular RNAs 

among which m6A is the most abundant one occurring 

in eukaryotic mRNAs [30, 31]. Through its direct 

binding with m6A binding proteins, m6A influences 

almost every step in the process of an mRNA molecule, 

from splicing, stability, and export to translation [13, 

14, 32, 33]. As core molecules of MTC, METTL3 and 

METTL14 often perform an opposite effect on tumor 

process in same cancer [19, 22]. The crystal structure 

analysis revealed that only METTL3, but not 

METTL14, carries out the catalytic role and that 

METTL14 mainly enhances the activity of METTL3 in 

part through stabilizing structure [26]. In addition, 

METTL3 was reported to promote the translation of 

important oncogenes in human cancers independent of 

its catalytic activity and m6A binding proteins [34]. 

Moreover, a cancer-associated mutation in METTL14 

not only decreased methyltransferase activity but also 

decreased the substrate specificity of the MTC, such 

that both the consensus sequence GGACU and the non-

consensus sequence GGAUU were methylated at 
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Figure 5. The TEGs regulated by METTL3 and METTL14 knockdown participate in distinct signaling pathways and biological 
processes. (A, B) The TEGs regulated by METTL3 and METTL14 knockdown. (C) Integrated analysis of M3TEGs and M14TEGs. (D, E) KEGG 

pathway analysis of M3TEGs and M14TEGs. (F) The number of biological processes regulated by M3TEGs and M14TEGs. (G) The common 
biological processes regulated by M3TEGs and M14TEGs. 
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Figure 6. The signaling pathways and biological processes of m6A modified M3TEGs. (A) Integrated analysis of M3TEGs and 

mRNAs with m6A peaks. (B) KEGG pathway analysis of m6A modified M3TEGs. (C, D) KEGG pathway and GO enrichment analysis of functional 
molecular clusters among PPI network of m6A modified M3TEGs. (E) The top 30 hub genes among m6A modified M3TEGs. 
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similar efficiencies [4]. Hence, we hypothesized that 

apart from the synergistic effect of METTL3 and 

METTL14 on catalyzing m6A modification, each 

molecule has its unique functions. 

In this study, we found that although METTL3 or 

METTL14 knockdown resulted in the abnormal 

expression of hundreds of mRNAs in HepG2 cells, only 

a small part of DEGs was affected by METTL3 and 

 

 
 

Figure 7. The signaling pathways and biological processes of m6A modified M14TEGs. (A) Integrated analysis of M14TEGs and 

mRNAs with m6A peaks. (B) KEGG pathway analysis of m6A modified M14TEGs. (C, D) KEGG pathway and GO enrichment analysis of 
functional molecular clusters among the PPI network of m6A modified M14TEGs. (E) The top 30 hub genes among m6A modified M14TEGs. 
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METTL14 together, and even half of the expression of 

DEGs had the opposite change. In agreement, the 

analysis of the KEGG pathway and GO enrichment 

showed that METTL3 and METTL14 jointly regulated 

few signal pathways and biological processes. The 

above data suggested that in HCC, most of the targets 

and biological functions of METTL3 and METTL14 

are different. Further analysis revealed that only 37% 

of M3DEGs and 54% of M14DEGs have m6A peaks. 

KEGG pathway analysis showed that these m6A 

modified DEGs only participated in half of the 

signaling pathways regulated by METTL3 and 

METTL14, in which the TGF-beta signaling pathway 

was the same one. The TGF-beta signaling pathway is 

an important oncogenic pathway in cancers. Our 

previous study demonstrated that TGF-beta promotes 

the metastasis of triple-negative breast cancer [35]. It is 

worth noting that both hub M3DEGs and M14DEGs 

modified by m6A were involved in protein 

ubiquitination. In fact, protein ubiquitination is closely 

related to the TGF-beta signaling pathway. For 

instance, the four and a half LIM-only protein 2 

(FHL2) activates TGF-beta signaling by regulating the 

ubiquitination of the E3 ligase [36]. Our results implied 

that M3DEGs and M14DEGs partake in several 

signaling pathways and biological processes 

collectively in an m6A dependent manner. 

 

Moreover, we further analyzed the effect of METTL3 

and METTL14 on mRNA translation. In accordance 

with transcriptome analysis, METTL3 or METTL14 

downregulation resulted in hundreds of TEGs. 

However, only a few TEGs were jointly controlled by 

METTL3 and METTL14. Surprisingly, KEGG 

pathway analysis revealed that M3TEGs and 

M14TEGs did not share any signaling pathway. 

Consistently, GO enrichment analysis showed that 

even fewer biological processes were co-regulated by 

METTL3 and METTL14 through influencing mRNA 

TE. These data indicated that M3TEGs and M14TEGs 

participate in distinct signaling pathways and 

biological processes. Furthermore, we found that 44% 

of M3TEGs and 20% of M14TEGs were m6A 

modified. Interestingly, most signaling pathways of 

M3TEGs were the same as that of M3DEGs, such as 

the p53 signaling pathway and cell cycle. In addition, 

like M3DEGs, M3TEGs also had significant 

enrichment in protein ubiquitination and cell cycle. An 

uncontrolled cell cycle is a critical stimulus to tumor 

progression. For example, the integration of genomic 

and transcriptional features in pancreatic cancer 

reveals an increased cell cycle progression in 

metastasis [37]. Indeed, protein ubiquitination is also 

significantly associated with cell cycle transition [38, 

39]. Hence, we hypothesized that METTL3 may 

regulate specific mRNAs related to protein 

ubiquitination and cell cycle at the transcription and 

translation levels dependent on m6A modification, to 

promote the progress of HCC. Unlike M3TEGs, 

M14TEGs were mainly involved in mRNA splicing, 

and part of M14TEGs and M14DEGs co-regulated 

ribosome biogenesis in eukaryotes in HCC. 

Intriguingly, regulation of protein ubiquitination was 

also an important biological process of M14TEGs. 

Based on our results, we speculated that m6A 

modification regulated by METTL3 and METTL14 

might be closely related to anomalous protein 

ubiquitination in HCC. Besides, when analyzing the 

hub genes in M3DEGs, M14DEGs, M3TEGs, and 

M14TEGs, we found that expression of most hub 

genes was positively correlated with METTL3 

expression or METTL14 expression and served as 

unfavorable predictors of HCC patients’ survival. 

 

M6A modification is a comprehensive and context-

dependent biological process [40]. Transcripts with 

m6A modification occur in different destinies if they 

bind to various m6A binding proteins. For instance, 

IGF2BPs stabilize, but YTHDF2 degrades m6A 

modified mRNAs [13, 32]. Besides, miRNAs can 

regulate m6A abundance by modulating METTL3 

binding to mRNAs [41]. Intriguingly, METTL3 and 

METTL14 also modulate N6-methyladenosine-

dependent primary miRNA processing [19, 42]. 

Moreover, miRNAs can also regulate mRNAs 

expression through direct binding to the 3'UTRs of 

targets by inducing mRNAs degradation and/or 

translational repression [43]. Therefore, it is limited to 

study the role of METTL3 and METTL14 in cancer 

only from the perspective of catalyzing m6A 

modification.  

 

There are still some deficiencies in our study. First, to 

identified m6A modified mRNAs, we just overlapped 

dysregulated mRNAs with those having m6A peaks. 

Whether these dysregulated mRNAs are m6A modified 

ones should be validated through m6ARIP-PCR. 

Second, the cell line used in the GSE63591 dataset is 

HeLa cells. Although m6A is a conserved modification 

[4], similar investigations in HCC cells ought to be done 

to verify our results. Third, our analysis only described 

the role of METTL3 and METTL14 in HCC, whether 

this hypothesis applies to other types of cancer, such as 

colorectal cancer and glioma, needs further 

investigations. Forth, the expression of hub genes, 

especially these in M3TEGs and M14TEGs, should be 

validated through IHC analysis. 

 

In conclusion, our study further clarified the 

characteristics of METTL3 and METTL14 in HCC 

which is beneficial to further research of METTL3 and 

METTL14. 
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MATERIALS AND METHODS 
 

Study cohort 
 

The METTL3 and METTL14 expression data in NTs 

and HCC tissues were retrieved from the TCGA 

database (https://cancergenome.nih.gov/) and the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/) 

(GSE14520 and GSE54236). TCGA database of HCC 

contains 50 matched NTs and HCC tissues. The 

GSE14520 dataset includes 214 NTs and 225 HCC 

tissues, while GSE54236 consists of 80 NTs and 81 

HCC tissues. The RNA sequencing data of METTL3 

knockdown and METTL14 knockdown in HepG2 cells 

were enrolled from GSE37001 and GSE90642, both 

METTL3 knockdown and METTL14 knockdown 

resulted from small interfering RNA (siRNA) 

transfection. The m6A peaks enriched in transcripts in 

HepG2 cells were analyzed and deposited in 

GSE37003. In addition, ribosome sequencing profiles 

about the effect of METTL3 knockdown and METTL14 

knockdown on mRNA TE was analyzed by using 

GSE63591 and GSE121952. siRNA and short hairpin 

RNA (shRNA) was used to decrease METTL3 and 

METTL14 expression, respectively. 

 

Immunohistochemistry 
 

Immunohistochemistry analysis for METTL3 and 

METTL14 was performed on paraffin sections using a 

primary antibody against METTL3 (1:2000, Proteintech, 

15073-1-AP), METTL14 (1:1500, Proteintech, 26158-1-

AP), and a horseradish peroxidase-conjugated IgG (1:500; 

Invitrogen). Three high power fields (400×magnification) 

were randomly selected from 30 paired HCC tissues and 

ANTs. For histological scoring, the degree of positivity 

was initially classified according to scoring both the 

proportion of positive staining tumor cells and the staining 

intensities. Scores representing the proportion of 

positively stained tumor cells were graded as: 0 (<10%); 1 

(11%-25%); 2 (26%-50%); 3 (51%-75%) and 4 (>75%). 

The intensity of staining was determined as: 0 (no 

staining); 1 (weak staining = light yellow); 2 (moderate 

staining = yellow brown); and 3 (strong staining = 

brown). The staining index (SI) was calculated as the 

product of staining intensity × percentage of positive 

tumor cells, resulting in scores of 0, 1, 2, 3, 4, 6, 8, 9, and 

12. The reactivity degree was assessed by at least two 

pathologists independently. Informed consent was 

obtained from patients and the study was approved by the 

ethics committee of Nanjing First Hospital. 

 

Bioinformatics analysis 
 

The differentially expressed METTL3 and METTL14 

between HCC tissues and NTs were analyzed by using 

R software with the “limma” package (http://www.bioco 

nductor.org/packages/release/bioc/html/limma.html). In 

TCGA database, GSE14520, and GSE54236, genes 

with |logFC| > 1 and p-value < 0.05 were regarded as 

the significantly dysregulated ones. The correlations 

between the two genes in HCC were identified by using 

the TCGA database. The associations between gene 

expression and prognosis of HCC patients were 

explored in the Kaplan-Meier plotter database 

(http://kmplot.com/analysis/) which is an online tool 

based on GEO, European Genome-phenome Archive 

(EGA), and TCGA databases with the median 

expression value as the cut-off value. The hazard ratio 

(HR) and log-rank p-value were calculated. Log-rank p 

< 0.05 was considered to be statistically significant. HR 

> 1 means that gene expression was negatively 

correlated with prognosis, while HR < 1 shows a 

positive correlation. Due to the different analysis 

platforms, we identified that in GSE90642, DEGs were 

those with |logFC| > 0.585 and p-value < 0.05, while in 

GSE37001, DEGs were those with |logFC| > 1 and p-

value < 0.05. In GSE63591, TEGs were those with 

|logFC| > 2 and p-value < 0.05. However, in 

GSE121952, TEGs were those with |logFC| > 1 and p-

value < 0.05. The DAVID website 

(https://david.ncifcrf.gov) was used to carry out GO 

enrichment and KEGG pathway analysis of putative 

targets of METTL3 and METTL14. PPI networks were 

constructed by using the Search Tool for the Retrieval 

of Interacting Genes (STRING) online tool 

(http://string.embl.de/) and further optimized in 

Cytoscape. The combined score higher than 0.40 was 

regarded as statistical significance. Moreover, the 

functional molecular complexes in the PPI network 

were identified automatedly by using Molecular 

Complex Detection (MCODE) app in Cytoscape, and 

the MOCODE score higher than 5.0 was regarded as 

statistical significance. In addition, the top 30 hub genes 

among PPI network were selected by the Cytohubba 

app with Maximal Clique Centrality (MCC) method.  

 

Statistical analysis 

 

Data were expressed as mean ± SD (standard deviation) 

and performed by using GraphPad Prism 8 (GraphPad, 

USA) software. The difference between groups was 

tested by two-tail Student’s paired or unpaired t-test. 

p < 0.05 was considered to be statistically significant. 
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Containing 13; FTO: fat mass and obesity-associated 

protein; ALKBH5: alkylated DNA repair protein alkB 

homolog 5; YTHDC1: YTH Domain-Containing 

Protein 1; YTHDF1/2/3: YTH Domain Family, Member 

1/2/3; IGF2BP1/2/3: Insulin Like Growth Factor 2 

MRNA Binding Protein 1/2/3; CRC: colorectal cancer; 

SOX2: SRY-Box 2; siRNA: small interfere RNA; TE: 

translational efficiency; shRNA: short hairpin RNA; 

OS: overall survival; RFS: relapse-free survival; PFS: 

progression-free survival; DSS: disease-specific 

survival; EGA: European Genome-phenome Archive; 

HR: hazard ratio; TEG: genes with significantly 

changed TE; GO: Gene ontology; KEGG: Kyoto 
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Tool for the Retrieval of Interacting Genes; MCODE: 

Molecular Complex Detection; MCC: Maximal Clique 

Centrality; M14DEGs: DEGs regulated by METTL14; 
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TEGs regulated by METTL3; M14TEGs: TEGs 

regulated by METTL14; FHL2: four and a half LIM-

only protein 2. 
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Supplementary Tables 
 

Supplementary Table 1. GO analysis of DEGs regulated by METTL14. 

 

Supplementary Table 2. GO analysis of DEGs regulated by METTL3. 

 

Supplementary Table 3. The correlations between the expression of hub genes and METTL3 expression in HCC. 

Gene R P value Gene R P value 

ZWINT 0.51 <0.001 CLSPN 0.5 <0.001 

MYLIP 0.32 <0.001 TIMELESS 0.56 <0.001 

FANCI 0.43 <0.001 MLEC 0.49 <0.001 

EXO1 0.51 <0.001 DTL 0.47 <0.001 

HGSNAT 0.31 <0.001 CBLB 0.43 <0.001 

BTBD1 0.33 <0.001 SPSB2 0.39 <0.001 

KNTC1 0.59 <0.001 PLAUR 0.25 <0.001 

DET1 0.42 <0.001 MELK 0.53 <0.001 

FBXO2 -0.1 0.05 KBTBD6 0.45 <0.001 

SLC2A3 0.11 0.039 ASPM 0.51 <0.001 

KCNAB2 0.024 0.65 KLHL22 0.45 <0.001 

FBXW4 0.36 <0.001 ALDH3B1 0.23 <0.001 

HERC6 0.078 0.13 TSPAN14 0.43 <0.001 

STOM 0.019 0.17 ASF1B 0.4 <0.001 

UBOX5 0.48 <0.001 BRCA1 0.46 <0.001 
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Supplementary Table 4. The associations between the expression of hub genes and overall survival of HCC patients. 

Gene HR (95%CI) P value Gene HR (95%CI) P value 

ZWINT 2.36 (1.66-3.36) <0.001 CLSPN 2.26 (1.6-3.19) <0.001 

MYLIP 1.41 (0.99-2.01) 0.059 TIMELESS 1.63 (1.15-2.3) 0.0053 

FANCI 2.11 (1.43-3.13) <0.001 MLEC 1.31 (0.89-1.92) 0.17 

EXO1 2.3 (1.63-3.26) <0.001 DTL 1.89 (1.33-2.69) <0.001 

HGSNAT 0.67 (0.47-0.96) 0.029 CBLB 1.2 (0.85-1.69) 0.3 

BTBD1 0.69 (0.46-1.03) 0.07 SPSB2 1.71 (1.2-2.43) 0.0026 

KNTC1 1.96 (1.36-2.81) <0.001 PLAUR 1.99 (1.25-3.18) 0.0032 

DET1 0.65 (0.45-0.93) 0.018 MELK 2.22 (1.5-3.27) <0.001 

FBXO2 0.62 (0.044-0.89) 0.0081 KBTBD6 0.58 (0.41-0.83) 0.0021 

SLC2A3 0.8 (0.54-1.18) 0.25 ASPM 2.01 (1.39-2.92) <0.001 

KCNAB2 1.32 (0.88-1.97) 0.17 KLHL22 0.86 (0.6-1.22) 0.4 

FBXW4 0.62 (0.44-0.88) 0.0067 ALDH3B1 1.53 (1.08-2.18) 0.017 

HERC6 0.69 (0.48-0.99) 0.044 TSPAN14 0.69 (0.48-1) 0.047 

STOM 0.52 (0.35-0.78) 0.0015 ASF1B 1.71 (1.21-2.42) 0.002 

UBOX5 0.73 (0.52-1.05) 0.077 BRCA1 1.82 (1.26-2.61) 0.0011 

 

Supplementary Table 5. The correlations between the expression of hub genes and METTL14 expression in HCC. 

Gene R P value Gene R P value 

FBXO2 0.032 0.54 WDR43 0.51 <0.001 

FBXW2 0.58 <0.001 SPSB1 0.24 <0.001 

ASB13 -0.1 0.055 RRP1B 0.52 <0.001 

FBXL15 -0.016 0.75 NOP56 -0.077 0.14 

VPRBP 0.73 <0.001 FBXO10 0.26 <0.001 

NOL10 0.44 <0.001 ANKRD9 0.22 <0.001 

NOM1 0.48 <0.001 BMP4 0.18 <0.001 

POLR3B 0.55 <0.001 UTP3 0.56 <0.001 

LGALS1 -0.099 0.058 IGFBP1 0.084 0.11 

WDR75 0.32 <0.001 STC2 0.093 0.075 

UTP15 0.59 <0.001 CALU 0.34 <0.001 

RNF4 0.53 <0.001 PAK1IP1 0.35 <0.001 

FBXW5 0.26 <0.001 RSL1D1 0.46 <0.001 

RBM19 0.22 <0.001 WFS1 0.12 0.023 

SIAH2 0.26 <0.001 LAMC1 0.38 <0.001 
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Supplementary Table 6. The associations between the expression of hub genes and overall survival of HCC patients. 

Gene HR (95%CI) P value Gene HR (95%CI) P value 

FBXO2 0.62 (0.44-0.89) 0.0081 WDR43 1.64 (1.15-2.33) 0.0055 

FBXW2 0.7 (0.49-0.99) 0.045 SPSB1 0.78 (0.55-1.1) 0.16 

ASB13 0.79 (0.55-1.16) 0.23 RRP1B 0.81 (0.54-1.22) 0.31 

FBXL15 0.61 (0.42-0.89) 0.0091 NOP56 2.33 (1.65-3.3) <0.001 

VPRBP 0.78 (0.56-1.11) 0.17 FBXO10 1.46 (1.01-2.12) 0.041 

NOL10 1.88 (1.32-2.68) <0.001 ANKRD9 0.65 (0.46-0.93) 0.017 

NOM1 0.79 (0.55-1.11) 0.17 BMP4 1.38 (0.96-1.99) 0.082 

POLR3B 0.78 (0.54-1.12) 0.18 UTP3 0.8 (0.57-1.14) 0.22 

LGALS1 1.56 (1.08-2.25) 0.018 IGFBP1 0.73 (0.51-1.03) 0.072 

WDR75 2.09 (1.45-3.02) <0.001 STC2 1.95 (1.38-2.75) <0.001 

UTP15 1.18 (0.8-1.74) 0.4 CALU 1.85 (1.28-2.68) <0.001 

RNF4 1.31 (0.92-1.87) 0.13 PAK1IP1 1.98 (1.35-2.91) <0.001 

FBXW5 0.88 (0.62-1.25) 0.47 RSL1D1 1.33 (0.94-1.88) 0.1 

RBM19 2.03 (1.42-2.89) <0.001 WFS1 1.45 (0.95-2.2) 0.081 

SIAH2 0.54 (0.38-0.78) <0.001 LAMC1 1.43 (0.98-2.09) 0.062 

 

Supplementary Table 7. GO analysis of TEGs regulated by METTL3. 

 

Supplementary Table 8. GO analysis of TEGs regulated by METTL14. 

 

Supplementary Table 9. The correlations between the expression of hub genes and METTL3 expression in HCC. 

Gene R P value Gene R P value 

MYBL2 0.41 <0.001 KIF18B 0.54 <0.001 

FOXM1 0.51 <0.001 TACC3 0.41 <0.001 

TRIP12 0.53 <0.001 CCNB2 0.5 <0.001 

HECTD1 0.52 <0.001 CDT1 0.43 <0.001 

SKP1 0.31 <0.001 SPC25 0.45 <0.001 

FBXW9 0.33 <0.001 CDC25C 0.4 <0.001 

CBLB 0.43 <0.001 ASF1B 0.4 <0.001 

FBXL16 0.062 0.24 UBE3A 0.4 <0.001 

KLHL25 0.24 <0.001 FBXL14 0.41 <0.001 

ESPL1 0.48 <0.001 ASB8 0.48 <0.001 

KLHL13 0.22 <0.001 DTX3L 0.4 <0.001 

CDCA5 0.53 <0.001 FZR1 0.39 <0.001 

SIAH2 0.18 <0.001 MGRN1 0.34 <0.001 

FBXL15 0.1 0.047 TRAIP 0.5 <0.001 

KIFC1 0.55 <0.001 TROAP 0.46 <0.001 
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Supplementary Table 10. The associations between the expression of hub genes and overall survival of HCC patients. 

Gene HR (95%CI) P value Gene HR (95%CI) P value 

MYBL2 2.29 (1.62-3.24) <0.001 KIF18B 2.13 (1.49-3.03) <0.001 

FOXM1 1.91 (1.33-2.74) <0.001 TACC3 1.8 (1.27-2.55) <0.001 

TRIP12 1.27 (0.86-1.88) 0.23 CCNB2 1.91 (1.28-2.87) 0.0013 

HECTD1 0.63 (0.44-0.89) 0.008 CDT1 2.05 (1.45-2.9) <0.001 

SKP1 0.75 (0.53-1.08) 0.12 SPC25 2.13 (1.51-3.02) <0.001 

FBXW9 1.43 (0.95-2.14) 0.084 CDC25C 1.92 (1.36-2.71) <0.001 

CBLB 1.2 (0.85-1.69) 0.3 ASF1B 1.71 (1.21-2.42) 0.002 

FBXL16 0.77 (0.53-1.12) 0.17 UBE3A 0.54 (0.38-0.78) <0.001 

KLHL25 1.29 (0.89-1.88) 0.17 FBXL14 0.59 (0.41-0.84) 0.0033 

ESPL1 1.92 (1.36-2.72) <0.001 ASB8 0.75 (0.53-1.06) 0.099 

KLHL13 1.18 (0.83-1.69) 0.36 DTX3L 0.62 (0.41-0.93) 0.021 

CDCA5 2.32 (1.62-3.32) <0.001 FZR1 0.72 (0.48-1.07) 0.1 

SIAH2 0.54 (0.38-0.78) <0.001 MGRN1 0.54 (0.35-0.82) 0.0035 

FBXL15 0.61 (0.42-0.89) 0.0091 TRAIP 1.98 (1.38-2.85) <0.001 

KIFC1 2.08 (1.47-2.93) <0.001 TROAP 1.84 (1.27-2.66) 0.001 

 

Supplementary Table 11. The correlations between the expression of hub genes and METTL14 expression in HCC. 

Gene R P value Gene R P value 

HNRNPA2B1 0.52 <0.001 RBM17 0.23 <0.001 

HSPA8 0.38 <0.001 PPIH 0.11 0.036 

MPHOSPH10 0.42 <0.001 BUB1 0.35 <0.001 

DDX55 0.43 <0.001 GPATCH4 0.3 <0.001 

SRRM1 0.7 <0.001 NOP56 -0.077 0.14 

SF1 0.73 <0.001 SNRNP27 0.58 <0.001 

UTP14A 0.35 <0.001 BCCIP 0.16 0.017 

HNRNPR 0.52 <0.001 WDR75 0.35 <0.001 

EXOSC5 -0.11 0.027 NCL 0.46 <0.001 

SF3A2 0.11 0.036 DHX40 0.54 <0.001 

DDX31 0.41 <0.001 WDR43 0.51 <0.001 

WDR74 -0.094 0.07 TRUB1 0.62 <0.001 

DDX47 0.45 <0.001 SSB 0.25 <0.001 

CEBPZ 0.17 <0.001 SDAD1 0.75 <0.001 

UTP3 0.56 <0.001 PWP2 0.17 0.0014 
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Supplementary Table 12. The associations between the expression of hub genes and overall survival of HCC patients. 

Gene HR (95%CI) P value Gene HR (95%CI) P value 

HNRNPA2B1 1.38 (0.95-2.01) 0.094 RBM17 1.86 (1.32-2.63) <0.001 

HSPA8 1.81 (1.21-2.71) 0.0036 PPIH 1.76 (1.24-2.49) 0.0012 

MPHOSPH10 0.78 (0.53-1.13) 0.19 BUB1 2.1 (1.45-3.04) <0.001 

DDX55 1.8 (1.26-2.56) 0.001 GPATCH4 1.55 (1.09-2.18) 0.013 

SRRM1 1.27 (0.9-1.79) 0.18 NOP56 2.33 (1.65-3.3) <0.001 

SF1 0.82 (0.58-1.16) 0.26 SNRNP27 1.28 (0.9-1.83) 0.17 

UTP14A 1.46 (1.03-2.06) 0.03 BCCIP 1.55 (1.1-2.19) 0.012 

HNRNPR 1.81 (1.27-2.6) <0.001 WDR75 2.09 (1.45-3.02) <0.001 

EXOSC5 1.33 (0.91-1.95) 0.14 NCL 1.7 (1.19-2.44) 0.0031 

SF3A2 1.43 (1-2.05) 0.048 DHX40 0.68 (0.47-0.98) 0.036 

DDX31 1.76 (1.21-2.54) 0.0024 WDR43 1.64 (1.15-2.33) 0.0055 

WDR74 0.81 (0.57-1.16) 0.26 TRUB1 0.76 (0.54-1.08) 0.13 

DDX47 1.27 (0.9-1.8) 0.18 SSB 1.95 (1.35-2.83) <0.001 

CEBPZ 1.51 (1.06-2.15) 0.022 SDAD1 1.39 (0.97-2.01) 0.072 

UTP3 0.8 (0.57-1.14) 0.22 PWP2 1.34 (0.95-1.89) 0.094 

 


