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INTRODUCTION 
 

Alzheimer’s disease (AD) is an irreversible, progressive 

brain disorder characterized by memory, thinking and 

cognitive skills deterioration that results in behavioral 

problems among affected elderly individuals. While 

there are many environmental factors that may 

influence the risk of AD, it is estimated that nearly 70% 

of the variance in AD may be explained by genetic 

determinants [1, 2]. Although GWAS studies have 

identified over 20 disease-associated genomic loci AD-

associated loci, the causal mechanisms implicated in the 

onset of AD remain unclear [3]. Traditional 

epidemiology studies reported several common risk 

factors for AD including obesity [4, 5], type 2 diabetes 

(T2D) and glycemic traits [6, 7], smoking [8], and lower 

education level [8]. However, these findings may be 

influenced by unmeasured confounding factors that may 

obscure the true relationship. 

 

The Mendelian randomization (MR) approach [9] 

enables us to assess the potential causal effect of a risk 
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ABSTRACT 
 

Background: Alzheimer’s disease (AD) is a progressive brain disorder characterized by cognitive skills 
deterioration that affects many elderly individuals. The identified genetic loci for AD failed to explain the large 
variability in AD and very few causal factors have been identified so far.  
Results: mvMR showed that increasing years of schooling (OR=0.674, 95%CI: 0.571-0.796, P=3.337E-06) and 
genetically elevated HDL cholesterol (OR ranging from 0.697 to 0.830, P=6.940E-10) were inversely associated 
with AD risk, genetically predicted total cholesterol (OR=1.300, 1.196 to 1.412; P=6.223E-10) and LDL 
cholesterol (OR=1.193, 1.097 to 1.296, P=3.564E-05) were associated with increasing AD risk. Genetically 
predicted FG was suggestively associated with increased AD risk. Furthermore, MR-BMA analysis also 
confirmed FG and years of schooling as two of the top five causal risk factors for AD.  
Conclusions: Our findings might provide us novel insights for treatment and intervention into the causal risk 
factors for AD or AD-related complex diseases. 
Methods: By using extension methods of Mendelian randomization (MR)--multivariable MR (mvMR) and MR 
based on Bayesian model averaging (MR-BMA), we intend to estimate the potential causal relationship 
between nine risk factors and AD outcome and try to prioritize the most causal risk factors for AD.  
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factor on the outcome by using genetic instrumental 

variables (IVs). Previous two sample MR studies have 

demonstrated several potential causal risk factors for AD, 

such as lower education level and smoking [10]. 

Multivariable MR (mvMR) [11] is an extension of two 

sample MR approach that incorporates a set of 

pleiotropic SNPs [12] associated with several risk factors 

to simultaneously assess the causal effect of each risk 

factor on the outcome. In comparison with two sample 

MR, mvMR assumes the genetic IV is associated with at 

least one risk factor, although not necessarily all risk 

factors. Additionally, under the circumstances of 

horizontal pleiotropy, causal effect can be assessed even 

if none of the variants show specific associations with 

any individual risk factor [11]. Burgess et al. [13] 

successfully applied mvMR to estimate the causal effects 

of lipid fractions on cardiovascular artery disease. 

However, the current application of mvMR are not 

capable of feature ranking and selecting. 

 

Recently, Zuber V et al. developed a novel approach [14] 

which combined multivariable MR with Bayesian model 

averaging (MR-BMA) that scales to high dimensional 

settings and can select biomarkers as causal risk factors 

for the disease of interest. Study demonstrated that the 

method can detect and prioritize true risk factors even 

when the multiple risk factors are highly correlated [14]. 

The MR-BMA approach has been successfully applied to 

prioritize the most likely causal metabolites for age-

related macular degeneration [14]. 

 

Of all the previously reported risk factors for AD, it 

remains unclear which are causal, and which may play 

the most pivotal role in disease susceptibility. In the 

current study we intend to integrate the mvMR and MR-

BMA approach to identify and prioritize the most likely 

causal risk factors for AD, the risk factors included in 

the current study are body mass index (BMI), type 2 

diabetes (T2D), high-density lipoprotein cholesterol 

(HDL cholesterol), low-density lipoprotein cholesterol 

(LDL cholesterol), total cholesterol, fasting glucose 

(FG), fasting insulin (FI), currently tobacco smoking, 

and years of schooling. 

 

RESULTS 
 

Genetic IVs selection and validation 
 

Overall, we obtained 1235 LD-independent SNPs that 

achieved genome-wide significance for all the risk 

factors after implementing the pruning strategy 

previously described. Then those SNPs were extracted 

from AD dataset. After harmonizing the exposure and 

outcome datasets, there were 1159 SNPs remained for 

the MR analysis. The number of IVs included for each 

risk factor was demonstrated in Table 1, and detailed 

information for the characteristics of SNPs used for 

each risk factor was shown in Supplementary Table 1. 

 

mvMR estimates results 
 

Our standard MR approach showed that genetically 

increased years of schooling (OR = 0.674, 95% 

confidence interval (CI): 0.571-0.796, P = 3.337E-06) 

and elevated HDL cholesterol (OR = 0.761, 95% CI: 

0.697-0.830, P = 6.940E-10) were significantly 

associated with decreasing risk of AD. We found a 

significant association between total cholesterol and AD, 

the odds ratio per genetically predicted 1 SD higher total 

cholesterol level was 1.300 (1.196 to 1.412; P = 6.223E-

10) (Table 2 and Figure 1). Elevated LDL cholesterol 

level was associated with increased ADD susceptibility 

(OR ranging from 1.097 to 1.296 per SD increment in 

genetically determined LDL cholesterol level, P < 

3.564E-05). However, there was a suggestive association 

between FG and AD, one SD increase in FG was 

associated with 29.7% increase in AD risk (OR = 1.297, 

95% CI: 1.013-1.661, P = 0.039). No association was 

observed between the other risk factors and AD, and for 

detailed information please find Figure 1 and Table 2. 

 

Sensitivity analysis 

 

Consistent with standard IVW results, MLM and 

weighted median results also showed a significant 

association between years of schooling and AD  

(Table 2). In the analysis of weighted median, 

genetically determined increasing HDL cholesterol 

level was associated with decreased AD risk (Table 2). 

Similar significant association was observed between 

total cholesterol with AD by MLM approach. Similar to 

MR main results, MLM approach also found a 

suggestive association between FG and AD. We still did 

detect any association between the rest risk factors and 

AD. Furthermore, MR Egger test suggested that there 

was no pleiotropic effect among the selected IVs for 

each risk factor (Table 3). 

 

For the bi-directional MR analysis, 16 LD independent 

SNPs that reached genome-wide significance were 

selected as IVs for AD, then those SNPs were extracted 

from the nine outcomes individually. After data 

harmonization, number of valid IVs left for each 

outcome was demonstrated in Table 4. The results 

showed significant association between AD and BMI 

(OR ranging from 0.980 to 0.995, P = 0.002), and 

borderline association between AD and T2D (OR = 

1.047, 95 CI: 1.000-1.096, P = 0.049, Table 4). And 

MR Egger intercept suggested no existence of 

pleiotropic among selected IVs. Besides, as a 

complementary approach, Steiger test results also 

showed that the variances explained in the exposures
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Table 1. Baseline information of exposures and outcomes used in our analysis. 

Exposure Sample size Population PMID Numbers of IVs 

Body mass index (BMI) 461460 European - 360 

Current tobacco smoking 462434 European - 27 

Fasting insulin 108557 European 22885924 13 

Fasting glucose 133010 European 22885924 31 

HDL cholesterol 196476 Mix* 24097068 85 

LDL cholesterol 196476 Mix* 24097068 72 

Total cholesterol 196476 Mix* 24097068 78 

Type 2 diabetes 659316 European 30054458 101 

Years of schooling 1131881 European 30038396 248 

Notes: Mix population was composed of 188,578 European-ancestry individuals and 7,898 non-European ancestry 
individuals. 
 

Table 2. Multivariable MR analysis for risk factors and AD. 

Exposure Methods nsnp OR OR_lci95 OR_uci95 P_value 

Years of schooling IVW fixed effects 248 0.674 0.571 0.796 3.337E-06 

Years of schooling Maximum likelihood 248 0.672 0.568 0.795 3.597E-06 

Years of schooling Weighted median 248 0.619 0.481 0.795 1.814E-04 

T2D Weighted median 101 0.995 0.915 1.082 9.106E-01 

T2D IVW fixed effects 101 1.011 0.959 1.066 6.921E-01 

T2D Maximum likelihood 101 1.011 0.958 1.067 6.900E-01 

Total cholesterol IVW fixed effects 78 1.300 1.196 1.412 6.223E-10 

Total cholesterol Maximum likelihood 78 1.318 1.209 1.436 3.430E-10 

Total cholesterol Weighted median 78 1.055 0.912 1.220 4.742E-01 

LDL cholesterol IVW fixed effects 72 1.193 1.097 1.296 3.564E-05 

LDL cholesterol Maximum likelihood 72 1.203 1.104 1.311 2.439E-05 

LDL cholesterol Weighted median 72 1.047 0.912 1.201 5.151E-01 

HDL cholesterol IVW fixed effects 85 0.761 0.697 0.830 6.940E-10 

HDL cholesterol Maximum likelihood 85 0.741 0.671 0.817 2.243E-09 

HDL cholesterol Weighted median 85 1.053 0.908 1.222 4.913E-01 

Fasting insulin IVW fixed effects 13 1.498 0.864 2.596 1.497E-01 

Fasting insulin Maximum likelihood 13 1.514 0.869 2.637 1.431E-01 

Fasting insulin Weighted median 13 1.868 0.921 3.787 8.318E-02 

Fasting glucose IVW fixed effects 31 1.297 1.013 1.661 3.908E-02 

Fasting glucose Maximum likelihood 31 1.304 1.016 1.673 3.679E-02 

Fasting glucose Weighted median 31 1.351 0.929 1.965 1.153E-01 

Current tobacco smoking IVW fixed effects 27 0.737 0.321 1.692 4.717E-01 

Current tobacco smoking Maximum likelihood 27 0.730 0.311 1.711 4.685E-01 

Current tobacco smoking Weighted median 27 0.599 0.161 2.228 4.449E-01 

BMI IVW fixed effects 360 0.904 0.815 1.002 5.524E-02 

BMI Maximum likelihood 360 0.904 0.811 1.007 6.764E-02 

BMI Weighted median 360 1.033 0.842 1.267 7.555E-01 
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Figure 1. Multivariable MR analysis forest plot: effect of multiple risk factors on AD. 



 

www.aging-us.com 21751 AGING 

Table 3. Pleiotropic test for the selected instrumental variables. 

Exposure Egger_intercept se pvalue 

Type 2 diabetes -8.337E-03 0.006 0.186 

Years of schooling 4.781E-03 0.005 0.327 

HDL cholesterol 2.795E-03 0.019 0.885 

LDL cholesterol -1.158E-02 0.009 0.215 

Total cholesterol -1.663E-02 0.011 0.131 

Fasting glucose 5.334E-04 0.009 0.955 

Fasting insulin -4.983E-03 0.026 0.851 

Body mass index (BMI) 9.387E-03 0.007 0.202 

Current tobacco smoking 6.280E-03 0.019 0.746 

 

Table 4. Bi-directional MR results: Alzheimer’s disease as exposure. 

Outcome Methods nsnp OR OR_lci95 OR_uci95 pvalue 

BMI IVW fixed effects 13 0.988  0.980  0.995  0.002  

BMI Maximum likelihood 13 0.987  0.979  0.995  0.001  

BMI Weighted median 13 0.988  0.974  1.002  0.093  

Current tobacco smoking IVW fixed effects 13 1.000  0.995  1.004  0.864  

Current tobacco smoking Maximum likelihood 13 1.000  0.995  1.004  0.861  

Current tobacco smoking Weighted median 13 1.000  0.993  1.006  0.889  

HDL cholesterol IVW fixed effects 7 0.984  0.952  1.016  0.324  

HDL cholesterol Maximum likelihood 7 0.983  0.950  1.016  0.312  

HDL cholesterol Weighted median 7 0.983  0.940  1.028  0.454  

LDL cholesterol IVW fixed effects 7 1.001  0.966  1.038  0.949  

LDL cholesterol Maximum likelihood 7 1.001  0.966  1.038  0.948  

LDL cholesterol Weighted median 7 1.014  0.968  1.062  0.567  

Total cholesterol IVW fixed effects 7 0.988  0.954  1.023  0.489  

Total cholesterol Maximum likelihood 7 0.988  0.953  1.023  0.489  

Total cholesterol Weighted median 7 0.987  0.945  1.031  0.557  

Type 2 diabetes IVW fixed effects 7 1.047  1.000  1.096  0.049  

Type 2 diabetes Maximum likelihood 7 1.049  1.001  1.099  0.044  

Type 2 diabetes Weighted median 7 1.011  0.948  1.078  0.735  

Years of schooling IVW fixed effects 13 0.999  0.992  1.006  0.828  

Years of schooling Maximum likelihood 13 0.999  0.992  1.006  0.821  

Years of schooling Weighted median 13 1.008  0.999  1.017  0.090  

 

were larger than that in the outcome (AD), and the 

causal direction turned out to be TRUE (Table 5). 

 

MR-BMA estimates results 
 

All the risk factors were then prioritized and ranked by 

their MIP. The top five risk factors for AD were current 

tobacco smoking (MIP = 0.289), BMI (MIP = 0.210), FI 

(MIP = 0.164), FG (MIP = 0.163), years of schooling 

(MIP = 0.161), and which were confirmed to be 

included in the best five individual models with their PP 

values of 0.207, 0.138, 0.107, 0.112 and 0.111 

respectively (Table 6). The MR-BMA were partially 

consistent with mvMR results, MR-BMA method 

prioritized two of the significant risk factors (FG and 

years of schooling) in mvMR result. 

 

DISCUSSION 
 

In the present study, by performing mvMR and MR-

BMA analysis together using summary statistics for AD 

and multiple risk factors, we successfully identified five 
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Table 5. MR Steiger directionality test results. 

Exposure snp_r2.exposure snp_r2.outcome Correct_causal_direction Steiger_pvalue 

Type 2 diabetes 0.124 0.003 TRUE 0 

Years of schooling 0.019 0.007 TRUE 2.09E-34 

HDL cholesterol 0.053 0.020 TRUE 1.96E-79 

LDL cholesterol 0.058 0.008 TRUE 4.38E-212 

Total cholesterol 0.064 0.013 TRUE 2.09E-191 

Fasting glucose 0.032 0.001 TRUE 2.13E-182 

Fasting insulin 0.005 0.0002 TRUE 1.81E-26 

Body mass index (BMI) 0.058 0.027 TRUE 7.22E-71 

Current tobacco smoking 0.003 0.001 TRUE 9.74E-06 

 

Table 6. Ranking of risk factors for AD. A) According to their marginal inclusion probability (MIP). 

 
Risk factors combination 

Marginal inclusion 
probability (MIP) 

Model averaged 
causal estimate 

1 Current tobacco smoking 0.289 8.582E-02 

2 BMI 0.210 -4.085E-02 

3 Fasting insulin 0.164 2.502E-02 

4 Fasting glucose 0.163 3.087E-02 

5 Years of schooling 0.161 1.195E-02 

6 LDL cholesterol 0.093 9.312E-03 

7 Total cholesterol 0.062 4.005E-03 

8 HDL cholesterol 0.036 -5.559E-04 

9 T2D 0.024 3.122E-04 

 

B) The best ten individual models according to their posterior probability (PP). 

Individual models Risk factors combination Posterior 

probability 

9 Current tobacco smoking 0.207 

8 BMI 0.138 

6 Fasting glucose 0.112 

2 Years of schooling 0.111 

7 Fasting insulin 0.107 

4 LDL cholesterol 0.062 

5 Total cholesterol 0.041 

3 HDL cholesterol 0.024 

8,9 BMI, current tobacco smoking 0.018 

1 T2D 0.015 

 

causal risk factor (years of schooling, total cholesterol, 

HDL cholesterol, LDL cholesterol and FG) for AD and 

we also prioritized and ranked two of these five risk 

factors (FG and years of schooling) for AD, which 

might provide us novel insights into determine the 

causal risk factors for complex traits and diseases.  

 

Our results are consistent with both previous traditional 

observational studies and two sample MR results which 

provide established evidence that educational attainment 

was associated with a reduced risk of AD [21–23]. 

Concentrations of genetically determined total 

cholesterol and LDL cholesterol showed positive 

associations with risks of AD, which is consistent with 

the known causal effect of them on AD risk from 

previous two sample MR study [24], and similar to our 

results, elevated HDL cholesterol level also showed 

causal association with decreased AD risk [24]. The 

suggestive association between FG and higher AD risk is 

also consistent with previous study that FG showed 
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suggestive association with AD risk in sensitivity 

analysis [24]. No observed causal associations between 

fasting insulin, BMI and AD risk are also consistent with 

previous two sample MR result [24].  

 

Although our mvMR did not find any causal association 

between current tobacco smoking with risk of AD, 

current tobacco smoking became the top first risk factor 

in the MR-BMA model, which is partially in accordance 

with previous MR study [24].  

 

However, the observed associations differ from previous 

study that no evidence of causal association between lipid 

profiles and AD risk after excluding the potential 

pleiotropic SNPs. In the current study, the independent 

SNPs (r
2
 < 0.001) we included suggest no evidence of 

pleiotropic effect and our sensitivity analysis support the 

causal associations detected by the main MR analysis. 

One of the most interesting findings from the present 

study is the absence causal association of BMI and AD 

risk, however the bi-directional MR found causal 

association between AD and decreased BMI. This 

finding supports the hypothesis of reverse causation (the 

negative confounding effect of AD related weight loss) 

might be an explanation for the obesity paradox on AD 

risk [4]. 

 

There are several important strengths to note for the 

current study. Our MR analysis results may provide 

evidence of the causal role of five risk factors in the 

development of AD since the influence of traditional 

confounding factors in observational studies is 

minimized/eliminated. Since the alleles follow the 

principle of random distribution when forming 

gametes at meiosis, the causal effect of genotype on 

disease in MR studies will not be distorted by the 

confounding factors, a major limitation of traditional 

observational studies. By leveraging the summary 

statistics from the large available GWASs for multiple 

risk factors and AD, we were able to increase our 

discovery power. Furthermore, previous studies have 

shown that performing the MR analysis by using 

summary statistics data and by using individual-level 

data have similar efficiency [19]. Finally, the 

application of MR-BMA ranked the potential risk 

factors for AD, which could provide certain genetic 

evidence in disease prevention and curation. 

 

However, there may also be some limitations. First, 

we included the mixed population data for lipid traits 

instead of European only, because the dataset for lipid 

we included in our analysis was the largest to date, 

and the individuals from other ethnicities only take up 

4% (Table 1). Additionally, our MR results does not 

mean the potentially causal risk factors identified are 

playing truly causal roles in the AD susceptibility, we 

were trying to provide some novel insights into 

underlying mechanisms of the AD and hope to 

provide certain genetical evidence to disease 

prevention. 

 

CONCLUSIONS 
 

In conclusion, by combining mvMR and MR-BMA 

together, we successfully identified five potential 

causal risk factors for AD and we also ranked and 

prioritized two of them for AD, which might provide 

us novel insights into the causal mechanisms of AD. 

Our results demonstrate that by increasing the years of 

schooling and HDL cholesterol level, decreasing total 

cholesterol, LDL cholesterol and FG levels could 

decrease the risk of developing AD. 

 

MATERIALS AND METHODS 
 

Genetic IVs selection and validation 
 

Summary statistics for risk factor-associated SNPs 

were extracted from the large publicly available 

GWAS datasets to date performed by the 

corresponding Consortia in European populations 

(Table 1). For the implementation of mvMR, we 

selected SNPs that achieved genome-wide significance 

(p < 5 × 10
−8

) in the GWAS datasets as for each risk 

factor as IVs. Effect estimates of these risk factor-

associated SNPs on the risk of AD were assessed using 

the summary statistics of 74,046 European individuals 

for AD from The International Genomics of 

Alzheimer's Project (IGAP) Consortium [15]. The 

European samples from the 1000 genomes project 

reference panel were adopted to estimate linkage 

disequilibrium (LD) between chosen SNPs. When 

target SNPs were not available in the outcome study, 

we used proxy SNPs that were in high LD (r
2
 > 0.8) 

with the SNPs of interest. 

 

To ensure the SNPs used as IVs for risk factors are 

not in LD with each other, a vital assumption of MR, 

we calculated pairwise-LD between all our selected 

SNPs in the 1000 Genomes European reference 

sample using PLINK 1.90 [16]. For all pairs of SNPs 

determined to violate the independence assumption 

with r
2 

> 0.001 we retained only the SNP with the 

smaller association p-value. To ensure the effect of a SNP 

on the exposure and the effect of that SNP on the outcome 

correspond to the same allele, we harmonized the effect 

of these instrumental SNPs by using a function that 

ensures all corresponding risk factors and outcome 

(AD) alleles are on the same strand where possible. If 

they are not, then the function will flip alleles and  

use allele frequency to infer the strand of  

palindromic SNPs. 
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mvMR estimates 

 

In the current study, standard inverse-variance-

weighted (IVW) fixed-effects [17] analysis was used 

to estimate the causal effect of the multiple related 

risk factors on the BMD traits. After obtaining the 

selected instruments for each exposure, all exposures 

for those SNPs were then regressed against the 

outcome together, weighting for the inverse variance 

of the outcome to ensure the genetic instruments with 

more precise association receive more weight in our 

analysis.  

 

Sensitivity analysis 

 

As sensitivity analysis, weighted median estimator and 

maximum likelihood method (MLM) [18] were also 

performed to provide more robust MR estimates. MR-

Egger approach [19] was also used to assess the 

potential pleiotropic effects among the selected IVs. A 

Bonferroni corrected threshold with P < 0.006 (0.05/9) 

was considered to be significant causal association, 

and 0.006 < P < 0.05 was considered suggestive 

evidence for causal association. Besides, to orient  

the causal relationship between them, we also 

performed the bi-directional MR analysis (P < 0.05) 

and MR Steiger directionality test [20]. 

 

MR-BMA estimates 

 

Following the mvMR analysis, MR-BMA was applied 

to prioritize the most causally related risk factors for 

AD. MR-BMA assumes that the true causal risk 

factors are very few and it considers the risk factor 

selection as a variable selection problem in the linear 

regression model. The approach considers all possible 

combinations of the risk factors and generates 

posterior probability (PP) for each specific model, 

where PP means the probability of including a 

specific risk factor in the model. Furthermore, MR-

BMA adopts BMA which computes a marginal 

inclusion probability (MIP) for each risk factor, where 

MIP refers to the sum of the PP over all possible 

models where the risk factor is present. Then MR-

BMA will compute the model-averaged causal 

estimate (MACE) for each risk factor by ranking all 

the risk factors according to the corresponding MIP. 

Finally, MR-BMA will prioritize the best model by 

the PP value for each individual model. All the analyses 

were implemented in R software environment. 

 

Availability of data and materials 

 

The datasets generated and/or analyzed during the current 

study are included in this published article and provided 

in Supplementary Table 1 of Supplementary Materials. 
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Please browse Full Text version to see the data of Supplementary Table 1. 


