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INTRODUCTION 
 

The tumor suppressor protein, p53 is a crucial factor 

in determining the response of cancer cells to drug 

treatment [1, 2]. Notably, p53 has been shown to 

induce different forms of cell death in cancers 

including ferroptosis [3–5], a form of iron-dependent 

cell death that results from lipid peroxidation [6]. 

Several reports have linked dysregulated ferroptotic 

death to various other diseases as well. Ferroptotic death 

has been implicated in multiple neurodegenerative 

disorders such as Huntington’s, Alzheimer’s, Parkinson’s 

and ischemic stroke [7]. Excessive ferroptosis has also 

been shown to be a key effector of cardiomyopathy [8], 

renal damage and failure [9, 10] and can also potentially 

mediate the loss of immunity against infection [11]. Each 

one of the abovementioned cases has been linked to 

aging-related disorders.  

 

While several reports have demonstrated the ability of 

p53 to modulate the ferroptotic sensitivity of cancer 

cells, the directionality of this regulation is complex 

and context-specific, which is not unlike the other 

known stress-responses of p53 [5]. Therefore, as most 

of the differential responses of p53 to other stresses 

depend on its activation of appropriate target genes, 

we have examined the ability of p53 target genes to 

regulate ferroptosis. Since p53 can also promote 

premature aging [12, 13], neurodegenerative disorders 

[14–16] and developmental syndromes [17, 18] 

through its target genes, such a study would also give 

further insight into understanding the regulation of 

ferroptosis in these contexts. In line with this goal, we 

recently discovered that two key proteins of  

the p53 network, MDM2 and MDMX (the negative 

regulators of p53) are capable of promoting 

ferroptosis both in human cancer cells and in the 

context of neurodegeneration [19]. In the  

current study, we examine another well-validated 

target of the p53 network, p21, which is a cyclin 

dependent kinase that often mediates p53-induced cell 

cycle arrest [20].  
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As a consequence of the ability of p21 to induce cell 

cycle arrest, p21 may mediate cellular senescence, 

although whether p21 is a major regulator of this 

process is somewhat unclear [21, 22]. While stress-

induced senescence is beneficial by blocking 

tumorigenesis due to unchecked proliferation of 

damaged cells, as well as by aiding tissue repair, it can 

also lead to undesirable effects on longevity due to 

prolonged accretion of senescent cells that are associated 

with tissue damage and aging [23].  

 

Relatedly, in the context of some stressors, the loss of 

p21 has been shown to limit tissue damage and promote 

tissue regeneration [24] without necessarily leading to 

tumorigenesis [25]. On the other hand, while the 

function of p21 is mostly tumor suppressive, there are 

reports that suggest that when activated in a p53-

independent manner, p21 can turn tumorigenic by 

protecting damaged cells from death [26]. In support of 

the tumorigenic potential of p21, a recent report 

demonstrated that the type of activation of p21 in 

response to chemotherapy dictates its behavior as a 

tumor suppressor by promoting senescence or as a 

tumor-driver by causing enhanced survival of so treated 

cancer cells [27]. In light of these conflicting roles in 

cancer, it is possible that the type of damage incurred 

would also dictate whether p21 could limit 

physiological tissue damage. In support of this prospect, 

p21 could either delay aging or promote tissue damage 

based on the type of tissue involved in a model of 

progeria [28]. Thus, examining the relationship of p21 

and ferroptosis is important in the context of cancer as 

well as aging phenotypes. 

 

Based on prior reports, p21 does have some potential 

links to ferroptosis.  p21 can mediate the p53-ROS 

signaling pathway by helping sustain higher levels of 

ROS to effect senescence in some cancer cells [29]. 

High levels of heme-oxygenase-1 have been known to 

confer a resistance to apoptosis by altering cellular 

growth possibly due to upregulation of p21 levels [30]. 

It has also been shown that heme-oxygenase can 

enhance ferroptotic death [31, 32] but the possibility 

that p21 could also modulate this type of death is yet to 

be explored. Of direct relevance to ferroptosis, p21 has 

been shown to mediate the resistance of liver cells to 

treatment with sorafenib [33], a chemotherapeutic 

kinase inhibitor that has been shown to induce 

ferroptotic death [34]. In fact, sorafenib treatment 

triggers an induction of p21 and a knock-down of p21 

can increase cellular killing by sorafenib [33]. Since at 

least a part of the death due to sorafenib can be 

attributed to ferroptosis, this strongly suggests a role for 

p21 in regulating ferroptosis. A more recent report 

effectively showed that p53 poses an impediment to the 

kinetics of ferroptosis in some human cancer cells via 

the p21-dependent maintenance of the intracellular 

glutathione pool [35].  

 

In this study, we suggest another potential mechanism 

for p21 to promote tumorigenesis by serving as a barrier 

to ferroptosis, even in the absence of p53. In agreement 

with previous reports regarding the ability of p21 to 

enhance tumorigenesis [36], our study also shows that 

ferroptosis induction leads to a p53-independent 

regulation of p21. Given the prominent roles of 

ferroptosis in promoting organ damage, our study also 

supports the possibility that in damages incurred 

through ferroptosis, p21 could actually aid longevity 

instead of being a barrier to the organismal lifespan. 

 

It is well known that the major roles of p21 in growth 

inhibition are mediated by its two main interactions with 

CDKs and the proliferating cell nuclear antigen (PCNA) 

[36]. The inhibitory effect of p21 on CDKs mediates its 

effect on the different cell cycle stages, whereas its 

abrogation of the role of PCNA mediates its ability to 

block damaged-DNA replication [37]. Since both CDKs 

and PCNA have roles that extend beyond just growth 

inhibition, p21 is able to control other processes as well. 

For example, p21 mediates a significant portion of the 

ability of p53 to repress transcription [38–40]. Further, 

previous reports suggest that the oncogenic role of p21 in 

preventing death of cancer cells is through its interaction 

with the CDKs [36]. Since our results reveal a potential 

for cyclin-dependent kinases (CDKs) to be involved in 

ferroptosis, they identify a new pathway involved in 

regulating ferroptosis. 

 

RESULTS 
 

The directionality of regulation of ferroptosis by p53 

is highly context specific 
 

We analyzed the response of several human cancer cell 

lines to the ferroptosis inducer erastin that belongs to 

the class I ferroptosis inducers (FINs) [41] and 

categorized them based on the degree of response 

(Figure 1A). In line with previous reports, even cell 

lines having the same tissue of origin varied in their 

response to ferroptosis [42]. The main aim of the 

current study was to identify if p53 or its targets could 

be responsible for the dichotomy between at least some 

of the resistant and sensitive cells. Although we had 

previously surmised that p53 status was not always 

predictive of the ferroptosis sensitivity of a given cancer 

cell line [19], we wanted to determine if the loss of p53 

in a given cancer type would then alter its sensitivity to 

ferroptosis.  

 

We chose two colon cancer cell lines with varying 

ferroptosis sensitivities- RKO and HCT-116 (Figure 



www.aging-us.com 17802 AGING 

1A) for which isogenic derivatives with respect to their 

p53 status were already available. These isogenic cell 

lines were created by the deletion of a functional 

domain of p53 [43]. In both cell lines, the loss of p53 

made them less sensitive to the chemotherapeutic 

doxorubicin (Left panels of Figure 1B, 1C), which is 

thought to elicit at least part of its effects on cancer cell 

survival through the activation of p53 [44]. On the other 

hand, the loss of p53 only slightly decreased the 

ferroptosis sensitivity of HCT-116 cells, while the RKO 

cells actually became more sensitive upon the loss of 

p53 (Right panels of Figure 1B, 1C). These results 

highlight the complexity in defining a set direction of 

regulation of ferroptosis by p53. Our findings are in line 

with the current literature in the field showing that p53 

can either promote or block ferroptosis [5]. 

 

p21 is differentially regulated between cells that are 

sensitive and resistant in response to ferroptosis 
 

We reasoned that the nuanced roles of p53 in ferroptosis 

might be indirect and perhaps based on one or more p53 

targets being activated in response to ferroptosis 

induction. To this end, we sought to examine the protein 

levels of p21, as it is one of the key downstream targets 

of p53. In fact, one key difference between the HCT-

116 and RKO cells used above was their relative p21 

protein abundance (Figure 1D).  

 

We found that upon the induction of ferroptosis using 

two class 1 FINs (erastin or IKE), three different 

ferroptosis-sensitive cell lines (HT-1080, SK-HEP1 and 

U2OS) showed decreased levels of p21 protein (as well 

as p53) as a function of erastin concentration (Figure 

2A–2C). On the other hand, there was an increase in 

p21 protein levels in two ferroptosis-resistant cell lines 

(HCT-116, H1299) (Figure 2D, 2E). This increase in 

the levels of p21 was p53-independent since it was 

observed even in the p53-null H1299 cell line and in 

HCT-116 cells that were engineered to lose p53 (p53 

KO HCT116).  

 

We also evaluated the effect of FINs on the p21 protein 

levels of p53 KO derivatives of the sensitive cells, HT-

1080 and SK-HEP1. As we had reported previously, the 

loss of p53 impairs the ferroptosis-response of these 

cells to some extent [19]. While the HT-1080 p53 KO 

cells still fall within the ferroptosis-sensitive category 

defined in Figure 1A, the increase in ferroptosis-

resistance caused by the loss of p53, places SK-HEP1 

p53 KO cells on the upper edge of the moderate class. 

Accordingly, p21 levels were decreased in the 

ferroptosis-sensitive HT-1080 p53 KO upon treatment 

with FINs, while they were enhanced in the SK-HEP1 

p53 KO cells, which moderately resist ferroptosis 

(Supplementary Figure 1). These results further support 

that the resistance to ferroptosis and the ability of the 

cell line to promote FIN-dependent augmentation of p21 

protein levels are linked independent of the p53 status. 

 

We then wanted to understand the nature of regulation 

of p21 upon ferroptosis induction. To this end we 

compared ferroptosis-sensitive HT-1080 (p53 wild-

type) cells and ferroptosis-resistant H1299 and HCT116 

cells. To our surprise, we found that in both sensitive 

and resistant cells, p21 mRNA expression was 

upregulated at the mRNA level (Figure 3). As controls, 

increases in the levels of chac1 and ptgs2, known to be 

induced during ferroptosis [6], were documented as 

well. Note that there was not a universal reduction in 

protein levels upon ferroptosis induction as evidenced 

by constant levels of our loading control, as well as the 

additional control of expected increase in levels of 

ferritin in ferroptosis [45]. This result indicates that the 

process of ferroptosis induces p21 gene expression in a 

p53-independent manner and that the subsequent loss of 

p21 protein in the sensitive cells is most likely a 

consequence of a post-transcriptional event. It also 

suggests that this differential regulation of p21 protein 

may then determine the extent of death achieved. 

 

Altering p21 protein levels changes the sensitivity of 

cells to ferroptosis 
 

The above results indicated a potential role for p21 in 

determining the sensitivity of cells to ferroptosis. To 

validate this hypothesis, we experimentally altered p21 

levels and examined the changes in ferroptosis 

sensitivity of both resistant and sensitive cells.  

 

In the resistant cell lines, HCT-116 and H1299, our goal 

was to determine if ferroptosis resistance can be 

lowered upon loss of p21. We used RNA interference 

against p21 in these resistant cells and indeed observed 

a reduction in the resistance to ferroptosis (Figure 4A, 

4B). We tested the possibility that a more complete and 

non-transient loss of p21 might be required to further 

enhance the sensitivity of these cells, as it was reported 

that p21 can alter the metabolic pathways involved in 

ferroptosis [35]. Indeed, the HCT-116 derived p21 -/-  

cell line [46], had a much-enhanced sensitivity to 

ferroptosis compared to its wild-type counterpart 

(Figure 4C).  

 

As a reciprocal approach we increased p21 levels in the 

HT-1080 cell line that is ferroptosis-sensitive. 

Overexpression of a construct expressing wild-type p21 

did suppress this form of cell death in the HT-1080 cells 

(Figure 4D).  

 

Thus, the results in Figure 4A–4D demonstrate that the 

capacity of cells to regulate p21 when treated with FINs 
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Figure 1. Regulation of ferroptosis by p53 is highly context specific. (A) The indicated cell lines were categorized based on the 
relative amount of cell death observed in response to 24 hours treatment with erastin in a 6-well format. After 24 hours of treatment, the 
sensitive cell lines had an EC50 of less than 2 µM of erastin, while the moderately sensitive cell lines had an EC50 that was greater than 2 µM, 
but lesser than 10 µM of erastin. In the resistant cell lines, erastin did not achieve 50% killing at this time point. (B, C) Viability of isogenic cell 
lines with wild-type (WT) p53  or no p53 (KO) in (B) HCT-116 and (C) RKO when treated with indicated doses of either doxorubicin (left panel) 
or IKE (right panel) for 24 hours. (D) Immunoblot showing p53 and p21 protein levels in HCT-116 and RKO cells. Multiple replicates of the 
wild-type and p53 KO cell lines cultured in separate dishes were used. Actin was used as a loading control. The data in (B, C) represent the 

mean  SE for two of four independent experiments. The viability data have been normalized to that of the DMSO control. 
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crucially impacts the extent of response to ferroptosis. 

However, it is unclear if the ferroptosis-associated 

reduction of p21 in sensitive cells takes place as a 

consequence of translational or post-translational 

signals. The results in Figure 4D suggests that it is 

unlikely for the loss of p21 protein abundance to be a 

result of enhanced degradation of p21, as then the 

ectopic p21 protein would have also faced the same 

fate and should then have been rendered incapable of 

altering the degree of ferroptotic death. In further 

support of this hypothesis, we observed that 

proteasome inhibitor MG132 is unable to block any 

part of the reduction in p21 expression caused by 

erastin (Supplementary Figure 2A left panel). Note 

that MG132 treatment did slightly increase the 

sensitivity of ferroptosis, although this was found to 

be p21 independent (Supplementary Figure 2A right 

panel). Thus, based on these results we posit that p21 

is more likely to be translationally regulated in 

response to ferroptosis. 

 

 
 

Figure 2. p21 protein is differentially regulated between cells that are sensitive and resistant in response to ferroptosis.  
(A–E) Impact of treatment with erastin/IKE on the protein levels of p21 and p53. (A) HT-1080 cells, (B) SK-HEP1 cells and (C) U2OS cells 
were treated for 16 hours whereas (D) H1299 cells and (E) HCT116 cells (+/+ and -/- isogenic lines with respect to p53 status) were 
treated for 48 hours. 
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The experiment in Figure 4D, further allowed us to 

determine which interactions of p21 may aid its role in 

ferroptosis. For this, we used two key mutant versions 

of p21, which disable either its CDK binding or PCNA 

binding domains [47, 48] and found that they differed in 

their ability to suppress ferroptosis. Specifically, the 

CDK binding-defective version of p21 was unable to 

block ferroptosis, while mutating the PCNA binding 

 

 
 

Figure 3. p21 mRNA is upregulated in both ferroptosis-sensitive and ferroptosis-resistant cells after treatment with IKE. (A–C) 
Left panels: Impact of IKE treatment on the mRNA levels of p21. (A) HT-1080 cells were treated for 16 hours while (B, C) H1299 and HCT-116 
cells were treated for 48 hours. mRNA levels of ptgs2 and chac1 were measured in (A, B) as markers of ferroptosis. Right panels: the 

corresponding protein levels in the cells used in the left panels are shown. The data in left panels of (A–C) represent the mean  SE for three 
biological replicates with two technical replicates each.  
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Figure 4. Altering p21 protein levels changes the sensitivity of cells to ferroptosis. (A, B) HCT116 (A) or H1299 (B) cells were 
transfected with two different siRNAs (#1, #2) directed against p21 mRNA for 24 hours, and then treated with erastin or IKE as indicated 
for an additional 48 hours. As a control, cells were transfected with luciferase siRNA a (siCtrl/C). The right panels in A and B show the 
corresponding changes in p21 protein levels. (C) HCT-116 cells and HCT116 p21 (-/-) cells were treated with increasing doses of either 
erastin (left panel) or IKE (right panel) for 48 hours. (D) Left panel: Viability of HT-1080 cells that were transfected with the indicated 
plasmids expressing p21 variants or an empty vector and then treated with either DMSO or IKE for 48 hours. The panel on the right 

shows the corresponding immunoblot detecting p21 protein levels. The data in (A, B) represent the mean  SE for two of three 
independent experiments, in (C) represent the mean  SE for two out of four independent experiments, in (D) represent the mean  SE 
for three independent experiments. The viability data have been normalized to the DMSO control in (A–C) and to their respective 
untreated control in (D). 
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region impaired p21 to a much lesser extent in that 

regard (although the levels of expression of this mutant 

were slightly lower). This result suggests the possibility 

that p21 alters sensitivity to ferroptosis by affecting 

CDK-mediated functions. 

 

Taken together, we demonstrate that differential 

regulation of p21 protein can serve as a determining 

factor of ferroptosis sensitivity in many human cancer 

cells and that this regulation is independent of p53.  

Our results further emphasize the importance of p53-

targets in the regulation of cell survival, even in the 

absence of p53. 

 

DISCUSSION 
 

There is growing literature on the complex roles of p53 

in ferroptosis [5]. Given the highly context-specific 

regulation of ferroptosis by p53, we focused on 

elucidating the ability of p53-target genes to regulate 

this form of cell death. In line with that, our study has 

revealed the ability of p21, a major downstream target 

of p53, to block ferroptosis in several cancer cell lines. 

We demonstrate that cells which effectively undergo 

ferroptosis reduce the expression of p21 protein.  

Further the sensitivity of these cells can be suppressed 

by re-expressing p21, suggesting that the loss of p21 is 

essential to allow for a complete response to ferroptosis. 

Conversely the resistant cells that we tested were 

dependent on the presence of p21 to counteract 

ferroptotic death. Taken together, we believe that at 

least in some cancer cells, the regulation of p21 protein 

can be the determining factor of their ferroptotic 

sensitivity. 

 

Although we sought to identify p53-target genes that 

may help determine the directionality of the regulation 

of p53 in ferroptosis, this work complements our 

previous work [19] in identifying members of the p53 

network, namely p21, MDM2 and MDMX, which can 

modulate ferroptosis independent of p53. It is certainly 

possible that these proteins perhaps coordinate with p53 

to ultimately dictate the ferroptosis-sensitivity in some 

contexts. 

 

Mechanistically, our results indicate that the ability of 

p21 to interact with CDKs is important for its role in 

ferroptosis. The inhibition of CDK activity by p21 can 

have multiple effects that impact cellular growth 

including altered transcription, cell cycle changes and 

even dedifferentiation to a certain degree [36]. Our 

finding that complete ablation of p21 has a more 

pronounced change in ferroptotic sensitivity than a 

transient yet highly effective siRNA against p21, 

suggests that the mechanism of resistance likely 

requires prolonged presence of p21.  For example, if 

cancer cells underwent some extent of p21-dependent 

dedifferentiation in order to become ferroptosis-

resistant, then it is likely that these changes would need 

more time to get reverted. Reports showing that 

dedifferentiation of melanoma cells as well as further 

differentiation of neurons enhance ferroptosis 

sensitivity [49, 50] lend some support to this theory.  

 

We speculate that cell cycle changes alone may not 

explain the role of p21 in ferroptosis. Relatedly, it was 

reported that while that p53 can prevent ferroptosis 

through p21, cell cycle arrest alone is insufficient to 

cause this suppression [35]. It is definitely possible that 

p21 has a myriad of effects with cell cycle changes just 

being a subset of them. Taken together, a future study to 

better understand the molecular regulation of ferroptosis 

by p21, should evaluate the involvement of CDKs as a 

key factor. It is also unclear which proteins/pathways 

control the regulation of p21 in response to ferroptosis, 

both at the transcriptional and post-transcriptional 

levels. Studying these could further yield more 

regulators of ferroptosis. 

 

Our data also indicate that p21 can have a potential to 

be used as a biomarker for ferroptosis sensitivity of 

cancer cells. If not merely the abundance of p21 protein, 

the protein levels of p21 post ferroptosis induction 

strongly track with the sensitivity of a wide range of 

cancer cell lines tested. Therefore, this study identifies 

another important regulator of ferroptosis sensitivity in 

cancer. 

 

Our data also sparks the need to further examine the 

role of p21 in mediating the ability of ferroptosis to 

cause organ damage. If p21 can indeed control the 

differentiation of cells through CDKs as hypothesized 

above, then this provides a potential mechanism for p21 

to promote tissue regeneration by inhibiting ferroptosis 

even in physiological conditions. While this is counter-

intuitive to the traditional roles of p21 in aging, it adds a 

new perspective to the wide variety of roles that can be 

played by p21 in multiple contexts. 

 

MATERIALS AND METHODS 
 

Cells 
 

HCT116, H1299, SK-HEP1, and U2OS cells were 

maintained in Dulbecco’s modified Eagle’s medium 

supplemented with 10% heat-inactivated fetal bovine 

serum (Gemini Bioproducts, cat# 900-108). HT-1080 

cells were maintained in Dulbecco’s modified Eagle’s 

medium supplemented with 10% heat-inactivated fetal 

bovine serum (Gemini Bioproducts, cat# 900-108), and 

1% non-essential amino acids (Sigma-Aldrich, cat# 

M7145). RKO cells were grown in McCoy’s 5A 
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modified medium (Gibco, cat# 16600-082) 

supplemented with 10% heat-inactivated fetal bovine 

serum (Gemini Bioproducts, cat# 900-108). The 

HCT116 and RKO isogenic cell lines that were created 

by the deletion of a functional domain of p53 [43] were 

a gift from Dr. Vogelstein. The HT-1080 p53 KO, HT-

1080 p21 KO and SK-HEP1 p53 KO cell lines were 

genetically engineered using CRISPR technology [19]. 

All other cell lines were obtained from ATCC.  

 

Drugs and chemicals 
 

The commercially available compounds used were: 

erastin (Selleckchem, cat# S7242), doxorubicin (Sigma-

Aldrich, cat#D1515) and MG132 (Selleckchem, cat# 

S2619). IKE (imidazole ketone erastin) was synthesized 

as in Larraufie MH et al., by Yan Zhang in Stockwell 

lab [51]. 

 

All the compounds were dissolved in DMSO (Sigma-

Aldrich, cat# D8418).  

 

Quantitative reverse transcription PCR 
 

RNA was isolated from cells using the Qiagen RNeasy 

minikit. cDNA was generated using the Qiagen 

Quantitect reverse transcription kit with 0.5 μg of input 

RNA as measured with a NanoDrop (Thermo 

Scientific). Real-time PCR was carried out on an ABI 

StepOne Plus machine using the power SYBR Green 

dye (Thermo Scientific). Transcript levels were assayed 

in triplicate and normalized to L32 mRNA levels. 

Relative changes in cDNA levels were calculated using 

the comparative Ct method (ΔΔCT method). 

 

Primer sequences 
 

L32 F: TTCCTGGTCCACAACGTCAAG, L32 R: 

TGTGAGCGATCTCGGCAC; p21 F: GGCGGCAGA 

CCAGCATGACAGATT, p21 R: GCAGGGGGCGG 

CCAGGGTAT; chac1 F: GAACCCTGGTTACCT 

GGG, chac1 R: CGCAGCAAGTATTCAGGTGT; 

ptgs2 F: TAAGTGCGATTGTACCCGGAC, ptgs2 R: 

TCTCCAAAGGAGGTTACCTGC. 

 

The p53 primer was obtained as premixed solution from 

Qiagen (Quantitech primer, HS_TP53_1_SG, cat# 

QT00060235) and the rest were individually ordered 

from Invitrogen. 

 

Immunoblot 

 

Cells were lysed with TEB lysis buffer (10mM Tris 

HCL pH 7.5-8, 137 mM sodium chloride, 10% glycerol, 

1% NP-40) supplemented with 1mM magnesium 

chloride, 1mM calcium chloride and protease inhibitors 

(Roche). Protein concentrations were assayed using the 

Bio-Rad protein assay dye reagent and results were read 

using a spectrophotometer. 

 

Protein extracts were run on in-house made Tris-

Glycine SDS Polyacrylamide gels. Proteins were then 

electro-transferred at 360 mA for 70 min onto a 

nitrocellulose or PVDF membrane. Membranes were 

blocked with 5% milk in PBST (Phosphate-Buffered 

Saline with Tween) for 30 min, prior to being incubated 

overnight with primary antibodies (1:100-1:1000 

dilution according to the specific antibody). The 

membranes were then washed three times with PBST 

and incubated with secondary antibody (1:5000 

dilution) for 1 hour at room temperature. After three 

more washes with PBST, the membranes were imaged 

using ECL (Thermo Fisher, Pierce, cat# 32106 or  

EMD Millipore, Immobilon, cat# WBKLS0050). The 

primary and secondary antibodies were diluted with 1% 

milk in PBST. 

 

The following primary antibodies were used: p53  

(mAb 1801/mAb DO.1, in-house produced); p21  

(C-19, Santa Cruz biotech, cat# sc-397); actin (Sigma-

Aldrich, cat# A2066); ferritin/FTH1 (Cell Signaling 

Technology cat# 3998). Actin was used as loading 

control for all the blots. 

 

Transfection: RNA interference 
 

siRNA (15 nM) was used for each well in a 6-well 

plate. Lipofectamine RNAiMAX (Thermo Scientific) 

was used as the transfection reagent for all siRNA 

experiments (according to the manufacturer's 

instructions). After 18 hours, the media was changed 

and cells were treated with drugs 24 hours post 

transfection. Cells were plated prior to transfection such 

that they were only 80% confluent by the end of the 

drug treatment period. 

 

The following siRNAs were used: siLuciferase [52], 

sip21 #1 (HS_CDKN1A_6 Flexitube siRNA from 

Qiagen), sip21 #2 (HS_CDKN1A_7 Flexitube siRNA 

from Qiagen). 

 

Transfection: Ectopic expression of proteins 
 

Plasmids were transfected into cells using 

Lipofectamine 3000 (Thermo Scientific) according to 

the manufacturer's instructions, with a ratio of 1 µg:1.7 

µl lipofectamine reagent. After 18 hours, the media was 

changed and cells were treated with drugs 24 hours  

post transfection. The cells were plated prior to 

transfection such that they are only a maximum of 80% 

confluent by the end of the drug treatment period. The 

plasmids for full length and mutants of p21 were a kind 
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gift from Dr. Vanessa Gottifredi and have been 

previously described [47, 48].  

 

Note 
 

Cells became more resistant to ferroptosis inducers post 

transfection. In order to obtain cell death post 

transfection, three key factors need to be controlled: cell 

density must be lower than normal, lipofectamine 

reagent needs to be washed off as soon as possible, and 

a three to four-fold higher dose of FINs must be used to 

induce ferroptosis. 

 
Cell viability assay 
 

For the dose response curves, 1800 cells were plated in 

36 l per well of a 384 well plate on day one. Drugs 

were dissolved in DMSO and a 12 point, two-fold series 

was prepared. The drugs were then dissolved 1:33 in 

media and 4 l was added to each well of the plates on 

day two. After 24-48 hours of drug treatment (based on 

the cell line), the viability of cells was measured using a 

1:1 dilution of the CellTiter-Glo Luminescent reagent 

(Promega, cat# G7573) with media, which was read on 

a Victor 5 plate reader after 10 minutes shaking at room 

temperature. The intensity of luminescence was 

normalized to that of the DMSO control. Experiments 

were performed twice in duplicates each time. 

 

For viability assays when the experiment was performed 

in 6-well plates, cells were harvested using trypsin (0.5 

ml per well) and the media was saved from each well. 

The trypsinized cells were resuspended with the saved 

media and 2-3 aliquots (0.05 ml each) sampling different 

regions of this suspension were transferred into a 96-well 

plate to serve as technical replicates for the measurement. 

CellTiter-Glo Luminescent Viability assay was used to 

measure the viability of these aliquots. The rest of the 

cultures were used to extract protein to be analyzed using 

western blots.  

 

Statistical analysis 

 

Prism (version 8, GraphPad) was used to make all the 

graphs in the paper and for performing all the statistical 

analysis shown. The GraphPad style (0.1234(ns), 

<0.0332(*), < 0.0021(**), <0.0002(***), <0.0001 

(****),) was used to represent the p values. The p 

values were calculated by ANOVA and appropriate 

multiple testing correction was done where required. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Ferroptosis-driven differential regulation of p21 protein is independent of p53. (A, B) Impact of 
treatment with erastin/IKE on the protein levels of p21in (A) HT-1080  p53 KO cells  and (B) SK-HEP1 p53 KO cells. Cells in (A) were treated 
with erastin/IKE for 16 hours and in (B) for 18 hrs. 
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Supplementary Figure 2. Suppression of the proteasome does not revert the reduction in p21 protein levels due to 
ferroptosis. (A) Left panel- effect of addition of MG132 on protein levels of p21 and p53 in HT-1080 wild-type cells treated with erastin. 
Right panel- viability of HT-1080 wild-type cells when treated with MG132 in conjugation with erastin. (B) Comparison of responses of HT-
1080 wild-type and p21 KO derivatives to combination treatment of erastin and MG132. Cells were treated with erastin for 16 hrs and 

MG132 (20µM) was added after 12.5 hours post erastin treatment. The data in right panel of (A) represent the mean  SE for three biological 
replicates of one representative of three independent experiments, in (B) represent the mean  SD for one out of two independent 
experiments. The viability data have been normalized to the respective controls not treated with ferroptosis. 


