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INTRODUCTION 
 

Pancreatic cancer (PC) is a disease that threatens human 

health and has one of the lowest survival rates; 

additionally, its annual mortality rate has recently 

increased among various cancers (from 9th to 7th) [1]. 

Although computed tomography is highly sensitive in 

the diagnosis of PC [2], its unfavorable prognosis may 

be attributed to a relatively late diagnosis time. 

Moreover, recurrence and metastasis are major factors 

that reduce the survival rate of PC patients [3]. It is 

important to be able to predict survival in the early 

stages, and several approaches have been described, 

including a histologic signature [4], extracellular vesicle 

long RNA profiling [5], and circulating tumor DNA 

quantity [6]. Nevertheless, a more holistic and 
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ABSTRACT 
 

Pancreatic cancer (PC) is a severe disease with the highest mortality rate among various cancers. It is urgent to 
find an effective and accurate way to predict the survival of PC patients. Gene set variation analysis (GSVA) was 
used to establish and validate a miRNA set-based pathway prognostic signature for PC (miPPSPC) and a mRNA 
set-based pathway prognostic signature for PC (mPPSPC) in independent datasets. An optimized miPPSPC was 
constructed by combining clinical parameters. The miPPSPC, optimized miPPSPC and mPPSPC were established 
and validated to predict the survival of PC patients and showed excellent predictive ability. Four metabolic 
pathways and one oxidative stress pathway were identified in the miPPSPC, whereas linoleic acid metabolism 
and the pentose phosphate pathway were identified in the mPPSPC. Key factors of the pentose phosphate 
pathway and linoleic acid metabolism, G6PD and CYP2C8/9/18/19, respectively, are related to the survival of 
PC patients according to our tissue microarray. Thus, the miPPSPC, optimized miPPSPC and mPPSPC can predict 
the survival of PC patients efficiently and precisely. The metabolic and oxidative stress pathways may 
participate in PC progression. 
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distinguished method is needed for the prognosis 

prediction in PC patients. 

 

Gene expression-based prognostic signatures have a 

significant effect on predicting the survival of patients 

with malignant tumors, such as non-small cell lung 

cancer [7] and pediatric acute myeloid leukemia [8]. 

Similarly, the miRNA signature shows predictive value 

in adults with T-cell lymphoblastic lymphoma [9], and 

long noncoding RNA shows predictive value in adults 

with localized clear cell renal cell carcinoma [10]. Most 

of the existing research has focused on genes for 

prognosis prediction, whereas pathways based on 

mRNAs or miRNAs have never been used to predict 

survival. 

 

Gene set variation analysis (GSVA), a functional 

enrichment analysis method similar to gene set 

enrichment analysis (GSEA), allows the assessment of 

underlying pathway activity variation in each sample by 

pre-inputting a selected gene set [11]. Recently, 

differences in pathway activities have been calculated 

among breast cancer subtypes, and researchers have 

found that high OSTN-AS1 expression is related to 

immune-associated pathways using GSVA [12]. This 

method has excellent performance in identifying 

prognostic factors for a variety of cancers [13–15]. It 

can be concluded that as a not widely used method, 

GSVA may have incredible potential in pathway-related 

studies. 

 

To the best of our knowledge, for the first time, an 

approach based on miRNA and mRNA sets was used to 

predict prognosis in PC patients, and metabolism and 

oxidative stress were highlighted. More importantly, we 

found the key components among various pathways that 

might play an unexpected and significant role in the 

development of PC. Our results will be helpful for 

clarifying the intrinsic mechanism of PC progression 

and provide an essential theoretical basis for presenting 

new therapeutic approaches. 

 

RESULTS 
 

Calculating pathway enrichment scores based on 

miRNA sets 
 

The GSVA method was used to discriminate pathway 

expression levels among PC patients. The GSVA method 

had an ability to calculate enrichment scores of selected 

gene sets for each patient. Thus, a matrix of patients  

gene sets containing pathway enrichment scores would 

finally obtain through GSVA method. A total of 484 

pathways (Supplementary Table 2) were selected based 

on miRNA sets, including metabolic pathways, signaling 

pathways, immune-associated pathways, cell function-

related pathways, disease-related pathways, and DNA 

and RNA processing pathways. Normalized pathway 

enrichment scores of every PC patient for 484 miRNA-

set-based pathways were calculated with the GSVA 

method using the TCGA (The Cancer Genome Atlas)-

PAAD (pancreatic adenocarcinoma) miRNA-seq dataset 

and are displayed in a heatmap (Figure 1). GSVA results 

containing a matrix of 176 PC patients  484 miRNA 

sets with normalized pathway enrichment scores were 

finally obtained. Heatmap displayed the GSVA results 

(Figure 1). Pathway enrichment scores based on miRNA 

sets seemed partially clustered in certain PC patients. 

Some patients had relatively high pathway enrichment 

scores, whereas others did not show high expression 

patterns, suggesting distinct pathway expression maps in 

individuals with PC, consistent with several published 

studies [16, 17]. Additionally, by combining clinical 

parameters, the pathway enrichment score clustered 

according to different outcomes, including vital status, 

pathologic T, pathologic M, pathologic N, histologic 

grade and family history of cancer (Figure 1). These 

results suggest that specific clinical characteristics might 

correlate with unique pathway expression profiles. 

 

Development and validation of the miRNA set-based 

pathway prognostic signature for PC (miPPSPC) 
 

Due to the limitation of miRNA-seq datasets of PC, we 

used TCGA-PAAD miRNA-seq data to develop and 

validate the miPPSPC. The GSVA results of the TCGA-

PAAD miRNA-seq dataset were randomly divided into 

two parts: seven of ten for the training set and the 

remainder for the validation set. A total of 124 PC 

patients were enrolled in the training set, while 52 

individuals were enrolled in the validation set. In total, 

48 of 484 miRNA set-based pathways were pre-

liminarily filtered using single-factor Cox analysis. We 

also used least absolute shrinkage and selection operator 

(LASSO) regression to eliminate collinearity 

parameters and preliminarily filtered significant miRNA 

set-based pathways related to survival (Figure 2A, 2B). 

Through the LASSO regression process, 11 of 48 

miRNA set-based pathways were filtered for subsequent 

Cox proportional hazards model construction. 

Consequently, a total of 5 miRNA set-based pathways 

were included in the Cox proportional hazards model 

miPPSPC: fatty acid elongation (coef= 3.64, HR= 

38.27, p= 0.101), the pentose phosphate pathway (coef= 

4.84, HR= 126.74, p= 0.020), linoleic acid metabolism 

(coef= 3.04, HR= 20.94, p= 0.038), monoamine 

transport (coef= -3.36, HR= 0.03, p= 0.054) and Keap1-

Nrf2 (coef= -4.76, HR= 0.008, p= 0.002) (Figure 2C). 

Four metabolic pathways, namely, fatty acid elongation, 

the pentose phosphate pathway, linoleic acid 

metabolism, and monoamine transport, and one 

oxidative stress pathway, Keap1-Nrf2, were included in 
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the miPPSPC and showed respective correlations 

(Figure 2D). Harrell’s concordance index (C-index) of 

the miPPSPC was 0.7 for the training and 0.6 for the 

validation set. The area under the curve (AUC) of the 

receiver operating characteristic (ROC) curve of the 

miPPSPC was 0.725 for the training set and 0.656 for 

the validation set (Figure 2E). The survival time was 

shortened in all PC patients with an increasing risk 

score (Figure 2F). Linoleic acid metabolism, fatty acid 

elongation and the pentose phosphate pathway were 

associated with high expression levels in high-risk PC 

patients in both sets, whereas the oxidative stress 

pathway Keap1-Nrf2 and monoamine transport were 

associated with low expression levels (Figure 2G). 

Taken together, these results indicate that linoleic acid 

metabolism, fatty acid elongation and the pentose 

phosphate pathway negatively influence the prognosis 

of PC patients. In contrast, patients might benefit from 

increasing the expression levels of genes involved in the 

oxidative stress pathway, Keap1-Nrf2, and monoamine 

transport. 

 

In addition, the performance of the nomogram exhibited 

feasibility and accuracy when calculating the risk score 

and predicting the probability of survival (Figure 2H). 

The associated calibration curve from the nomogram at 

the median survival time is shown in Figure 2H. We 

stratified patients by their vital status to determine how 

 

 
 

Figure 1. GSVA results based on miRNA sets in PC. Heatmap of normalized pathway enrichment scores calculated by the 
GSVA method using the TCGA-PAAD miRNA-seq dataset based on 484 miRNA sets in PC patients with distinct clinical 
characteristics. The GSVA method had an ability to calculate enrichment scores of selected gene sets for each patient. Thus, GSVA results 

containing a matrix of 176 PC patients  484 miRNA sets with normalized pathway enrichment scores were finally obtained. Heatmap 
displayed the GSVA results. Each dot represented normalized enrichment score of specific pathway for each patient. The color change 
represented the level of pathway enrichment scores of every PC patient for every miRNA set-based pathway: purple represented a low score, 
and yellow represented a high score. Clinical characteristics of each patient were displayed in the top of heatmap, including vital status, 
pathologic T, pathologic M, pathologic N, histologic grade and family history of cancer. 
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the miPPSPC predicts the survival of PC patients 

regardless of survival time. The risk scores of each 

patient were calculated based on the miPPSPC 

containing five pathways: fatty acid elongation, the 

pentose phosphate pathway, linoleic acid metabolism, 

monoamine transport and Keap1-Nrf2. The probability 

of long-term survival decreased with the increasing risk 

score. PC patients with high risk scores were associated 

with a low survival rate (Figure 2I). Cohorts of patients 

<65 years old and females had relatively high risk 

scores, though the difference was not statistically 

significant.

 

 
 

Figure 2. Development and validation of the miPPSPC. (A, B) Least absolute shrinkage and selection operator (LASSO) regression 
of the pathway enrichment scores of 48 miRNA sets in the training group calculated by the GSVA method. LASSO coefficient prof iles of 
48 pathways were shown in panel (A) and the dotted line indicated the value chosen by tenfold cross-validation. Tenfold cross-
validation for tuning parameter selection in the LASSO model was shown in panel (B). The partial likelihood deviance was plotted 
against log (λ), which was the tuning parameter. Partial likelihood deviance values were shown, while error bars represented s.e. The 
dotted vertical lines were drawn at the optimal values by minimum criteria and 1 - s.e. criteria. In (A) and (B), the numbers above the 
graph represent the numbers of pathways involved in the LASSO model. Through the LASSO regression process, 11 of 48 miRNA set-
based pathways were filtered for subsequent analysis. (C) Forest plot of five pathway-related parameters originating from the Cox 
proportional hazards model miPPSPC. Through constructing Cox proportional hazards model, 5 of 11 pathways were finally filtered. 
Unadjusted hazard ratios are shown with 95 percent confidence intervals. AIC, Akaike Information Criterion. (D) Correlations among five 
pathways calculated using pathway enrichment scores of five pathways for PC patients. Red indicated a high correlation, while blue 
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indicated a low correlation. Color depth represented the level of correlation. Correlation coefficients were represented by numbers in 
the lower left triangle. (E) Receiver operating characteristic (ROC) curve of the miPPSPC for the training set (left) and validation set 
(right). AUC, the area under the curve. (F) Kaplan–Meier curves for overall survival by risk score of patients in the training set (left) and 
validation set (right) based on the miPPSPC. Blue line represented low risk group while red line represented high risk group. Log rank 
test was used to generate p value. (G) Heatmap of the pathway enrichment score distribution of five pathways in the training set (left) 
and validation set (right). The color change represented the level of pathway enrichment scores of every PC patient for every miRNA 
set-based pathway: blue represented a low score, and red represented a high score. Patients were divided into low and high risk group 
according to their risk score. (H) Nomogram (upper) of the miPPSPC exhibited a strong correlation among the pathway score, risk score 
and survival probability. Calibration curve (lower) for the median survival time from the nomogram of the miPPSPC. On the calibration 
curve, the x-axis represents nomogram-predicted survival, while the y-axis represents observed survival. (I) Forest plot of the odds ratio 
in high-risk and low-risk PC patients based on age, sex and vital status. The risk scores of each patient were calculated based on the 
miPPSPC, which contains five pathways: fatty acid elongation, the pentose phosphate pathway, linoleic acid metabolism, monoamine 
transport and Keap1-Nrf2. 
 

Taken together, these results confirm the practicability 

and accuracy of the miPPSPC, which could be a new 

prognostic tool for PC patients. In addition, we believe 

that the protumor roles of linoleic acid metabolism, 

fatty acid elongation, and the pentose phosphate 

pathway and the antitumor roles of the oxidative stress 

pathway Keap1-Nrf2 and the monoamine transport 

pathway will be helpful for illustrating the underlying 

mechanism and identifying a metabolic therapy for PC 

patients. 

 

Optimization of the miPPSPC 
 

We hypothesized that the introduction of clinical 

information would improve the performance of the 

miPPSPC. When we initially constructed the 

optimized miPPSPC, we chose all available clinical 

features of TCGA-PAAD patients, including age, 

number of lymph nodes, maximum tumor dimension, 

sex, M stage, N stage and T stage. However, after 

constructing the Cox proportional hazards model, only 

three clinical parameters (i.e., age, maximum tumor 

dimension and pathologic N stage) were used in the 

optimized m miPPSPC. Finally, a more optimized 

miPPSPC was established, with a C-index of 0.75 

(compared to a C-index of 0.7 for the miPPSPC). Four 

of the above five pathways were used to construct the 

optimized miPPSPC through Cox regression: the 

pentose phosphate pathway, linoleic acid metabolism, 

monoamine transport and Keap1-Nrf2 (Figure 3A). 

The results suggested that the above seven factors 

may together influence clinical outcomes and survival 

time in PC patients (Figure 3D). The survival time of 

high-risk PC patients, which was calculated by the 

optimized miPPSPC, was relatively poor in the 

training and validation sets. Although the p-value of 

the validation set did not reach 0.05, it was obvious 

that the survival curve separated completely between 

and among subgroups (Figure 3D). Additionally, the 

performance of the nomogram exhibited feasibility 

and accuracy when calculating the risk score and 

predicting the probability of survival (Figure 3B). The 

associated calibration curve from the nomogram at the 

median survival time is shown in Figure 3C. These 

results suggest that compared with the miPPSPC, the 

optimized miPPSPC might have better performance in 

the prognosis prediction of PC. 

 

Effect of the main target genes on the miPPSPC 

 

We wondered whether a portion of the target genes of 

miRNAs in the miPPSPC wound have significant 

impacts on tumor progression in PC. Thus, the 

corresponding target genes of miRNAs in all five 

pathways were found via miRTarBase, which is an 

experimentally validated microRNA-target interactions 

database (Supplementary Table 1). By overlapping all 

five collections of target genes using a Venn diagram, 

three genes (CDC34, UVRAG, and SOX9) were found 

in four pathways, while 10 genes (MYEF2, CCND1, 

BMI1, E2F1, EP300, RBMXL1, MEIS1, ZNFX1, 

BIRC3, and TNC) were found in three pathways 

(Supplementary Figure 1A). A portion of these 13 target 

genes are transcription factors that regulate the 

expression of a series of genes, which implied their 

crucial roles in the transcriptional regulation of PC. 

 

We found that these 13 genes were differentially 

expressed between tumor and normal tissues in various 

cancers, especially PC (Supplementary Figure 1A). In 

addition, a portion of these genes showed a significant 

influence on the survival of cancer patients 

(Supplementary Figure 1B). These results suggest that 

these genes may play key roles in tumor cells via 

unknown mechanisms. In PC, most genes were found to 

be associated with the survival status (Supplementary 

Figure 1C). In addition, four genes had a strong 

correlation with tumor stage, indicating extremely 

significant key roles in the progression of PC 

(Supplementary Figure 1D). 

 

Taken together, these results suggest that five pathways 

in the miPPSPC influence the prognosis of PC in a 

critical manner. 
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Development and validation of the mRNA set-based 

pathway prognostic signature for PC (mPPSPC) 

 

To confirm the possibly pivotal roles of the metabolic 

pathway and oxidative stress pathway in affecting the 

prognosis of PC and obtain a more streamlined model, 

the GSE62452 dataset was used as a training set, 

whereas the GSE21501, GSE57495 and TCGA-PAAD 

mRNA-seq datasets were used as validation sets with 

the help of corresponding pathways based on mRNA 

sets from the Molecular Signatures Database 

(MSigDB), including linoleic acid metabolism, the 

pentose phosphate pathway, the ARENRF2 pathway, 

monoamine transport, and fatty acid elongation. All the 

corresponding pathways based on mRNA sets were in 

line with the five pathways based on miRNA sets 

obtained in the miPPSPC and the optimized miPPSPC. 

Pathway enrichment scores of the five pathways based 

on mRNA sets were calculated using the GSVA method 

for every PC patient. Diverse pathway enrichment 

scores between living and deceased PC patients 

indicated distinct pathway expression patterns in PC 

patients with diverse prognoses (Figure 4A). Following 

pathway enrichment score calculation, the Cox 

proportional hazards model mPPSPC was established 

using the GSE62452 dataset, with a C-index of 0.65 

(Figure 4B). Among the five miRNA-set-based 

pathways in the miPPSPC and the optimized miPPSPC, 

two mRNA-set-based pathways were included in the 

mPPSPC, linoleic acid metabolism and the pentose 

phosphate pathway, which implied a potentially 

significant role of metabolic pathways in PC evolution. 

By validating the mPPSPC with the GSE21501, 

GSE57495 and TCGA-PAAD mRNA-seq datasets, we 

found that patients with high risk scores in both the 

training and validation sets had relatively poorer 

prognoses (Figure 4C). These results suggest a 

protumor role of the pentose phosphate pathway and an 

antitumor role of linoleic acid metabolism in PC, 

illustrating a diverse and unique mechanism based on 

mRNA sets (Figure 4D). Together, our findings suggest 

that metabolic pathways may affect the development of 

PC and could serve as a prognostic signature to predict 

the survival of PC patients. 

 

 
 

Figure 3. Optimization of the miPPSPC. (A) Forest plot of four pathways and three clinical indexes originating from the optimized Cox 
proportional hazards model. Through constructing Cox proportional hazards model, four pathways and three clinical indexes were finally 
filtered. Unadjusted hazard ratios are shown with 95 percent confidence intervals. AIC, Akaike Information Criterion. (B) Nomogram of the 
optimized miPPSPC that exhibits correlations among the pathway score, clinical indexes, risk score and survival probability. (C) Calibration 
curve for the median survival time from the nomogram of the optimized miPPSPC. On the calibration curve, the x-axis represents nomogram-
predicted survival, while the y-axis represents observed survival. (D) Kaplan–Meier curves for overall survival by risk score of patients in the 
training set and validation set based on the optimized miPPSPC. Blue line represented low risk group, yellow line represented high risk group, 
and red line represented high risk group. Log rank test was used to generate p value. 
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Effects and relationships of metabolic pathways on 

the prognosis of PC 

 

Subsequently, we examined the impacts of metabolic 

pathways on the overall survival (OS) and disease-free 

survival (DFS) of PC patients. Interestingly, both the 

pentose phosphate pathway and linoleic acid 

metabolism influenced the survival of PC patients and 

led to opposite clinical outcomes (Figure 5A), in 

accordance with the results above (Figure 4D). 

Additionally, the monoamine transport pathway could 

prolong the OS and DFS times of PC patients (Figure 

5A), consistent with the hypothesis proposed above 

(Figure 2F). Indeed, the expression of one of the key 

 

 
 

Figure 4. Development and validation of the mPPSPC. (A) Heatmap of the pathway enrichment score distribution of five mRNA-set-
based pathways corresponding to miRNA-set-based pathways in the GSE62452, GSE21501, TCGA-PAAD mRNA-seq and GSE57495 datasets. 
Pathway enrichment scores were calculated by the GSVA method. PC patients were divided into two groups according to their vital status. 
The color change represented the level of pathway enrichment scores of every PC patient for every mRNA set-based pathway: blue 
represented a low score, and red represented a high score. (B) Forest plot of two pathways originating from the Cox proportional hazards 
model mPPSPC. Through constructing Cox proportional hazards model, two pathways were finally filtered. Unadjusted hazard ratios are 
shown with 95 percent confidence intervals. AIC, Akaike Information Criterion. (C) Kaplan–Meier curves for overall survival by risk score of 
patients in the training set (left two: GSE62452 dataset) and validation set (right six: GSE21501, TCGA-PAAD mRNA-seq and GSE57495 
datasets) based on the mPPSPC. Blue line represented low risk group, yellow line represented high risk group, and red line represented high 
risk group. Log rank test was used to generate p value. (D) Heatmap of the pathway enrichment score distribution of two pathways in the 
mPPSPC for the training set (left one: GSE62452 dataset) and validation set (right three: GSE21501, TCGA-PAAD mRNA-seq and GSE57495 
datasets) grouped by low and high risk scores. The color change represented the level of pathway enrichment scores of every PC patient for 
each mRNA set-based pathway: blue represented a low score, and red represented a high score. 
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Figure 5. Effects and relationships of metabolic pathways on the prognosis of PC. (A) Overall survival (upper) and disease-free 
survival (lower) in PC patients with different expression patterns of monoamine transport (left), linoleic acid metabolism (middle) and the 
pentose phosphate pathway (right). Low and high expression patterns of pathways were divided by the pathway scores of PC patients 
calculated by the GEPIA2 tool. Blue line represented low pathway scores group and red line represented high pathway scores group. (B, C) 
Kaplan–Meier curves for overall survival of M2 stage (B) and male (C) PC patients with different G6PD protein expression levels. Protein 
expression of G6PD in PC was obtained from the TCGA-PAAD reversed-phase protein array. PC patients with incomplete clinical information 
were excluded. Blue line represented low G6PD expression group and red line represented high G6PD expression group. (D) Correlation 
between metabolic pathways and the oxidative stress pathway in PC patients. Pathway scores were calculated by the GEPIA2 tool according 
to gene expression in each pathway. Each dot represented specific pathway score of every PC patient.  
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proteins in the pentose phosphate pathway, G6PD, was 

related to the survival of M2 stage (Figure 5B) and male 

(Figure 5C) PC patients according to the TCGA-PAAD 

reversed-phase protein array (RPPA). High G6PD 

expression predicted a poor prognosis in M2 stage and 

male PC patients. In addition, we found a strong 

correlation between metabolic pathways and the 

oxidative stress pathway, which suggested a 

complicated interaction among these processes (Figure 

5D). In general, the pentose phosphate pathway and 

linoleic acid metabolism may significantly influence the 

development of PC in a previously unseen way. 

 

Verification of the effects of the pentose phosphate 

pathway and linoleic acid metabolism in PC using a 

tissue microarray 
 

Finally, we wanted to verify the actual effects of the 

pentose phosphate pathway and linoleic acid 

metabolism in PC in our tissue microarray containing 

83 PC patients. G6PD serves as a key factor in the 

pentose phosphate pathway, whereas CYP2C8/9/18/19 

serve as key factors in linoleic acid metabolism 

according to the MSigDB. G6PD (Figure 6A) and 

CYP2C8/9/18/19 (Figure 6D) show diverse expression 

patterns depending on the stage of PC, indicating 

considerable connections between the pentose 

phosphate pathway and linoleic acid metabolism with 

clinical stage and pathological grade in PC. Tables 1 

and 2 show the clinical characteristics of PC patients 

stratified according to G6PD and CYP2C8/9/18/19 

expression, respectively. G6PD expression seemed to 

have a significant impact on tumor volume and 

differentiation, suggesting that the pentose phosphate 

pathway is involved in the progression of PC. 

Univariable and multivariable analyses showed that age, 

clinical stage, G6PD expression and CYP2C8/9/18/19 

expression were significantly associated with prognosis 

in our tissue microarray (Tables 3, 4). Consistent with 

the RNA-seq data in the TCGA (Figure 6B, 6E), the 

protein levels of G6PD (Figure 6C) and 

CYP2C8/9/18/19 (Figure 6F) were significantly 

associated with the prognosis of PC according to the 

tissue microarray with immunohistochemical (IHC) 

staining. Together, these results suggest the essential 

roles of the pentose phosphate pathway and linoleic acid 

metabolism pathway in the development of PC, which 

could influence the survival of PC patients. 

 

DISCUSSION 
 

Many people suffer from a variety of cancers, including 

PC, with the highest mortality rate [18]. More effective 

and accurate methods for predicting the prognosis of PC 

are urgently needed. In this research, novel pathway 

prognostic signatures, including the miPPSPC, 

optimized miPPSPC and mPPSPC, were proposed with 

the help of GSVA and are based on miRNA sets 

(miPPSPC and optimized miPPSPC) and mRNA sets 

(mPPSPC). Our models innovatively showed excellent 

performance in predicting the survival of PC patients. 

Moreover, a collection of pathways (four metabolic 

pathways: fatty acid elongation, the pentose phosphate 

pathway, linoleic acid metabolism, and monoamine 

transport; and one oxidative stress pathway: Keap1-

Nrf2), especially the pentose phosphate pathway and 

linoleic acid metabolism, likely dominate the 

progression of PC. This is the first study to investigate a 

tumor prognostic signature from a holistic pathway-

related perspective. These results may provide a new 

research direction for unveiling the underlying 

mechanism of PC. 

 

miRNAs are a class of small, endogenous single-

stranded noncoding regulatory RNAs of approximately 

22 nucleotides in length initially discovered in 1993 

[19]. Studies over the past two decades have forged 

links between the dysregulation of miRNAs and 

different types of cancer [20]. In addition to miRNA 

analyses (e.g., GSEA and gene regulatory network 

analysis), microRNA enrichment analyses of functions 

and signaling pathways in cancer have also been 

performed [21]. There are several relationships between 

miRNAs and pathways. Metabolic reprogramming is a 

hallmark of cancer. miRNAs have been perceived to be 

relevant to cancer-related metabolic pathways, 

including fatty acid metabolism, the pentose phosphate 

pathway, the tricarboxylic acid cycle, glycolysis, amino 

acid metabolism, and other metabolism-related 

oncogenic signaling pathways [22]. Our miRNA set-

based pathway prognostic signature is based directly on 

the potential network regulation of miRNAs to 

pathways. 

 

Pathway activity plays a significant role in tumor 

growth, apoptosis, metastasis, recurrence, etc. Targeting 

metabolic intermediates was considered effective in a 

phase I study in cancer [23]. We identified four 

metabolic pathways, namely, fatty acid elongation, the 

pentose phosphate pathway, linoleic acid metabolism, 

and monoamine transport, and one oxidative stress 

pathway, Keap1-Nrf2, among a large number of 

miRNA set-based pathways and confirmed their 

significance using a mRNA set-based pathway model. 

Metabolic pathways affect nutrient cycling in humans 

and are believed to alter the features of cancer cells. The 

kynurenine metabolic axis has been reported to be 

related to PC and has the ability to enhance 

aggressiveness and influence outcomes [24]. Fatty acid 

elongation plays a key role in human nonalcoholic 

steatohepatitis development [25]. Human NASH-related 

hepatocellular carcinoma is associated with increased 
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Figure 6. Verification of the effects of the pentose phosphate pathway and linoleic acid metabolism in PC using a tissue 
microarray. (A, D) IHC staining of a tissue microarray containing 83 PC patients with the G6PD antibody (A) or CYP2C8/9/18/19 (D) 
antibody. Intensity was classified as 0, 1+, 2+, and 3+, denoting no, weak, moderate, and strong staining, respectively. The distribution of 
staining was referred to as the percentage of positive tumor cells (0% to 100%). (B, E) Kaplan–Meier curves for overall survival of PC 
patients with different expression levels of G6PD (B) and CYP2C8/9/18/19 (E) according to the TCGA-PAAD mRNA-seq dataset. Black line 
represented low expression group and red line represented high expression group. (C, F) Kaplan–Meier curves for overall survival of PC 
patients with different expression levels of G6PD (C) and CYP2C8/9/18/19 (F) according to the IHC results of the tissue microarray 
containing 83 PC patients. The final G6PD and CYP2C8/9/18/19 expression scores were obtained by multiplying the two variables, intensity 
and distribution of staining. All samples were further divided into a low expression group and a high expression group according to the 
expression scores of G6PD (C) and CYP2C8/9/18/19 (F). Black line represented low expression group and red line represented high 
expression group. 
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Table 1. Clinical characteristics of PC patients stratified according to G6PD expression. 

Characteristic 
High group 

(n = 47) 

Low group 

(n = 36) 
p-value 

Age (years) 
   

 < 60 years 14 (29.8)  17 (47.2)  0.162 

 ≥ 60 years 33 (70.2)  19 (52.8)  
 

Sex 
   

Female 17 (36.2)  17 (47.2)  0.43 

Male 30 (63.8)  19 (52.8)  
 

Tumor volume (cm3) 
   

<6 20 (42.6)  24 (66.7)  0.05 

≥6 27 (57.4)  12 (33.3)  
 

Differentiation 
   

Moderate+Well 40 (85.1)  23 (63.9)  0.048 

Poor  7 (14.9)  13 (36.1)  
 

Clinical stage 
   

I-II  39 (83.0)  34 (94.4)  0.211 

III-IV   8 (17.0)   2 (5.6)  
 

Perineuronal invasion 
   

No 32 (68.1)  23 (63.9)  0.868 

Yes 15 (31.9)  13 (36.1)    

 

Table 2. Clinical characteristics of PC patients stratified according to CYP2C8/9/18/19 expression. 

Characteristic 
High group 

(n = 43) 

Low group 

(n = 40) 
p-value 

Age (years) 
   

< 60 13 (30.2)  18 (45.0)  0.245 

≥ 60 30 (69.8)  22 (55.0)  
 

Sex 
   

Female 18 (41.9)  16 (40.0)  1 

Male 25 (58.1)  24 (60.0)  
 

Tumor volume (cm3) 
  

<6 22 (51.2)  22 (55.0)  0.897 

≥6 21 (48.8)  18 (45.0)  
 

Differentiation 
   

Moderate+Well 34 (79.1)  29 (72.5)  0.658 

Poor  9 (20.9)  11 (27.5)  
 

Clinical stage 
   

I-II  37 (86.0)  36 (90.0)  0.829 

III-IV   6 (14.0)   4 (10.0)  
 

Perineuronal invasion 
  

No 30 (69.8)  25 (62.5)  0.64 

Yes 13 (30.2)  15 (37.5)    

 

levels of fatty acid elongation [26]. The pentose 

phosphate pathway participates in the biosynthesis of 

ribonucleotide precursors and NADPH [27] and has 

been found to be involved in tumor progression. 

Research reports that Rev-erbα, a nuclear receptor, 

inhibits gastric cancer cell proliferation by inhibiting the 

pentose phosphate pathway [28]. Similarly, pentose 

phosphate pathway blockade induces reactive oxygen 

species (ROS)-mediated apoptosis in thyroid cancer 

cells [29]. According to proteomic analysis, the pentose 

phosphate pathway is activated in PC stem cells [30]. 

Emerging evidence suggests that G6PD, a gatekeeper of 

the pentose phosphate pathway, is a potential 

therapeutic target in human cancers [31]. Linoleic acid 
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Table 3. Cox univariable and multivariable analyses of clinicopathological variables and G6PD expression in relation 
to OS in PC patients. 

Clinical factor 
Univariable analysis  

 
Multivariable analysis 

HR    95% CI p-value 
 

HR    95% CI p-value 

Age (≥ 60 vs. < 60 years) 2.088 1.044-4.178 0.037 
 

2.046 1.002-4.178 0.049 

Sex (Male vs. Female)  1.522 0.764-3.033 0.232 
 

- - - 

Differentiation (Poor vs. Moderate+Well) 1.442 0.711-2.922 0.31 
 

- - - 

Tumor volume (≥6 vs. <6 cm3) 1.902 0.995-3.636 0.052 
 

- - - 

Perineuronal invasion (Positive vs. Negative) 1 0.513-1.951 0.999 
 

- - - 

Clinical stage (III-IV vs. I-II)  3.546 1.512-8.315 0.004 
 

2.977 1.256-7.059 0.013 

G6PD expression (High vs. Low)  3.411 1.657-7.019 0.001 
 

3.222 1.527-6.8 0.002 

 

Table 4. Cox univariable and multivariable analyses of clinicopathological variables and CYP2C8/9/18/19 expression 
in relation to OS in PC patients. 

Clinical factor 
Univariable analysis 

 
Multivariable analysis 

HR    95% CI p-value 
 

HR    95% CI p-value 

Age (≥ 60 vs. < 60 years) 2.088 1.044-4.178 0.037 
 

2.046 1.002-4.178 0.049 

Sex (Male vs. Female)  1.522 0.764-3.033 0.232 
 

- - - 

Differentiation (Poor vs. Moderate+Well) 1.442 0.711-2.922 0.31 
 

- - - 

Tumor volume (≥6 vs. <6 cm3) 1.902 0.995-3.636 0.052 
 

- - - 

Perineuronal invasion (Positive vs. Negative) 1 0.513-1.951 0.999 
 

- - - 

Clinical stage (III-IV vs. I-II)  3.546 1.512-8.315 0.004 
 

3.393 1.443-7.976 0.005 

CYP2C8/9/18/19 expression (High vs. Low)  2.983 1.4-6.354 0.005 
 

2.915 1.366-6.218 0.006 

 

metabolism plays a functional role in cancer processes 

such as cell growth, cell survival, angiogenesis, cell 

invasion, metastatic potential and immunomodulation 

[32]. For instance, THF diols regulate cell proliferation 

by modulating specific enzymatic sites involved in 

linoleic acid metabolism in human breast cancer cells 

[33]. The Keap1-Nrf2 pathway is a regulator of 

cytoprotective responses to endogenous and exogenous 

stresses induced by ROS, which are an unenviable part 

of aerobic life, and its dysregulation is observed in 

cancer cells [34, 35]. Synchronously, certain sensors, 

such as Keap1/Nrf2, HIF-1α, NF-kB and other 

regulatory pathways, exert a coordinated function in 

human biology and pathology related to the realization 

of ROS effects [36]. 

 

Among the various pathways associated with tumor 

progression, metabolic pathway activity could affect the 

level of metabolites. The pentose phosphate pathway is 

a basic component of cellular metabolism and is 

important for maintaining carbon homeostasis; it also 

provides precursors for nucleotide and amino acid 

biosynthesis, reduces molecules for anabolism, and 

defeats oxidative stress [37]. Pentose phosphate 

pathway flux is increased in human cancer and 

influences cancer progression [31]. In addition, linoleic 

acid metabolism may be related to increased carcino-

genesis and enhanced tumor progression [38]. However, 

whether these two pathways are significant in the 

development of PC remains unclear. 

 

In our research, we established a three-pathway 

prognostic signature based on mRNA sets, miRNA 

sets or the clinical features of PC patients: the 

miPPSPC, optimized miPPSPC, and mPPSPC. Among 

these prognostic signatures, the C-index of the 

optimized miPPSPC reached 0.75, indicating better 

prognostic efficiency than the miPPSPC and mPPSPC. 

Although the efficiency of the mPPSPC was roughly 

similar to that of the miPPSPC, the mPPSPC contained 

only two pathway parameters compared with five 

pathway parameters in the miPPSPC, suggesting that 

the mPPSPC makes survival prediction simpler. In 

addition, miRNAs function by regulating mRNA 

expression, and the latter function by directly 

translating proteins, suggesting that the mPPSPC 

might have more direct prediction effects than the 

miPPSPC. For instance, we obtained both the pentose 

phosphate pathway and linoleic acid metabolism with 

the mPPSPC; these pathways were also identified by 

the miPPSPC. We could then directly investigate the 

influences of the expression levels of both pathways 

on the progression of PC. 

 

In summary, we proposed unique prognosis prediction 

models based on miRNA sets and mRNA sets that 
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showed excellent ability in estimating the survival of PC 

patients. According to the pathway prognostic signatures, 

four metabolic pathways, namely, fatty acid elongation, 

the pentose phosphate pathway, linoleic acid metabolism, 

and monoamine transport, and one oxidative stress 

pathway, Keap1-Nrf2, were identified as potentially 

important factors that influence the prognosis of PC. This 

study is the first to filter and verify prognosis-related 

factors from the perspective of pathways in a more 

integrated and comprehensive manner. Our results will be 

helpful for survival prediction and studies on the intrinsic 

mechanism of PC. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 

 

The datasets used in this paper were retrospectively 

collected from The Cancer Genome Atlas (TCGA) and 

Gene Expression Omnibus (GEO). RNA-seq FPKM 

data and relevant clinical records of the TCGA-PAAD 

cohort were downloaded from UCSC Xena (https:// 

xenabrowser.net/datapages/). Microarray data and 

corresponding follow-up information of PC patients 

were obtained from the GEO repository (https://www. 

ncbi.nlm.nih.gov/geo/) (GSE62452, GSE21501 and 

GSE57495). All GEO datasets were normalized using 

the RMA method or global normalization. Adjacent 

nontumor tissue samples were removed, and all patients 

with incomplete prognostic information were excluded. 

The protein expression of G6PD in PC was obtained 

from the TCGA-PAAD RPPA. 

 

Retrieval of pathway-related miRNA sets and 

mRNA sets and pathway enrichment analysis using 

GSVA 
 

miRNA sets were downloaded from the miEAA 

(https://ccb-compute2.cs.uni-saarland.de/mieaa_tool/). 

The miRWalk Pathways miRNA file, which contains a 

total of 484 miRNA sets, was selected as the target 

miRNA set for further analysis (Supplementary Table 

2). mRNA sets including linoleic acid metabolism, the 

pentose phosphate pathway, the ARENRF2 pathway, 

monoamine transport, and fatty acid elongation were 

acquired from the MSigDB (http://software.broadin 

stitute.org/gsea/index.jsp) (Supplementary Table 3). All 

miRNA sets and mRNA sets were transformed to the 

corresponding format awaiting processing using the R 

GSVAdata package. The GSVA package was performed 

in R 3.6.1 to calculate the enrichment score of the 

pathways in each sample. miRNA sets were used to 

obtain scores for the TCGA-PAAD miRNA-seq dataset, 

whereas mRNA sets were used to obtain scores for the 

TCGA-PAAD mRNA-seq, GSE62452, GSE21501 and 

GSE57495 datasets. 

Establishment and validation of the miPPSPC 
 

The GSVA results of the TCGA-PAAD miRNA-seq 

dataset were randomly divided into two parts: seven of 

ten for the training set and the remainder for the 

validation set. In total, 48 of 484 miRNA set-based 

pathways were preliminarily filtered using single-factor 

Cox analysis. LASSO regression was used for 

collinearity parameter elimination using the glmnet 

package. During LASSO regression, the enrichment 

scores of a total of 48 miRNA set-based pathways for 

PC patients were input. After LASSO regression, 11 of 

48 miRNA set-based pathways were filtered. 

Subsequently, a Cox proportional hazards model was 

used to filter and assess their association with OS 

among 11 miRNA set-based pathways. Cox regression 

was performed using the survival and survminer R 

packages with data on the enrichment scores of 11 

miRNA set-based pathways filtered from LASSO 

regression for PC. Then, we established the miPPSPC in 

the training set and validated it in the validation set. The 

optimized miPPSPC was established by adding clinical 

information on TCGA-PAAD patients. 

 

Establishment and validation of the mPPSPC 

 

According to the miPPSPC, five corresponding mRNA 

sets from the MSigDB were used to construct the 

mPPSPC: linoleic acid metabolism, the pentose 

phosphate pathway, the ARENRF2 pathway, monoamine 

transport, and fatty acid elongation. The GSE62452 

dataset was used to establish the mPPSPC, whereas the 

GSE21501, GSE57495 and TCGA-PAAD mRNA-seq 

datasets were used to validate the mPPSPC. 

 

IHC staining of the tissue microarray and evaluation 

of reaction intensity 
 

Paraffin sections of PC tissue microarrays containing 83 

PC patients were used for IHC staining. Sections were 

stained with primary antibodies against G6PD (1:50, 

Proteintech Group, Chicago, IL, USA) and 

CYP2C8/9/18/19 (1:100, Proteintech Group, Chicago, 

IL, USA) according to the product manual after routine 

steps. Phosphate-buffered saline (PBS) was used as a 

control. 

 

The scoring of positive immunoreactivity was 

performed as described previously [39]. Intensity was 

classified as 0, 1+, 2+, and 3+, denoting no, weak, 

moderate, and strong staining, respectively. The 

distribution of staining was referred to as the 

percentage of positive tumor cells (0% to 100%). The 

final G6PD and CYP2C8/9/18/19 expression scores 

were obtained by multiplying the two variables 

together. Additionally, all samples were further divided 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://ccb-compute2.cs.uni-saarland.de/mieaa_tool/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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into a low expression group and a high expression 

group according to the expression scores of G6PD and 

CYP2C8/9/18/19. 

 

Statistical analysis 

 

Statistical analysis and visualization were performed 

using R 3.6.1 (https://www.r-project.org/) with the 

survivalROC, pheatmap, foreign, and corrplot packages. 

Survival curves were drawn and compared between 

subgroups using the survival package. Furthermore, 

GEPIA2 (http://gepia2.cancer-pku.cn/#index) and 

Kaplan-Meier plotter (http://kmplot.com/analysis/) were 

used for additional survival and correlation analyses. The 

nomogram was generated using the rms package. The 

Venn diagram was drawn using the webtool 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). 

 

Ethics approval  
 

All the procedures involving human tumor biopsies 

were performed with the approval of the Ethics 

Committee of the First Affiliated Hospital of Third 

Military Medical University, PLA. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Overlapping target genes in the miRNA-based pathway examination. (A) Venn diagram of overlapping 
target genes in five miRNA-based pathways in the miPPSPC. (B) Expression of the main target genes in different cancers. The color change 
represented the level of gene expression for cancer patients in TCGA: blue represented high gene expression level while white represented 
low gene expression level. (C) Survival map of main target genes on different cancers in TCGA generated by GEPIA2 tool. Survival map could 
compare the survival contribution of multiple genes in multiple cancer types, estimated using Mantel–Cox test. Significant results were 
framed in red or blue, representing cancer promoting or inhibiting effects, respectively. (D) Kaplan–Meier curves for overall survival of PC 
patients in TCGA with different gene expression levels were shown. Black line represented low gene expression group and red line 
represented high gene expression group. (E) Expression of four main target genes in PC patients with different stages. 
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Supplementary Tables  

 

Please browse Full Text version to see the data of Supplementary Tables 2 and 3. 

 

Supplementary Table 1. Target genes of five pathways in miPPSPC. 

Fatty acid 

elongation  
Target 

Pentose phosphate 

pathway 
Target 

Linoleic acid 

metabolism 
Target Keap1 Nrf2 Target 

Monoamine 

Transport 
Target 

hsa-miR-1229-3p VWA8 hsa-miR-671-5p CDR1 hsa-miR-132-3p SIRT1 hsa-miR-24-2-5p BCL2 hsa-miR-125b-5p BMPR1B 

hsa-miR-152-3p HLA-G hsa-miR-1229-3p VWA8 hsa-miR-9-5p MMP13 hsa-miR-1-3p MYEF2 hsa-miR-197-3p TSPAN3 

hsa-miR-1-3p MYEF2 hsa-miR-149-5p SP1 hsa-miR-128-3p NTRK3 hsa-miR-877-5p RPLP1 hsa-miR-203a-3p UVRAG 

hsa-miR-215-5p WNK1 hsa-miR-1-3p MYEF2 hsa-miR-146b-5p NFKB1 hsa-miR-33a-5p ABCA1 hsa-miR-215-5p WNK1 

hsa-miR-877-5p RPLP1 hsa-let-7e-5p HMGA2 hsa-miR-92b-3p SLC15A1 hsa-miR-16-5p BMI1 hsa-miR-130b-3p TP53INP1 

hsa-miR-151a-3p ZNF763 hsa-miR-15b-5p CCNE1 hsa-miR-488-3p POMC hsa-miR-153-3p BCL2 hsa-miR-141-3p ZEB2 

hsa-miR-877-3p SLC6A8 hsa-miR-296-3p KCNH1 hsa-miR-124-3p SOX9 hsa-miR-10a-5p HOXA1 hsa-miR-30c-5p MUC17 

hsa-miR-16-5p BMI1 hsa-miR-193b-3p CCND1 hsa-miR-10a-5p HOXA1 hsa-miR-24-3p FEN1 hsa-miR-24-3p FEN1 

hsa-miR-15b-5p CCNE1 hsa-miR-760 CSNK2A1 hsa-miR-338-3p UBE2Q1 hsa-miR-365a-3p CCND1 hsa-miR-92a-3p UVRAG 

hsa-miR-99a-5p 
RAVER

2 
hsa-miR-484 FIS1 hsa-miR-98-5p E2F1 hsa-miR-744-5p ARL15 hsa-miR-26b-5p EP300 

hsa-miR-193b-3p CCND1 hsa-miR-935 PURB hsa-miR-15a-5p BMI1 
hsa-miR-193b-

3p 
CCND1 hsa-miR-204-5p MEIS1 

hsa-miR-26b-5p EP300 hsa-miR-331-3p ERBB2 hsa-miR-27b-3p NOTCH1 hsa-miR-26b-5p EP300 hsa-miR-421 RBMXL1 

hsa-miR-484 FIS1 hsa-miR-1180-3p FAM200B hsa-miR-145-5p BNIP3 hsa-miR-15a-5p BMI1 hsa-miR-21-5p RASGRP1 

hsa-miR-615-3p LCOR hsa-miR-92a-3p UVRAG hsa-miR-449c-5p MYC hsa-miR-505-3p SRSF1 hsa-miR-7-5p SNCA 

hsa-miR-331-3p ERBB2 hsa-miR-1296-5p MCM2 hsa-miR-30a-5p BDNF hsa-miR-214-3p EZH2 hsa-miR-34a-5p BIRC3 

hsa-miR-92a-3p UVRAG hsa-miR-346 EFEMP2 hsa-miR-488-5p AR hsa-miR-142-5p NFE2L2 hsa-miR-221-3p CDKN1B 

hsa-miR-29a-3p CDK6 hsa-miR-34a-5p BIRC3 hsa-miR-335-5p TNC hsa-miR-196a-5p SPRR2C hsa-miR-296-3p KCNH1 

hsa-miR-29c-3p 
COL3A

1 
hsa-miR-92b-5p KIAA1671 hsa-let-7b-5p CDC34 hsa-miR-140-3p NRIP1 hsa-miR-17-5p ZNFX1 

hsa-let-7f-1-3p MECR hsa-miR-17-5p ZNFX1 hsa-miR-107 PLAG1 hsa-miR-92a-3p UVRAG hsa-let-7a-5p CDK6 

hsa-miR-186-5p FOXO1 hsa-let-7b-5p CDC34 hsa-miR-103a-3p GPD1 hsa-miR-122-5p 
CYP7A

1 
hsa-let-7b-5p CDC34 

hsa-let-7b-5p CDC34 hsa-miR-181a-5p NLK 
  

hsa-miR-7-5p SNCA hsa-miR-98-5p E2F1 

hsa-miR-98-5p E2F1 hsa-miR-20a-3p YTHDC1 
  

hsa-miR-148b-

3p 
HLA-G hsa-miR-200a-3p DLX5 

hsa-miR-339-5p BCL6 hsa-miR-378a-5p SUFU 
  

hsa-miR-125a-5p 
CDKN1

A 
hsa-miR-124-3p SOX9 

hsa-miR-124-3p SOX9 hsa-miR-339-5p BCL6 
  

hsa-miR-34a-5p BIRC3 hsa-miR-106b-5p ITCH 

hsa-miR-192-5p CLIC1 
    

hsa-miR-421 
RBMXL

1 
hsa-miR-192-5p CLIC1 

hsa-miR-155-5p MEIS1 
    

hsa-miR-423-5p 
RABAC

1 
hsa-miR-20a-5p HIF1A 

hsa-miR-320a 
POLR3

D     
hsa-miR-17-5p ZNFX1 hsa-miR-744-5p ARL15 

hsa-miR-421 
RBMXL

1     
hsa-miR-144-3p PLAG1 hsa-miR-23a-3p CXCL12 

      
hsa-miR-92b-3p 

SLC15A

1 
hsa-miR-335-5p TNC 

      
hsa-miR-128-3p NTRK3 hsa-miR-320a POLR3D 

      
hsa-miR-17-3p ICAM1 hsa-miR-425-5p ZNF700 

      
hsa-miR-200a-3p DLX5 hsa-miR-375 TIMM8A 

      
hsa-miR-124-3p SOX9 

  

      

hsa-miR-106b-

3p 
SSB 

  

      
hsa-miR-27a-3p RUNX1 

  

      
hsa-miR-155-5p MEIS1 

  

      
hsa-miR-335-5p TNC 

  

      
hsa-miR-375 

TIMM8

A   
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Supplementary Table 2. The miRWalk Pathways miRNA file containing a total of 484 miRNA sets. 

Supplementary Table 3. The mRNA sets file including linoleic acid metabolism, the pentose phosphate pathway, the 
ARENRF2 pathway, monoamine transport, and fatty acid elongation acquiring from the MSigDB. 


