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INTRODUCTION 
 

Melanoma is a severely life-threatening type of skin 

cancer with high malignant metastasis [1]. About 75% 

of deaths in skin cancer are caused by melanoma 

which had become one of the most difficult human 

cancers to cure. Once it has spread metastasized, 

physical therapy is difficult to work and the 5 years 

survival rate will drop to 20% from 99% [2–5]. Thus, 

it is urgently required to explore the new prognostic 

pathways and signatures of melanoma to improve 

prognosis and guide more effective treatment. 

 

Melanoma originates from the malignant transformation 

of melanocytes. The melanocytes will produce large 

number of melanin when stimulated by environmental 

factors, such as ultraviolet rays. Afterwards, benign 

melanocytes assemble clusters or format nevi because of 

uneven distribution of melanin. Although most of the 

changes are benign, combined the influence of 

environmental and genetic risk factors, this 

transformation will lead to cutaneous melanoma at some 

degree [6]. The exact steps that lead to initiation of 

melanoma still remain undefined. For example, the 

research for genetic evolution of melanoma found that 

only a third of melanomas appears to be associated with 

a pre-existing nevi [7, 8]. Whether there exist different 

biological signaling regulations between melanoma and 

nevi is not clear. However, gene mutation result in 

genetic diversity and susceptibility to DNA damage 
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stimulated by ultraviolet light were the obviously 

definitive reasons [9]. Genomic technologies analysis 

has proved several genetic mutations and correlated 

pathways are closely associated with melanoma 

initiation and progression [10, 11]. For instance, 

mutations of BRAF and NRAS target the mitogen-

activated protein kinase (MAPK) pathway which is 

disorderly regulated in almost all melanomas [12, 13]. 

MAPK pathway mainly associated with cell 

proliferation, but various other downstream regulations 

will cause tumor metastasis and cellular metabolic 

disorders [14]. Moreover, the mutation of CDKN2A 

leads HDM2 or MDM2 to inactivate p53 pathway which 

cause p53 loss and increase the survival of tumor cells 

[15–17]. Thanks to these basic researches, the 

emergence and approval of inhibitors like BRAF, RAS 

and MEK bring a promising treatment for melanoma 

patients [18, 19]. Therefore, it’s not surprising that gene 

biomarkers and molecular pathways regulating 

melanoma can provide us with more attractive 

therapeutic targets for this aggressive cancer. 

 

Although there have been increasing studies exploring 

the melanoma by using different individual risk gene 

and pathway, a comprehensive analysis with an overall 

landscape of cancer hallmark pathways and related 

genes is still lacking [20–22]. Fortunately, the 

availability of public, large-scale datasets like the 

cancer genome atlas (TCGA) and Gene Expression 

Omnibus (GEO) databases which afforded numerous 

transcriptome profiles to investigate potential cancer 

hallmark pathways enriched in melanoma and the novel 

correlated gene features that can predict the clinical 

outcomes of patients.  

 

Therefore, in this research, we first extracted 50 cancer 

hallmark pathways from the molecular signature 

database (MSigDB) and systematically evaluated the 

differential activities of pathways in multiple datasets. 

Next, we used univariate and multivariate cox 

regression method to identify several prognostic 

hallmark pathways as well as unfolded protein response 

related features associated with the clinical 

characteristics. We found that the expression of 

unfolded protein response feature plays critical roles in 

the prognostic process of melanoma and could be an 

independence potential biomarker. 

 

RESULTS 
 

The landscape of cancer hallmark pathways in 

melanoma 

 

To assess the cancer hallmark pathways enriched in 

tumor group, we performed gene set variation analysis 

in four datasets which including GSE3189, GSE15605, 

GSE46517 and TCGA. According to the cutoff criteria, 

25 hallmark pathways differentially activated in TCGA 

dataset (Figure 1A), 21 hallmark pathways significantly 

increased in GSE3189 (Figure 1B), 19 hallmark 

pathways actively expressed in GSE15605 (Figure 1C) 

and 17 hallmark pathways increasingly expressed in 

GSE46517 (Figure 1D). The Upset plot showed that 

there were 7 cancer hallmark pathways commonly 

enriched in tumor type among four melanoma datasets 

(Figure 1E). These pathways contained UV response 

up, unfolded protein response, reactive oxygen species 

pathway, mTORC1 signal, glycolysis, E2F targets and 

DNA repair among which only unfolded protein 

response (p<0.01) and DNA repair (p<0.05) 

significantly correlated with OS in TCGA dataset 

(Figure 1F). Finally, unfolded protein response regarded 

as the most significant pathway in melanoma and 

selected for further research.  

 

Differentially expressed UPRRGs 

 

A total of 113 UPRRGs was obtained from the 

molecular signature database. Based on the differential 

analysis standard, 54 differentially expressed UPRRGs 

were selected in TCGA dataset in which 37 genes were 

up-regulated and 17 genes were down-regulated (Figure 

2A). 46 differentially expressed UPRRGs contained 39 

up-regulated and 7 down-regulated genes were 

distinguished in GSE3189 (Figure 2B). 22 differentially 

expressed UPRRGs were found in GSE15605, which 

including 22 up-regulated genes and 2 down-regulated 

genes (Figure 2C). In addition, 16 significantly up-

regulated genes and 2 significantly down-regulated 

genes were identified in GSE46517 (Figure 2D). The 

overlap of differentially expressed UPRRGs among the 

four datasets were shown in Figure 2E. Finally, 5 

differentially expressed UPRRGs were figure out for 

subsequent research. These genes contained KDELR3, 

EIF4EBP1, TARS, MTHFD2, SHC1 which all highly 

expressed in melanoma compared to normal skin in The 

Human Protein Atlas (Figure 3). 

 

Identification and validation of prognostic UPRRGs 

features 

 

Firstly, univariate cox regression analysis was applied 

to assess relationships between 5 differentially 

expressed UPRRGs and OS in TCGA dataset. The 

results of univariate regression for 5 differentially 

expressed UPRRGs were listed Table 1. Based on the 

selection criteria, 2 survival-related UPRRGs were 

seeded out (Figure 2F). Kaplan-Meier plots of 2 

survival-related UPRRGs manifested that high 

expression of TARS (Figure 4A) and KDELR3 (Figure 

4B) was associated poor survival in melanoma. Then, 

we used multivariate cox regression analysis to 
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calculate coefficients for each gene and construct the 

risk score system. Compared the area under the curve 

(AUC) of TARS and KDELR3, the ROC curve for risk 

score was superior to KDELR3 or TARS alone (Figure 

4C). The distributions of the risk scores, OS, vital 

status, and expression levels of corresponding UPRRGs 

in TCGA dataset were shown in Figure 4D–4F. Next, 

by applying this risk model, a risk score for each sample 

in TCGA dataset will be generated. Then, melanoma 

samples were classified into a high-risk group (n = 179) 

and a low-risk group (n = 179) by applying the median 

cut-off value of the risk scores. Kaplan-Meier curves 

 

 
 

Figure 1. Differences in cancer hallmark pathway activities between melanoma and normal sample scored by GSVA method. 
(A) Cancer hallmark pathways in TCGA dataset. (B) Cancer hallmark pathways in GSE3189 dataset. (C) Cancer hallmark pathways in GSE15605 
dataset. (D) Cancer hallmark pathways in GSE46516 dataset. The blue bars stand for the up-regulated pathways and the green bars mean 
down-regulated pathways. The x-axis is the t value of GSVA score. (E) Upset plot of different cancer hallmarks in multiple datasets. The dark 
bar on the left of drawing represents the amount of each dataset. The dark dots in the matrix at right of drawing represent the intersections 
of cancer hallmarks. (F) Forest plots of 7 cancer hallmarks, among which only unfolded protein response and DNA repair significantly 
correlated with OS (Overall survival) in TCGA dataset. *p<0.05; **p<0.01. 
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Figure 2. Differential expression of unfolded protein response related genes (UPRRGs) in cutaneous melanoma tissue 
samples. (A) Heatmap of the differentially expressed UPRRGs in TCGA dataset. (B) Heatmap of the differentially expressed UPRRGs in 
GSE3189 dataset. (C) Heatmap of the differentially expressed UPRRGs in GSE15605 dataset. (D) Heatmap of the differentially expressed 
UPRRGs in GSE46516 dataset. (E) Upset plot of differentially expressed UPRRGs in multiple datasets. The dark bar on the left of drawing 
represents the amount of each dataset. The dark dots in the matrix at right of drawing represent the intersections of differentially expressed 
UPRRGs. (F) Forest plots of 5 differentially expressed UPRRGs, among which only TARS and KEDLR3 significantly correlated with OS (Overall 
survival) in TCGA dataset. *p<0.05; **p<0.01. 
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Figure 3. High expression of 5 unfolded protein response related genes (UPRRGs) by immunohistochemistry in The Human 
Protein Atlas website. 
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Table 1. Univariate regression analysis for 5 differentially expressed unfolded protein response related genes. 

Gene ID Gene symbol HR z-score P value 

ENSG00000113407.13 TARS 1.470149 2.83026 0.004651 

ENSG00000100196.10 KDELR3 1.12004 1.963382 0.049602 

ENSG00000160691.18 SHC1 1.113257 1.272118 0.203331 

ENSG00000065911.11 MTHFD2 1.093291 1.121635 0.262018 

ENSG00000187840.4 EIF4EBP1 1.071715 0.765829 0.443778 

 

showed that patients in high-risk group have a shorter 

survival time than low-risk with a log-rank test of 

p=0.007. To estimating the prediction power of 2 

UPRRGs features, the ROC curve was drawn and 5 

years of AUC was 0.618 (Figure 4G). Besides, in order 

to confirm the robustness of the result, verification test 

was conducted in GSE65904 and GSE54467 datasets. 

The GSE65904 and GSE54467 datasets were divided 

into high-risk and low-risk groups based on TCGA 

dataset. Kaplan-Meier curves showed that there is a

 

 

Figure 4. Identification and validation of prognostic UPRRGs features for survival prediction. (A) Kaplan–Meier analysis between 
patients in the high expression level of TARS and those in the low expression level group. (B) Kaplan–Meier analysis between patients in the 
high expression level of KEDLR3 and those in the low expression level group. (C) The receiver operating characteristic (ROC) curves of TARS, 
KEDLR3 and risk score indicators. (D The distribution of risk score. the risk scores are arranged in ascending order from left to right. (E) Overall 
survival (OS) time and life status. (F) The prognostic UPRRGs features expression patterns for melanoma patients in TCGA dataset. (G) 
Kaplan–Meier analysis of UPRRGs features and 5 years of the receiver operating characteristic (ROC) curve in TCGA dataset. (H) Kaplan–Meier 
analysis of UPRRGs features and 5 years of the receiver operating characteristic (ROC) curve in GSE65904 dataset. (I) Kaplan–Meier analysis of 
UPRRGs features and 5 years of the receiver operating characteristic (ROC) curve in GSE54467 dataset. 
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significant difference between high-risk and low-risk 

group both in GSE65904 dataset (log-rank p=0.05) and 

GSE54467 dataset (log-rank p=0.006) (Figure 4H, 4I). 

The 5 years of AUC were 0.607 and 0.689 respectively. 

 

Correlation between UPRRGs features and clinical 

variables  
 

The correlation between risk score of UPRRGs features 

and clinical variables was explored and the results of 

boxplot indicated that only Clark level, race and vital 

status were correlated with risk score (Figure 5C–5E). 

Other clinical variables, such as age, sex, stage and 

radiation therapy had no relationships with risk score 

(Figure 5A, 5B, 5F, 5G). As for tumor size, T2-4 had a 

higher risk score than T1 (Figure 5H). Hence, the 

UPRRGs features were associated with three clinical 

variables and had on effect on other clinical 

characteristics. 

 

What’s more, to compare the prognostic value of risk 

score with clinical variables, univariate and multivariate 

logistic regression were applied. The results revealed that 

age, race, Clark level, TNM, stage, metastatic status, 

tumor status and risk sore were significantly associated 

with OS in univariate analysis, but only age, pathologic 

M, metastatic status, tumor status and risk score were 

significantly correlated with OS in multivariate analysis 

(Figure 6A). Moreover, to explore whether the risk score 

of UPRRGs is an independent prognostic factor, similar 

analyses were applied in GSE65904 and GSE54467 

datasets, the results suggested that the risk score 

maintained significant associations with prognosis no 

matter in univariate multivariate regression (Table 2). 

The 5 years AUC of age, pathologic M, metastatic status, 

tumor status and risk score in TCGA were 0.662, 0.521, 

0.448, 0.696 and 0.618 respectively (Figure 6B). 

Furthermore, in order to clarify the prognostic value of 

UPR features for different clinical subgroups including 

age, sex, metastatic status, tumor size, tumor status and 

Clark level were investigated. Kaplan-Meier curves 

showed that high-risk group in clinical subgroups such as 

age<60 (p=0.003), female (p=0.02), metastatic tumor 

(p=0.017), T3-4 (p=0.018), tumor free (p=0.032), with 

tumor (p=0.036) and Clark IV-V (p=0.032) had 

significantly shorter OS than low-risk group. However, 

 

 
 

Figure 5. The relationship between risk score distribution and clinical variables which include age (A), sex (B), Clark level (C), race (D), vital 
status (E), stage (F), radiation therapy (G) and tumor size (H). 
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Table 2. Univariate and multivariate Cox regression analyses of clinicopathologic characteristics associated with 
survival in TCGA, GSE54467 and GSE65904 datasets. 

TCGA dataset (n=374) 
Univariate analysis 

 
unicox_p HR lower .95 upper .95 mutlicox_p HR lower .95 upper .95 

Age 0.000 1.027 1.016 1.038 0.036 1.030 1.002 1.059 

Gender 0.356 1.167 0.841 1.619 0.194 0.545 0.218 1.362 

Race 0.042 2.450 1.035 5.800 0.871 1.529 0.009 260.783 

Clark_level 0.000 1.812 1.415 2.321 0.519 1.250 0.635 2.462 

Pathologic_M 0.041 2.223 1.034 4.779 0.011 13.499 1.803 101.036 

Pathologic_N 0.019 1.512 1.071 2.133 0.486 1.627 0.414 6.384 

Pathologic_T 0.001 1.566 1.216 2.016 0.259 1.954 0.610 6.254 

Stage 0.001 1.669 1.229 2.267 0.859 0.874 0.198 3.864 

Radiation_therapy 0.359 0.666 0.279 1.588 0.759 0.760 0.132 4.369 

Metastatic_status 0.000 3.158 1.842 5.415 0.001 14.925 3.083 72.242 

Tumor_status 0.000 9.007 5.107 15.884 0.000 15.483 4.972 48.217 

Risk score 0.006 2.164 1.242 3.772 0.027 7.954 1.260 50.213 

GSE65904  (n=214) 
        

Age 0.797 0.998 0.985 1.012 0.778 0.998 0.984 1.012 

Gender 0.169 1.335 0.885 2.016 0.296 1.248 0.824 1.891 

Stage 0.348 1.140 0.867 1.500 0.558 1.087 0.822 1.439 

Risk score 0.044 2.589 1.027 6.530 0.051 2.296 1.090 5.838 

GSE54467  (n=79) 
        

Age 0.025 1.021 1.003 1.039 0.009 1.024 1.006 1.043 

Gender 0.998 1.001 0.568 1.764 0.933 0.976 0.550 1.730 

Stage 0.168 1.257 0.908 1.741 0.079 1.357 0.965 1.908 

Risk score 0.005 2.793 1.077 4.342 0.009 2.922 1.187 5.335 

 

there is no significant difference between high- and 

low-risk group in subgroups like age>=60 (p=0.833), 

male (p=0.166), primary tumor (p=0.299), T0-2 

(p=0.471), Clark I-III (p=0.200) (Figure 7). 

 

Immune microenvironment and m6A regulation 

between the high- and low-risk phenotype 

 

To evaluate the associations between UPRRGs features 

and immune microenvironment, subgroup analysis of 

immune cell individuals was performed. The boxplot 

showed that high-risk group of T cells, CD8 T cells, B 

cells, cytotoxic lymphocytes, monocytic lineage, 

myeloid dendritic cells, neutrophils and fibroblasts in 

TCGA dataset had a higher immune score than those in 

low-risk group (Figure 8A). Similar results also found 

in GSE54467 (Figure 8C) and GSE65904 (Figure 8E) 

datasets. Besides, boxplot analysis of m6A RNA 

methylation regulators in TCGA showed that most of 

m6A regulators were differentially expressed between 

high- and low-risk group. The high-risk group had 

significantly higher expression levels of METTL14, 

METTL3, WTAP, KIAA1429, ZC3H13, RBM15, 

YTHDF2, YTHDC1, YTHDC2 and YTHDF1 (Figure 

8B). The expression of METTL14, WTAP, KIAA1429, 

ZC3H13, RBM15, YTHDC1, YTHDC2 and YTHDF1 

in GSE54467 was up-regulated in high-risk group 

compared to low-risk group (Figure 8D). Interestingly, 

Similar outcomes were found in GSE65904 dataset too 

(Figure 8F). 

 

Gene set enrichment analysis 
 

To investigate the significant pathways shared by 

different high- and low-risk group, we performed GO 

and KEGG functional pathway enrichment by GSEA 

analysis. Based on selection standard and ordered 

pathways by q values. The top ten positive pathways 

were screen out. The biology process (BP) including 

adaptive immune response, calcium ion regulated 

exocytosis of neurotransmitter, activation of innate 

immune response, opioid receptor signaling pathway 

and so on (Figure 9A). The cellular component (CC) 

contained cell substrate junction, external side of 

plasma membrane, actin cytoskeleton, containing 

extracellular matrix and so forth (Figure 9B). The 
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molecular function (MF) including cadherin binding, 

cell adhesion molecule binding, endopeptidase regulator 

activity, glycosaminoglycan binding (Figure 9C). 

Additionally, KEGG enrichment showed that ECM 

receptor interaction, leukocyte transendothelial 

migration, cytokine-cytokine receptor interaction, 

hematopoietic cell lineage and so on were positively 

enriched in high-risk group (Figure 9D). 

DISCUSSION 
 

Melanoma is a most aggressive skin cancer and treatment 

often resistant for its genetic heterogeneity [23]. 

Recently, melanoma patients are growing younger and 

with highly metastasize and deadly threatening, which 

places a huge burden to thousands of people worldwide. 

Although genetic mutations like BRAFV600, NRAS

 

 
 

Figure 6. Univariate and multivariate Cox regression analysis of risk score and clinical variables by using overall survival (OS) 
time in TCGA. (A) Forest plots of risk score and clinical variables. (B) The 5 years area under the curve (AUC) of risk score and clinical 
variables associated with OS. 
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and KIT are crucial in melanoma initiation, progression 

and metastasis, the pursuit of these targets often 

disappointed to some proportion of melanoma patients. 

Thus, additional prognostic events in melanoma are 

urgently required. Furthermore, comprehensive 

understanding of the cancer hallmark pathways and 

associated genes involved in melanoma prognosis is 

important for guiding treatment [24]. Therefore, to the 

best of our knowledge, this is the first study to 

systematically explore cancer hallmark pathways in 

melanoma based on large public datasets.  

 

Firstly, we identified 7 hallmarks differentially 

activated in melanoma, which including UV response 

up, reactive oxygen species pathway, glycolysis, 

mTORC1 signal, E2F targets, unfolded protein response 

and DNA repair. It’s generally accepted that ultraviolet 

light (UV) considered as the most risk environment 

factor for initiation of melanoma [9]. High exposure of 

UV will upregulate the UV response pathways in 

cellular signal and then UV induced reactive oxygen 

species regarded as an important mutagen causes 

damage of skin cells is also well known [25]. Upon UV- 

induced reactive oxygen species pathway which also 

plays a crucial factor in apoptosis. To deal with protein 

and DNA damages caused by UV, cell will restart repair 

pathways, particularly glycolysis and DNA repair 

processes [26, 27]. In addition, previous studies 

demonstrated that E2F targets also conduct important 

functions in UV response, and associated with various 

biologic processes, such as DNA synthesis and 

replication, DNA damage and repair, cell cycle, 

apoptosis, self-renewal, development and 

differentiation, and so on [28]. Afterwards, combined 

with clinical survival information, we found unfolded 

protein response was the most significant pathway 

correlated with OS of melanoma patients. Obviously, 

the unfolded protein response has been recognized as a 

crucial role in tumor progression and metastasis [29, 

30]. Numerous researches showed that unfolded protein 

response related genes (UPRRGs) are highly expressed 

in many cancers including colorectal, prostate, lung

 

 
 

Figure 7. Kaplan–Meier curve illustrates the prognostic value of risk score signature based on subgroup of different clinical 
variables. (A) The subgroup age. (B) The subgroup sex. (C) The subgroup of metastasis. (D) The subgroup tumor size. (E) The subgroup of 
tumor status. (F) The subgroup Clark level. 
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cancers, ovarian and breast [31–35]. Due to the 

vascularization and rapid proliferation of cancer cells, 

cancer is suffered many kinds of burden like 

endoplasmic reticulum stress. Meanwhile, unfolded 

protein response will be highly activated for rescuing 

the cell by removing unfolded proteins [36, 37]. In 

melanoma patients, same results also found that 

unfolded protein response is positively associated with 

tumor progression, size and poor prognosis of patients 

[38, 39]. Therefore, it is undoubted that the unfolded 

protein response executes significant functions in 

melanoma.  

 

In this research, we further distinguished 5 differentially 

expressed UPRRGs (KDELR3, EIF4EBP1, TARS, 

MTHFD2 and SHC1), which also highly expressed in 

melanoma at the protein level. Among the 5 UPRRGs, 

TARS and KDELR3 are correlated with OS and used to 

developed a robust UPRRGs feature which also was 

validated in another two independent datasets. Kaplan-

Meier plots showed that UPRRGs feature revealed a 

good survival prediction of melanomas. Next, the 

Kaplan–Meier plots in clinical subgroups manifested 

that, especially in subgroups like age<60, female, 

metastatic, T3-4, and Clark IV-V, there were significant 

differences between prognosis in the low- and high-risk 

group. These results showed that the patients in the 

high-risk groups always survive shorter than those in 

low-risk groups, which indicated that the identified 

UPRRGs feature is more suitable to predict melanoma 

patients with younger, metastatic and high Clark level. 

In addition, the risk score of UPRRGs feature was only 

related to Clark level, race and vital status and had on 

effect on other clinical variables. Besides, the univariate 

 

 
 

Figure 8. Immune microenvironment and m6A regulation between the high- and low-risk phenotype. (A) Difference immune 
score of 10 immune cells between the high- and low-risk melanoma patients in TCGA dataset. (B) Expression of N6-methyladenosine (m6A) 
RNA methylation regulators between the high- and low-risk melanoma patients in TCGA dataset. (C) Immune score distribution of 10 immune 
cells between the high- and low-risk group in GSE54467 dataset. (D) Different expression level of m6A regulators between the high- and low-
risk group in GSE54467 dataset. (E) Immune score distribution of 10 immune cells between the high- and low-risk group in GSE65904 dataset. 
(F) Different expression level of m6A regulators between the high- and low-risk group in GSE65904 dataset. *p<0.05; **p<0.01; ***p<0.001; 
****p<0.00001. 
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and multivariate regression analysis indicated that the 

risk score of UPRRGs feature could be regard as an 

independent prognostic model in melanoma. Notably, 

compared with the traditional clinical characteristics, 

our UPRRGs feature can achieved similar accuracy of 

other clinical indicators (eg. age, tumor status, 

metastatic status and pathologic M). 

 

As we known, m6A modification takes a crucial role in 

tumor initiation and cancer progression and recurrence 

[40]. RNA methyltransferases (such as METTL14, 

METTL3 and TAP), the demethylases (such as ALKBH5 

and FTO), and the binding proteins (such as YTHDF2 

and YTHDF1) are often upregulated in a variety of 

human cancer types to increase the expression of 

oncogenes and oncoproteins [41]. In our research, the 

most expression of m6A regulators including METTL14, 

METTL3, WTAP, KIAA1429, ZC3H13, RBM15, 

YTHDF2, YTHDC1, YTHDC2 and YTHDF1 were 

highly expressed in high-risk of melanoma patients, and 

hence we have enough reasons to believe that our 

UPRRGs feature closely correlated with the prognosis of 

melanoma. What’s more, melanoma patients in high-risk 

group had higher immune infiltration than low-risk 

group. Recently, many researches had been proved that 

the immune environment intimately correlated with 

melanoma initiation and development [42, 43]. The 

uneven distribution of immune cells was also positively 

associated with prognosis of cancer patients. 

 

To better understanding the underlying biological 

mechanism in high-risk group, we also applied GSEA 

method to analyze the potential signaling pathways 

enriched in high-risk group. The results showed 

adaptive and innate immune response as major biology 

process activated in high-risk group, which was 

consistent with our previous findings. Cellular 

component mainly enriched in extracellular matrix such 

as cell substrate junction, external side of plasma 

membrane, actin cytoskeleton and cell to cell junction,

 

 
 

Figure 9. Gene set enrichment analysis (GSEA) of high- vs. low-risk scores groups in TCGA. (A) The top 10 activated pathways in 
biology process (BP). (B) The top 10 activated pathways in cellular component (CC). (C) The top 10 activated pathways in molecular function 
(MF). (D) The top 10 activated pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). 
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which are pivotal in cancer cell invasion [44]. 

Molecular function primarily enriched in cell adhesion 

molecule including cadherin binding, cell adhesion 

molecule binding, endopeptidase regulator activity and 

glycosaminoglycan binding, which closely associated 

with the regulation of tumor progression [45–47]. 

Moreover, KEGG pathway analysis showed high-risk 

group mainly related to ECM-receptor interaction and 

leukocyte transendothelial migration. ECM-receptor 

interaction pathway is important in metastasis [48]. The 

significance of the ECM-receptor interaction pathway 

implied the interaction between tumor cell and 

environment are very dynamic [49].  

 

Although we identify some significant cancer hallmarks 

and unfolded protein response related genes for 

prognostic of melanoma. However, our research still 

has some limitations. Firstly, our analysis was 

implemented based on existing data using 

bioinformatics method. Our findings have not been 

proved by experiments or patient tissue. This was the 

main weak point of this study. Besides, the sample size 

of our study is limited and need further research with 

large sample size. 

 

CONCLUSIONS 
 

In summary, our study identified several hallmark 

pathways and prognostic UPRRGs feature in 

melanoma. The biomarker and pathways supply a more 

simple and accurate prediction for the prognosis of 

melanoma in clinical application. Furthermore, 

investigations are needed to verify the accuracy for 

estimating prognoses and to test its clinical utility in 

patient management. 

 

MATERIALS AND METHODS 
 

Data collection and procession  

 

The transcriptome profiles of RNA sequencing data of 

cutaneous melanoma as well as clinical information 

were obtained from the Xena Public Data Hubs 

(http://xena.ucsc.edu) and GEO database 

(https://www.ncbi.nlm.nih.gov/geo). Gene expression 

profiles GSE3189, GSE15605 and GSE46517 were 

downloaded from GEO database. The GSE3189 dataset 

contained 70 samples, including 7 normal skin, 18 nevi 

and 45 melanoma samples. GSE15605 had 16 normal 

skin samples and 58 melanoma samples. GSE46517 

included 121 samples which consist of 9 nevus samples, 

8 normal skin and 104 melanoma samples.  The TCGA 

expression profile of cutaneous melanoma were 

downloaded from the Xena Public Data Hubs, which 

contained 372 melanoma samples and 233 healthy skin 

tissue samples. The characteristics of datasets were 

summarized in Table 3. The raw data were processed by 

applying R software. Firstly, the probe IDs were 

annotated according to the annotation information of 

platform. For the same gene corresponding to multiple 

IDs, the max expression value will figure out to 

represent the gene expression level. Next, genes with a 

variance of 0 will be excluded for its tiny expression 

level. Finally, the raw matrix data were normalized by 

log2(x+1) conversion.  

 

Gene set variation analysis (GSVA) 
 

To explore the differential activities of pathways 

between melanoma and normal sample, A total of 50 

cancer hallmark pathways were obtained from the 

molecular signature database (MSigDB). For the 

overlap of genes in each pathway will be removed to 

ensure very pathway gene set consist of unique genes. 

Afterwards, most hallmark pathways remained more 

than 70% of their related genes. Then gene set variation 

analysis was used to evaluate the common pathways 

shared in tumor and normal groups. The GSVA scores 

of each pathway for each sample were calculated by 

using the R package (“GSVA”) and “Limma” package 

was applied to explore the differential activities of 

pathways. The | t value of GSVA score | ≥ 1 was 

regarded as the cutoff criterion for differential activities 

of pathways [50]. 

 

Evaluation of the prognose of cancer hallmark 

pathways  

 

To evaluate the prognostic cancer hallmark pathways in 

melanoma, the common pathways enriched in tumor 

samples were identified from the four microarray 

datasets (GSE3189, GSE15605, GSE46517 and 

TCGA). Then, the cancer hallmark pathways will be 

regarded as continuous variables. The associations 

between pathways and overall survival (OS) time were 

assessed in TCGA dataset. Univariate Cox analyses 

were used to distinguish the prognostic pathways (p 

values <0.05). Ultimately, only two cancer hallmark 

pathways included DNA repair and unfolded protein 

response (UPR) significantly correlated with OS in 

melanoma. Especially, the unfolded protein response 

considered as the most significantly pathway was screen 

out and the unfolded protein response related genes 

(UPRRGs) were extracted from the gene set of unfolded 

protein response for subsequently analysis.  

 

Differential analysis of UPRRGs 

 

Firstly, the gene expression levels of UPRRGs were 

extracted from the four datasets (GSE3189, GSE15605, 

GSE46517 and TCGA). These datasets were classified 

into tumor group and normal group. Next, the

http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo
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Table 3. Summary of datasets used in this research. 

Data set Platform 
Sample size 

(tumor/normal) 

Median age 

(year) 

Sex 

(male%) 
Metastasis(%) 

TCGA-SKCM Illumina HiSeqV2 605  (372/233) 58.15 62.05 77.78 

GSE3189 Affymetrix Human Genome U133A Array 70  (45/25) 65.51 51.1 NA 

GSE46517 Affymetrix Human Genome U133A Array 121  (104 /17) 58.19 72.54 70.19 

GSE15605 Affymetrix Human Genome U133 Plus 2.0 Array 74  (58/16) 59.27 65.51 20.69 

GSE65904 Illumina HumanHT-12 V4.0 214  (214/0) 62.35 57.94 NA 

GSE54467 Illumina HumanWG-6 v3.0 expression beadchip 79  (79/0) 56.15 63.29 12.65 

NA means not available. 
 

differential analysis was performed to identified 

differentially expressed UPRRGs by conducted 

“Limma” method in R software. The cutoff standard 

was The |log 2 FC| ≥ 0.5 and p values <0.05. Then, the 

Upset plot analysis was used to explore the overlap of 

differentially expressed UPRRGs among these datasets. 

In addition, these genes will further be validated in The 

Human Protein Atlas database.  

 

Identification and validation of UPR features 
 

The association between the overlap of differentially 

expressed UPRRGs and OS of melanoma patients in 

TCGA was analyzed. Univariate cox analyses were 

performed to select the prognostic differentially 

expressed UPRRGs. Then, multivariate cox regression 

analysis method was applied to construct prognostic 

features with identified prognostic UPRRGs for the risk 

formula and the risk score is generated as follows: Risk 

score = 1( )N
i i icoef expr  , in which N means the number 

of feature genes, expri means the expression level of 

genes and coefi  means regression coefficient. The risk 

score of each sample in TCGA dataset was estimated and 

the patients were accordingly classified into high- and 

low-risk group by median cutoff. To compare the 

differences between high- and low-risk group, Kaplan–

Meier survival curves were drawn and significance was 

calculated by log-rank tests. The area under the curve 

(AUC) of Receiver operating characteristic curves (ROC) 

was used to evaluate the 5-year overall survival 

predictive accuracy of the model. Besides, in order to test 

the robustness of the result, these UPR features were 

further verified in another two independent datasets 

(GSE65904 and GSE54467) which were downloaded 

from GEO database. 
 

Evaluation of relationship between UPR features 

and clinical variables 

 

In order to clarify the relationship between risk score 

of UPR features distribution and clinicopathologic 

characteristics, the subgroup analysis of clinical 

variables included age, sex, race, stage, tumor size, 

vital status, Clark level and radiation therapy were 

performed. Moreover, in order to compare the 

prognostic value between the risk score and clinical 

variables. The univariate and multivariate cox logistic 

regression were carried out to define prognostic factors 

in multiple datasets (TCGA, GSE65904 and 

GSE54467). Next, these melanoma patients were 

stratified into subgroups based on their clinical 

variables, such as age (<60 or >=60), sex (male or 

female), metastatic status (metastatic or primary), 

tumor size (T0-2 or T3-4), tumor status (tumor free or 

with tumor) and Clark level (I-III or IV-V).  Kaplan–

Meier plots were used to explore the prognostic value 

of UPR features in different clinical subgroups. 

 
Evaluation of association between UPR features and 

immune microenvironment 

 
To explore the relationship between UPR features  

and immune microenvironment in  melanoma, 

“MCPcounter” package in R was applied to specifically 

discriminate 8 human immune cells and 2 stromal cells 

which including T cells, CD8 T cells, B cells, cytotoxic 

lymphocytes, natural killer (NK) cells, monocytic 

lineage, myeloid dendritic cells, neutrophils, endothelial 

cells and fibroblasts. Next, these immune and stromal 

cells were divided into high- and low-risk groups 

according the risk score of UPR features and then 

subgroup analysis of these cells were performed. 

 
Evaluation of association between UPR features and 

N6-methyladenosine (m6A) RNA methylation 

regulator 

 
m6A RNA methylation regulators have been proven to 

play important regulatory roles in tumor initiation and 

progression, thus the difference of m6A RNA 

methylation regulator expression between high- and 

low-risk groups were also investigated. Firstly, 
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thirteen m6A RNA methylation regulators selected 

from previously published articles, which included 

ALKBH5, FTO, METTL14, METTL3, WTAP, 

KIAA1429, ZC3H13, RBM15, YTHDF2, YTHDC1, 

YTHDC2 and YTHDF1 [51, 52]. Next, the RNA 

expression data of thirteen m6A regulators in three 

datasets (TCGA, GSE65904 and GSE54467) was 

extracted and divided into high- and low-risk groups. 

Finally, subgroup analysis of these genes was also 

conducted. 

 

Gene set enrichment analysis 

 

In order to explore the different signaling pathways 

between the low- and high-risk groups, Gene Set 

Enrichment Analysis (GSEA) was conducted by 

“clusterProfiler” package in R software. Firstly, the 

differential analysis of all genes between low- and 

high-risk groups were generated and these genes were 

ordered by the value of log2 fold change. Then GSEA 

was performed to investigate the signaling pathways 

correlated with different subgroups of melanoma. The 

q value<0.05 was applied to selected the significant 

pathways enriched in each phenotype. 

 

Statistical analysis 
 

All statistical analyses were conducted using R package 

(v.3.6.0) and corresponding packages. 

 

Data availability 

 

Data generated and/or analyzed during the current study 

can be obtained from the corresponding author on 

reasonable request. 
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