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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is ranked as the 3rd 

leading cause of cancer deaths globally [1]. Most HCCs 

are associated with liver cirrhosis arising from chronic 

infection of hepatitis B and C viruses. Liver cirrhosis is 

also caused by alcohol consumption and fatty liver 

disease [2]. Treatment strategies for HCC are dependent  

 

on disease stage. Surgery is the standard treatment for 

early stage HCC and has a 70% 5-year survival rate. 

Where surgery or liver transplantation is unfeasible, 

loco-regional therapies, including radiotherapy, radio-

frequency, thermal and non-thermal ablation, and trans-

arterial chemoembolization may be recommended as 

second line therapies. However, the 3-5-year survival 

rates of such approaches are highly variable [3]. For 
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ABSTRACT 
 

While cancer immunotherapy has been remarkably successful in some malignancies, some cancers derive 
limited benefit from current immunotherapies. Here, we combined immune landscape signatures with 
hepatocellular carcinoma clinical and prognostic features to classify them into distinct subtypes. The 
immunogenomic profiles, stromal cell features and immune cell composition of the subtypes were then 
systematically analyzed. Two independent prognostic indexes were established based on 6 immune-related 
genes and 17 differentially expressed genes associated with stromal cell content. These indexes were 
significantly correlated with tumor mutation burden, deficient DNA mismatch repair and microsatellite 
instability. In addition, tumor-infiltrating lymphocytes, including activated NK cells, resting memory CD4 T-cells, 
eosinophils, and activated mast cells were significantly correlated with hepatocellular carcinoma survival. In 
conclusion, we have comprehensively described the immune landscape signatures and identified prognostic 
immune-associated biomarkers of hepatocellular carcinoma. Our findings highlight potential novel avenues for 
improving responses to immunotherapy. 
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advanced unresectable HCC, the recommended 

treatments include regorafenib and sorafenib (tyrosine 

kinase inhibitors (TKIs)) and the vascular endothelial 

growth factor receptors 1 through 3 (VEGFR1-3) inhi-

bitor, lenvatinib. However, these therapies offer very 

limited survival benefit [4]. 

 

Cancer immunotherapy has emerged as one of the 

most promising cancer treatments for various types of 

advanced solid tumors, including HCC [5]. Several 

immune-based therapies such as peptide vaccines 

against HCC antigens, natural killer cell therapies, 

and chimeric antigen receptor-engineered T cell 

therapies are under investigation in phase I/II trials 

[5]. Among them, immune checkpoint inhibitors have 

shown good prospects in the treatment of advanced 

HCC as evidenced by durable objective response rates 

(ORRs) and acceptable safety profiles in phase I/II 

trials [6]. 
 

While immunotherapy is remarkably successful in many 

HCC cases, it remains unclear why a subset of HCC 

patients fails to respond to it. Intratumoral genetic 

heterogeneity is a well-known feature of cancer [7]. 

Tumor mutation burden (TMB), neoantigen load, 

programmed cell death ligand 1 (PD-L1) levels, 

impaired DNA mismatch repair (MMR), and 

microsatellite instability (MSI) have been found to 

affect response of cancer cells to immunotherapy [8, 9]. 

Additionally, the highly heterogeneous immune 

microenvironment has been associated with various 

aspects of cancer [10]. For instance, non-tumor cell 

types within or around tumors, including stromal and 

immune cells, also influence cancer progression [11]. 

Thus, development of potent immunotherapy requires a 

comprehensive understanding of the heterogeneity of 

tumor and tumor immune microenvironment (TIME). 
 

In the present study, HCC tissues were subclassified on 

the basis of immunogenomic profiles, stromal cell 

features, and immune cell composition. We 

systematically analyzed the molecular features of each 

sub-class, such as gene ontology, genes, chemotactic 

factors, regulatory pathways and networks, and 

integrated them with various clinicopathological 

features and patient clinical outcomes. Our findings 

highlight the potential clinical utility of individualized 

immune signatures in prognostic stratification and 

personalized immunotherapy for HCC patients. 

 

RESULTS 
 

Immunogenomic profiling identifies 2 HCC subtypes 
 

Enrichment level and activity of several immune cells, 

pathways or functions in HCC were analyzed using 

single sample gene-set enrichment analysis (ssGSEA) 

score based on 29 immune-associated gene sets [12, 

13]. According to the ssGSEA score of these gene sets, 

we hierarchically clustered 369 HCC samples from 

TCGA datasets. Consequently, 2 distinct clusters, 

termed Immunity_L (Immunity Low) and Immunity_H 

(Immunity High) were identified (Figure 1A). Lower 

immune scores were seen in Immunity_L than in 

Immunity_H (Figure 1B). Notably, analysis of tumor 

purity and stromal score revealed opposite results, with 

tumor purity being low in Immunity_H and high in 

Immunity_L, while stromal score was high in 

Immunity_H and low in Immunity_L (Figure 1C, 1D). 

This suggests that Immunity_L group harbors more 

tumor cells whereas Immunity_H harbors more stromal 

and immune cells. 

 

It was seen that most HLA (human leukocyte antigen) 

genes were upregulated in Immunity_H than in 

Immunity_L (Figure 1E). Levels of various immunologic 

chemotactic factors were also markedly elevated in 

Immunity_H, including T-cell, monocyte, macrophage, 

mast cell and eosinophil chemotactic factors (Figure 1F) 

[14]. Evaluation of PD-L1 expression in both HCC 

subtypes showed that PD-L1 levels were markedly higher 

in Immunity_H than in Immunity_L (Figure 1G). This 

implies that the Immunity_H subtype may show a 

stronger response to anti-PD-L1 immunotherapy given 

that PD-L1 expression positively associates with 

immunotherapeutic responsiveness [15]. 

 

Survival analyses of 2 public datasets showed that the 2 

HCC subtypes were associated with different clinical 

outcomes. The Immunity_H subtype corresponded with 

significantly better 3-year survival relative to 

Immunity_L (Figure 1H), which is consistent with 

previous findings in which HCC associated with higher 

immune activity exhibited better clinical outcomes [16]. 

These data highlight the value of subtyping as the basis 

of immunogenomic profiling. 

 

Changes in TIME and prognosis based on 

differential immune-related genes 
 

Identification of HCC subtype-specific gene 

expression profiles 
We then used EdgeR to identify HCC subtype-specific 

gene expression profiles [17]. A total of 729 genes were 

differentially expressed between Immunity_H and 

Immunity_L subtypes. Among these, 706 were 

upregulated and 23 were downregulated (Figure 2A, 

2B). GO term analysis revealed that MHC-class II 

protein complex, natural killer cell chemotaxis and 

positive regulation of interrleukin-2 biosynthetic 

process were the most significantly enriched cellular 

components and biological process in Immunity_H 
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Figure 1. Characterization of 2 HCC subtypes based on immunogenomic profiling. (A) Heatmap of normalized ssGSEA scores for 
tumor purity, ESTIMATE score, Immune Score, and Stromal Score. Tumor samples were grouped into 2 immune classes, Immunity_H and 
Immunity_L, based on 29 immune-associated gene sets. (B–D) Violin plot analysis comparing the Immune Score (B), Stromal Score (C) and 
tumor purity (D) between Immunity_H and Immunity_L (Mann-Whitney U test). (E) Box plot comparison of relative HLA gene expression 
between HCC subtypes (T-test). (F) Box plots comparing expression levels of various immunologic activity related chemotactic factors 
between HCC subtypes. (G) Comparison of PD-L1 expression in Immunity_H and Immunity_L (T-test). (H) Comparison of 3-year survival 
between HCC subtypes in TCGA and GSE14520 datasets (log-rank test). 
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(Figure 2C, 2D). KEGG pathway analysis identified 

allograft rejection, antigen presentation and processing 

to be most highly enriched in Immunity_H (Figure 2E, 

F). These genetic alterations affect the immune system 

modulations [18–21]. 

 

Identification of differentially expressed immune-

related genes 
From the above set of genes, we identified 181 

differentially expressed immune-related genes (IRGs) 

between Immunity_H and Immunity_L, of which 180 

were upregulated and 1 was downregulated (Figure 3A, 

3B). To identify the IRGs actively participating in HCC 

tumorigenesis and progression, we selected 22 

differentially expressed IRGs that showed marked 

correlation with clinical outcomes. A forest plot of 

hazard ratios revealed 3 of these IRGs as protective 

factors, and the remaining 19 as predictors of poor 

prognosis (Figure 3C). To elucidate the molecular 

mechanisms underlying the clinical effects of the 22 

IRGs, we evaluated the expression patterns of 318 

transcription factors (TFs). Consequently, 13 TFs were 

found to be substantially higher in Immunity_H than in 

Immunity_L (Figure 3D, 3E). A regulatory network was 

established using the IRGs and TFs. A TF-based 

regulatory schematic was used to show the regulatory 

relationships between 7 of the 13 TFs and 20 of the 22 

prognosis-associated IRGs (Figure 3F). 

 

Evaluation of clinical outcomes based on the 

prognostic IRG panel 

Multivariate Cox regression analysis was performed to 

assess the risk score for the prognosis-associated IRGs 

and constructed a prognostic signature for stratification 

of HCC patients into 2 groups based on the clinical 

outcomes. Disease-free survival, overall survival, 

cancer specific survival and progression-free survival 

were higher in the low risk group than in the high risk 

group (Figure 4A). The area under the curve (AUC) of 

the survival-dependent receiver operating characteristic 

(ROC) curve was 0.761, which was higher than that of 

clinicopathologic factors, indicating a high prognostic 

power for this IRG panel (Figure 4B). Heatmaps were 

established to visualize the expression profile of the 6 

genes included in this panel for the low and high risk 

groups (Figure 4C). The risk score was calculated as 

follows: [Expression level of IL18RAP * (-2.5273)] + 

[Expression level of FCER1G * 0.0038] + [Expression 

level of CXCL11 * 0.0340] + [Expression level of 

CSF3R * 0.1133] + [Expression level of IL2RG * 

0.0138] + [Expression level of PTGER4 * 0.1130]. This 

analysis showed that high risk scores corresponded with 

high fatality (Figure 4D). Univariate and multivariate 

Cox regression analyses revealed that the risk score 

could independently predict the prognosis of patients 

after adjusting for other parameters like distant 

metastasis, lymph node metastasis, tumor stage, clinical 

stage, pathologic grade, age, and gender (Figure 4E, 

4F). Thus, the IRGs-based prognostic index may help 

stratify HCC patients based on expected clinical 

outcomes. 

 

Clinical utility of the prognostic IRG panel and IRGs-

based prognostic index 
In further analysis, we examined the relationship between 

genes in the prognostics panel and clinicopathological 

features of HCC patients. This analysis revealed a 

significant negative correlation between IL18RAP and 

distant metastasis, advanced T stage and advanced clinical 

stage (Figure 4G, Supplementary Figure 1A). FCER1G 

exhibited significant positive correlation with poor 

pathologic grade (Figure 4G). CXCL11 showed 

significant negative correlation with lymph node meta-

stasis and distant metastasis (Supplementary Figure 1A). 

CSF3R exhibited a marked negative correlation with 

distant metastasis (Supplementary Figure 1A). IL2RG 

exhibited significant negative correlation with lymph node 

metastasis (Supplementary Figure 1A). To determine if 

the IRGs-based prognostic index accurately reflects tumor 

immune microenvironment status, we examined the 

association of risk scores with infiltration abundance of 

various types of immune cells. Significant positive 

correlation was observed between IRGs-based prognostic 

index and infiltration abundance of memory B-cells or 

gamma delta T-cells (r=0.527, p=<0.001; r=0.292, 

p=<0.05) (Figure 4H). Negative correlation was observed 

between the IRGs-based prognostic index and infiltration 

abundance of resting memory CD4 T-cells (r=-0.314, 

P<0.05) (Figure 4H). 

 

Tumor mutation burden (TMB), impaired DNA 

mismatch repair (MMR), and microsatellite instability 

(MSI) have been found to affect response to cancer 

immunotherapy. Interestingly, we find that the 

prognostic IRG panel-based risk score correlates 

positively with TMB and MSI (Figure 4I, 4J). Relative 

to the low risk group, PMS2, MLH1, MSH2 and MSH6 

(the MMR genes) were significantly elevated in the 

high-risk group (Figure 4K). These results strongly 

suggest that patients in high risk group may benefit 

from immunotherapy. 

 

Changes in TIME and prognosis based on 

differential stromal cell infiltration 

 

Re-subtyping HCC according to differential stromal 

components 

Although ssGSEA-based HCC subtyping showed that 

Immunity_H contains more stromal and immune cells 

(Figure 1B, 1C), a more rigorous grouping method 

based on ESTIMATE scores (stromal score combined 

with immune score) is necessary to determine disease 
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features related to stromal contents. Thus, we 

reclassified the 369 HCC samples into high stromal 

content group (Stroma_H) and low stromal content 

group (Stroma_L) based on median ESTIMATE score. 

Expectedly, survival analysis suggested that Stroma_H 

correlated with significantly better 3-year survival than 

Stroma_L (Figure 5A). To identify the stromal 

components responsible for distinct clinical outcomes,  

 

 
 

Figure 2. HCC subtype-specific gene expression profiles. (A, B) Heatmap and volcano plot of differentially expressed genes between 
Immunity_H and Immunity_L. Red, green and black dots indicate upregulated, downregulated and unchanged genes. It also applies to the 
following figures. (C–F) Significantly enriched GO terms (C, D) and KEGG pathways (E, F) of HCC subtypes.  
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Figure 3. HCC subtype-specific differentially expressed IRGs. (A, B) Heatmap and volcano plot of the differentially expressed IRGs 
between Immunity_H and Immunity_L. (C) Forest plot of hazard ratios and corresponding 95% confidence intervals were estimated from 
univariate Cox’s regression analyses. Variables significantly associated with a good and poor OS are shown in green and red, respectively. (D, 
E) Volcano plot and heatmap of the differentially expressed TF genes between Immunity_H and Immunity_L. (F) Combinatorial TFs-IRGs 
regulation networks. Red, blue, and green, indicate high risk genes, low risk genes, and TF genes. It also applies to the following figures. 
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Figure 4. Clinical utility of prognostic IRG panel and IRGs-based prognostic index. (A) Overall survival, disease-free survival, cancer-
specific survival, and progression-free survival of patients between high- and low-risk groups based on prognostic IRGs. (B) ROC curve analysis 
of risk score compared with clinicopathological features (age, gender, pathologic grade, clinical stage, tumor stage, lymph node metastasis 
and distant metastasis). (C, D) Differential risk scores, survival status and expression pattern of 6 IRGs in HCC patients. (E, F) Univariate and 
multivariate Cox regression analysis showing the independent prognostic value of this risk score. (G) Relationships between genes in the 
prognostic IRG panel and clinicopathological characteristics of HCC patients. (H) Pearson correlation analysis between risk score and 
infiltration abundances of immune cells. (I) Spearman correlation analysis between risk score and tumor mutation burden (TMB). (J) 
Spearman correlation analysis between risk score and microsatellite instability (MSI). (K) Heatmap visualization of the expression of 4 DNA 
mismatch repair (MMR) genes related to risk score. *** p = <0.001. 
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we further divided the samples into the high stromal cell 

content group (Stroma cell_H), low stromal cell content 

group (Stroma cell_L), high immune cell content group 

(Immune cell_H) and low immune cell content group 

(Immune cell_L), based on median value of stromal 

score and immune score, respectively. Survival analyses 

indicated that Stroma cell_H significantly correlated 

with better 3-year survival, while the effect of immune 

cell content on survival rate did not significantly differ 

between groups (Figure 5B, 5C). 

 

Identification of stromal cell content-related 

prognostic genes 
To identify stromal cell content-related differentially 

expressed genes (DEGs), we compared Stroma cell_H 

gene expression profiles to those of Stroma cell_L and 

identified 480 significantly associated genes. Of these, 

455 genes were elevated and 25 genes were suppressed 

in Stroma cell_H (Figure 5D, 5E). 35 prognostic DEGs 

significantly associated with favorable or unfavorable 

HCC survival outcomes were then identified from the 

above DEGs. A forest plot of hazard ratios showed that 

2 of these DEGs were protective factors and 33 were 

significantly correlated with poor prognosis (Figure 5F). 

To explore the potential regulatory mechanisms of our 

prognostic DEGs, we evaluated the expression profiles 

of the 318 TFs and found 3 to be significantly elevated 

in Stroma cell_H relative to Stroma cell_L (Figure 5G). 

The regulatory network analysis showed relationships 

between 2 of the 3 TFs and 18 of the 35 prognostic 

DEGs (Figure 5H). 

 

Evaluation of clinical outcomes based on prognostic 

DEG panel 
Next, we assessed the risk score for stromal cell content-

related prognostic genes and designed a prognostic 

signature to subcategorize HCC patients into 2 groups 

based on prognosis. This analysis found that cancer 

specific survival, disease-free survival, overall survival, 

and progression-free survival were higher in the low risk 

group than in the high risk group (Figure 6A). The AUC 

of the survival-dependent ROC curve was 0.752, which is 

higher than the AUCs of clinicopathologic factors, 

suggesting high prognostic value for this DEG panel 

(Figure 6B). Heatmaps were used to visualize expression 

profiles of the 17 genes in the panel from low risk to high 

risk group (Figure 6C). Risk score was calculated as 

follows: [Expression level of IL7R * (-0.2979)] + 

[Expression level of FCGR1A * (-0.2721)] + [Expression 

level of GAL3ST4 * (-0.2270)] + [Expression level of 

COL16A1 * (-0.0941)] + [Expression level of ITGA3 * (-

0.0522)] + [Expression level of MMP9 * (-0.0144) + 

[Expression level of CTSV * 0.0166]+[Expression level 

of MEP1A* 0.0177]+[Expression level of GBP5 * 

0.0192]+[Expression level of TMEM130 * 0.0474]+ 

[Expression level of VSIG4 * 0.0873]+[Expression level 

of CYBB * 0.0882]+[Expression level of HTRA3 * 

0.1048]+[Expression level of PLAC8 * 0.1050]+ 

[Expression level of OLFM1 * 0.1162]+ 

[Expression level of FAM183A * 0.1604]+[Expression 

level of PNMA2 * 0.4091]. High risk scores correlated 

with higher contemporaneous deaths (Figure 6D). 

Furthermore, the risk score exhibited independent 

prognostic potential upon adjustment of other parameters, 

like distant metastasis, lymph node metastasis, tumor 

stage, clinical stage, pathologic grade, gender and age 

(Figure 6E, 6F). Stromal cell content-related, DEG-based 

prognostic index, exhibited significant positive correlation 

with advanced clinical stage and advanced T stage  

(Figure 6G).  

 

Clinical utility of the prognostic DEG panel and 

stromal score 
Analysis of the relationships between the above genes 

in DEG panel and HCC clinicopathological features 

revealed that GBP5, IL7R, PNMA2, ITGA3, 

COL16A1, FCGR1A, MEP1A, CTSV, FAM183A and 

PLAC8 expression were strongly linked to distant 

metastasis, lymph node metastasis, T stage, clinical 

stage or pathologic grade (Figure 6H, Supplementary 

Figure 1B). Moreover, analysis of the relationships 

between stromal cell content-related DEGs-based 

prognostic index and infiltration abundance of various 

immune cell types revealed a significant positive 

correlation between stromal cell content-related, DEG-

based prognostic index and infiltration by monocytes, 

M2 macrophages, or activated mast cells (r=0.353, 

p=<0.05; r=0.544, p=<0.001; r=0.576, p=<0.001) 

(Figure 6I). A negative correlation was observed 

between the stromal cell content-related, DEGs-based 

prognostic index, and infiltration abundances of 

regulatory T-cells (r=-0.314, p=<0.05) (Figure 6I). 

Furthermore, we found that risk score based on the 

stromal cell content-related prognostic genes positively 

correlated with MSI (Figure 6K), but did not 

significantly correlate with TMB (Figure 6J). Relative 

to the low risk group, expression of the MMR genes 

PMS2, MLH1, MSH2, and MSH6, was higher in the 

high risk group (Figure 6L), indicating that patients in 

the high-risk group derived much benefit from 

immunotherapy. 

 

Changes in TIME and prognosis based on 

differential immune cell composition 

 

Identification the heterogeneous of tumor-infiltrating 

immune cells 

Next, we used CIBERSORT [22], to investigate 

immune infiltration of 22 subpopulations of immune 

cells in the above HCC samples. Fifty cases with 

reliably predicted results were identified using a p-value 

cutoff of ≤0.05. The proportions of immune cells in 



 

www.aging-us.com 19649 AGING 

 
 

Figure 5. Identification of stromal cell content-related prognostic genes. (A–C) Comparison of 3-year survival between Stroma_H 
and Stroma_L, Stroma cell_H and Stroma cell_L, and Immune cell_H and Immune cell_L. (D, E) Heatmap and volcano plot of DEGs between 
Stroma cell_H and Stroma cell_L. (F) Forest plot of hazard ratios and corresponding 95% confidence intervals estimated from univariate Cox 
regression analyses. Variables significantly associated with good and poor OS are shown in green and red, respectively. (G) Heatmap of the 
differentially expressed TF genes between Stroma cell_H and Stroma cell_L. (H) Combinatorial TF regulatory networks. 
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Figure 6. Clinical utility of stromal cell content-related prognostic DEG panel and stromal score. (A) Overall survival, disease-free 
survival, cancer-specific survival, and progression-free survival of patients between high- and low-risk groups based on stromal cell content-
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associated prognostic genes. (B) ROC curve analysis of risk score relative to clinicopathological features (age, gender, pathologic grade, 
clinical stage, tumor stage, lymph node metastasis and distant metastasis). (C, D) Differential risk scores, survival status and expression 
pattern of 17 IRGs in HCC patients. (E, F) Univariate and multivariate Cox regression analysis showing the independent prognostic value of 
this risk score. (G) Relationship between risk score and the clinical stage, as well as the T stage of HCC patients. (H) Relationships between 
genes in the prognostic DEG panel and the clinicopathological characteristics of HCC patients. (I) Pearson correlation analysis between the 
stromal score and infiltration abundances of immune cells. (J) Spearman correlation analysis between the risk score and TMB. (K) Spearman 
correlation analysis between the risk score and MSI. (L) Heatmap visualization of the expression of 4 DNA MMR genes related to the risk 
score. *** p = <0.001. 

 

HCC vary significantly between samples (Figure 7A). 

Since we speculated that variation in the proportion of 

tumor-infiltrating immune cells (TIICs) may represent 

differences between subtypes, the samples of 

Immunity_H (34/50 cases) and Immunity_L 

(16/50cases), were separated into 2 discrete groups for 

further investigation (Figure 7B). Relative to 

Immunity_L, naive B-cells, memory B-cells, plasma 

cells, CD8 T-cells, activated CD4 memory T-cells, 

follicular helper T-cells, gamma delta T-cells, M0 

macrophages, M1 macrophages and activated dendritic 

cells, presented significant abundance differences in 

Immunity_H (Figure 7C). The proportions of different 

TIIC subpopulations exhibited only weakly-moderately 

correlation with each other (Figure 7D). These results 

indicate the clinical significance of heterogeneous 

immune infiltration in HCC. 

 

Evaluation of clinical outcomes based on differential 

TIICs 

The presence of tumor-infiltrating lymphocytes (TILs) 

in TIICs is associated with better responses to 

immunotherapy and improved clinical outcomes [23]. 

Expectedly, resting dendritic cells were strongly 

associated with higher pathologic grade and lower 

stage, whereas M1 macrophages and CD8 T-cells 

strongly related to lower pathologic grade (Figure 7E). 

Survival analyses revealed that higher proportions of 

TILs (resting memory CD4 T-cells and activated NK 

cells), and lower proportions of eosinophils and 

activated mast cells, significantly correlated with 

better 3- or 5-year survival rates (Figure 7F). A TIICs-

based regulatory schematic was used to illustrate 

potential interactions between prognostic TIICs, IRG 

panel, and stromal cell content-related DEG panel. 

Most poor prognosis-associated genes (12/18) 

correlated negatively with favorable prognostic TILs 

(resting memory CD4 T-cells and activated NK cells) 

(Figure 7G). We speculate these prognostic genes 

remodel TIME, leading to differential immune cell 

infiltration, thereby influencing HCC clinical 

outcomes. 

 

DISCUSSION 
 

Multiple studies have subtyped HCC using genomics, 

transcriptomics, and metabolomics [24–26]. However, 

few have examined HCC classification by immune 

signatures. Here, we identified immune-related HCC 

subtypes using immunogenomic profiles, stromal cell 

features, and immune cell composition. Our data show 

that intratumoral genetic and immune micro-

environment heterogeneities are essential features of 

HCC. Understanding individualized immune signature 

as a potential avenue is expected to improve immuno-

therapeutic responsiveness. 

 

Tumor gene expression profiling has identified gene 

expression signatures with prognostic value that can 

inform patient stratification for targeted therapies. 

Recent studies have evaluated the expression pattern of 

IRGs in solid tumors patients receiving immune-based 

therapies. For instance, in samples from melanoma 

patients receiving recombinant IL2 treatment, a 

signature that could predict the clinical response was 

identified [27]. Elsewhere, an IFN-inflammatory 

immune gene expression-based signature, which 

correlated with progression-free survival and enhanced 

overall response rates, was established in melanoma 

patients receiving pembrolizumab. The signature is also 

being investigated in other malignancies [28]. T-

effector/IFNγ signature, a 8-gene signature reflecting 

preexisting immunity, is in phase II trial on previously 

treated non-small cell lung carcinoma (NSCLC) [29]. 

Here, we classified HCC into 2 stable subtypes 

(Immunity High and Immunity Low) based on ssGSEA 

score. From 729 genes exhibiting differential expression 

between subtypes, a panel of 6 IRGs was found to 

significantly correlate with survival outcome, with high 

prognostic value. Moreover, expression of individual 

genes in this panel, including IL18RAP, CXCL11, 

FCER1G, CSF3R and IL2RG were strongly linked to 

distant metastasis, lymph node metastasis, tumor stage, 

clinical stage or pathologic grade. In Immunity_H 

subtype, HLA genes, PD-L1 protein, chemotactic 

factors related to immunologic activity, MHC-class II 

protein complex, natural killer cell chemotaxis, antigen 

processing and presentation were upregulated. This 

could lead to favorable clinical outcomes. The positive 

correlation between the prognostic IRG panel-based risk 

score and TMB, MSI or MMR genes expression also 

strongly suggested that patients in the high risk group 

might benefit more from immunotherapy. Thus, 

identification of intratumoral heterogeneity with regards  
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Figure 7. Evaluation of clinical outcomes based on differential TIICs. (A) Relative proportions of 22 immune cell subpopulations in 
HCC patients. (B) Heatmap visualization of differential immune cell proportions between Immunity_H and Immunity_L. (C) Violin plot analysis 
exhibiting distinct immune cells subpopulation between Immunity_H and Immunity_L. (D) Correlation matrix of all 22 immune cell 
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proportions in HCC. (E) Box plot depicting relationships between TIICs and pathologic grade, as well as the clinical stage (Kruskal-Wallis tests). 
(F) Kaplan-Meier survival curves show the relationship between TIICs and survival. (G) The regulation networks among prognostic TIICs, IRG 
panel, and stromal cell content-related DEG panel. Green and blue represent protective factors. Red and orange represent the opposite. 

 

to prognostic IRG panel, immune-related cellular 

component, biological process and pathways are used to 

build prognostic models of pathologic grade, TNM 

stages, and survival. It may also guide the selection of 

potential immunotherapeutic targets and individualize 

treatments. 

 

Tumors possess a stromal compartment comprising 

cellular and non-cellular components, which also 

influence cancer development, progression, and 

metastasis [30, 31]. Although studies have shown that 

anti-cancer therapies target cancer cells, their effect on 

the tumor stroma has not been well defined. As the 2 

main types of non-tumor components in tumor immune 

microenvironment, stromal cells and immune cells are 

considered necessary in cancer diagnostic and 

prognostic applications [32]. In bulk urothelial cancer 

transcriptomes, Li Wang et al. recently reported that the 

primary source of EMT-related gene expression is the 

non-hematopoietic stromal cells. In a study sample 

comprising patients with metastatic urothelial cancer 

under nivolumab treatment, higher EMT/stroma-

associated genes expression were related to lower 

response rate, shorter progression-free survival and 

poorer overall survival in patient tumors with T-cell 

infiltration [33]. Here, we grouped HCC into high 

stromal cell content group (Stroma cell_H), low 

stromal cell content group (Stroma cell_L), high 

immune cell content group (Immunecell_H) and low 

immune cell content group (Immune cell_L) based on 

stromal score or immune score and evaluated stromal 

component-related pathogenesis. Our data show that 

Stroma cell_H correlates with improved 3-year 

survival significantly. A panel of 17 stromal cell 

content related DEGs between Stroma cell_H and 

Stroma cell_L was found to correlate with survival rate 

significantly. Moreover, the expression level of 

individual genes in this panel, including GBP5, IL7R, 

PNMA2, ITGA3, COL16A1, FCGR1A, MEP1A, 

CTSV, FAM183A and PLAC8, were strongly 

associated with distant metastasis, lymph node 

metastasis, tumor stage, clinical stage, or pathologic 

grade. A positive correlation between risk score based 

on stromal cell content-related prognostic genes and 

MSI or MMR genes expression also strongly showed 

that the patients in the high risk group are more likely 

to benefit from immunotherapy. These data reflect 

high heterogeneity of tumor stromal cells in HCC, 

suggesting that anti-cancer therapies should not only 

target cancer cells but also the stromal compartment 

for effective outcomes. 

The terms ‘cold’ and ‘hot’ refer to non-inflamed 

tumors, inflamed but non-infiltrated, and T cell-

infiltrated, reflecting lower and higher Immunoscore 

categories [34]. Hot tumors are characterized by the 

presence of TILs, expression of anti-PD-L1 on tumor-

associated immune cells, potential genomic instabilities 

and existence of a previous anti-tumor immune 

response [35–37]. These tumors had a higher response 

to immune-based therapy. Here, we show that multiple 

immune cell types were present at significantly higher 

abundance in Immunity_H, especially the TILs, 

including memory B-cells, naive B-cells, activated CD4 

memory T-cells, CD8 T-cells, follicular helper T cells, 

and gamma delta T-cells. Higher proportions of TILs 

significantly correlated with improved 3-, 5- or 10-year 

survival rates. Moreover, Immunity_H displayed 

significantly elevated PD-L1 level relative to 

Immunity_L. Given that TILs are relatively rare in HCC 

[38], our study highlights immune cell heterogeneity in 

HCC, suggesting a novel way of stratifying patients for 

immunotherapy. Our TIICs-based regulatory schematic 

also highlights avenues for converting immune cold 

tumors into hot tumors. 

 

Immunophenotypes of solid tumors fall into 3 subtypes: 

inflamed, immune excluded, and immune desert [32]. 3 

distinct immune-cell infiltration subtypes have recently 

been identified [39]. Relative to previously reported 

immune subtypes, our clustering based on ssGSEA 

analysis identified only 2 subtypes. This may arise from 

the fact that our study focus on the prognostic value. 

The two subtypes, Immunity_H group and Immunity_L 

group, exhibited distinct survival rates in both the 

TCGA and GSE14520 datasets (Figure 1H). However, 

the prognostic value of Immunity_M group was not 

consistent across datasets when samples were grouped 

into 3 groups (data not shown), indicating that 2 

subtypes are more effective and that Immunity_H group 

predicts better survival. In some studies, classification 

was mainly based on immune-cell infiltration. Here, we 

took both immune-cell infiltration and immune-related 

pathways into consideration. This is because high 

immune-cell infiltration does not necessarily mean high 

immune response because cells may not be activated. 

Thus, our strategy may more accurately reflect the 

immune microenvironment landscape. 
 

Given the significance of HCC immune landscape, our 

study improves our understanding of intratumoral 

genetic and immune microenvironment heterogeneity 

from tumor and non-tumor components perspectives. 
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Here, we reveal potential molecular mechanisms and 

approaches to manipulate the immune status to improve 

individualized immunotherapy. 

 

MATERIALS AND METHODS 
 

Data acquisition and clinical samples 
 

FPKM-normalized RNA-sequencing data from 369 

primary HCC cases and corresponding prognostic data 

were retrieved from TCGA (https://portal.gdc.cancer. 

gov). 

 

Clustering 
 

Enrichment level and activity of several immune cells, 

pathways or functions in HCC were analyzed using 

single sample gene-set enrichment analysis (ssGSEA) 

score based on 29 immune-associated gene sets [12]. 

Hierarchical clustering of HCC was done based on the 

ssGSEA scores of the 29 immune signatures using the 

“sparcl” package on R. 

 

Estimation of immune score, stromal score, and 

tumor purity 
 

The normalized expression matrix was analyzed by 

ESTIMATE and the immune score (the infiltration level 

of immune cells), stromal score (the level of stromal 

cells present) and tumor purity for each HCC sample 

determined [40]. 

 

Identification of differentially expressed genes 
 

Differentially expressed genes were identified using 

“limma”, “ggpubr” and “pheatmap” packages, with 

FDR =<0.05 and a log2 |fold change| >1 as cutoffs. 

 

Gene-set enrichment analysis 

 

Functional enrichment analyses via GO term and 

KEGG pathway analyses, were performed using GSEA 

(R implementation) [41–43]. 
 

Identification of immune-related gene 
 

IRGs were identified using ImmPort (immunology 

database and analysis portal) database [44]. These genes 

are known to be involved in immune activity. 

Differentially expressed IRGs were extracted from all 

differentially expressed genes. 

 

Identification of survival-associated genes and 

survival analyses 
 

Survival-associated genes were selected using univari- 

ate Cox’s proportional hazards regression analysis. 

Kaplan-Meier analysis was used to compare survival 

differences. Log-rank test was used to calculate 

statistical significance with p = <0.05 as the threshold. 

 

Identification of gene-based prognostic index  

(GPI) 
 

Survival-associated genes were subjected to 

multivariate Cox’s regression analyses, with 

integrated genes panels as independent prognostic 

indicators for GPI development. Immune-related 

gene-based prognostic index (IRGPI) was based on 

expression data multiplied by the Cox regression 

coefficient. Patients were divided into high- and low-

risk groups based on the median risk score. 

 

Construction of transcription factors (TFs) 

regulatory network 

 

A list of 318 TFs was obtained from the Cistrome 

cancer database which integrates cancer genomics 

data from TCGA with over 23000 ChIP-seq chromatin 

profiling data from Cistrome, illuminating regulatory 

links between TFs and the transcriptome [45]. 

 

Evaluation of the tumor-infiltrating immune cells 

(TIICs) proportion 

 

Normalized gene expression data were used to estimate 

the fraction of 22 infiltrating immune cell types using 

CIBERSORT as previously described [22]. 1000 

CIBERSORT permutations and cases were set with p= 

<0.05 as a cutoff value. Mann-Whitney U test was used 

to compare the proportion of immune cell subsets 

between HCC subtypes. 

 

TMB analysis 

 

Somatic mutation data on 357 hepatocellular 

carcinoma patients were obtained and processed using 

VarScan software from the “Masked Somatic 

Mutation” category on TCGA. Next, TMB was 

defined and calculated using the formula: (total count 

of variants)/(the whole length of exons). Detected 

variants included base substitutions, deletions, or 

insertions. 

 

MSI analysis 
 

MSI status for 367 HCC cases consecutively sequenced 

with Memorial Sloan Kettering-Integrated Mutation 

Profiling of Actionable Cancer Targets clinical NGS 

assay was determined using MSI sensor algorithm, a 

program that reports the percentage of unstable 

microsatellites [46].  
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Statistical analysis 
 

To examine performance of the prognostic index, time-

dependent receiver operating characteristic (ROC) curve 

was calculated using “survivalROC” package [47]. 

Multivariate Cox regression analyses were performed to 

verify if the risk score was an independent prognostic 

index. All analyses were performed on R and the 

regulatory network visualized using Cytoscape software 

version 3.7.1 (https://cytoscape.org/). Statistical tests 

were two-sided. p = <0.05 indicated statistical 

significance. 
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Supplementary Figure 1. Clinical utility of the prognostic IRG panel and the stromal cell content-related prognostic DEG 
panel. (A, B) Relationships between genes in prognostic IRG panel (A) or stromal cell content-related prognostic DEG panel (B) and HCC 
clinicopathological features (lymph node metastasis status and distant metastasis status). 


