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Sarcopenia is a syndrome characterized by progressive 

and generalized loss of skeletal muscle mass and 

strength and, according to the European Working Group 

on Sarcopenia in Older People (EWGSOP), is 

accompanied by a risk of adverse outcomes such as 

physical disability, poor quality of life and death [1]. As 

the population has aged, sarcopenia, which is a potential 

risk factor for weakness, disability and death in elderly 

individuals, has become an important topic [2]. Caloric 

restriction (CR), a regimen in which caloric intake is 

reduced by 20-50% without causing malnutrition, is a 

classical antiaging intervention [3, 4]. Therefore, 

research to determine whether CR can delay muscle 

aging is important for the prevention and treatment of 

sarcopenia in elderly individuals. In this article, the 

related research on this topic and the possible 

mechanism through which CR delays sarcopenia are 

reviewed. 
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ABSTRACT 
 

Sarcopenia is a potential risk factor for weakness, disability and death in elderly individuals. Therefore, seeking 
effective methods to delay and treat sarcopenia and to improve the quality of life of elderly individuals is a 
trending topic in geriatrics. Caloric restriction (CR) is currently recognized as an effective means to extend the 
lifespan and delay the decline in organ function caused by aging. In this review, we describe the effects of CR on 
improving muscle protein synthesis, delaying muscle atrophy, regulating muscle mitochondrial function, 
maintaining muscle strength, promoting muscle stem cell (MuSC) regeneration and differentiation, and thus 
protecting against sarcopenia. We also summarize the possible cellular mechanisms by which CR delays 
sarcopenia. CR can delay sarcopenia by reducing the generation of oxygen free radicals, reducing oxidative 
stress damage, enhancing mitochondrial function, improving protein homeostasis, reducing iron overload, 
increasing autophagy and apoptosis, and reducing inflammation. However, the relationships between CR and 
genetics, sex, animal strain, regimen duration and energy intake level are complex. Therefore, further study of 
the proper timing and application method of CR to prevent sarcopenia is highly important for the aging 
population. 
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SUMMARY OF THE CURRENT 

SARCOPENIA SITUATION 
 

Epidemiological investigations have indicated that the 

muscle mass of the human body decreases by 

approximately 1.5% yearly after the age of 50 and by 

2.5-3.0% yearly after the age of 60 [5, 6]. The incidence 

rate of sarcopenia among individuals over 80 years old 

is as high as 50% [7]. Studies have shown that a 10% 

decrease in muscle mass leads to a decrease in immune 

function and an increase in the risk of infection. A 20% 

reduction in muscle mass results in muscle weakness, a 

decreased ability to participate in activities of daily 

living, and an increased risk of falling. A 30% reduction 

in muscle mass results in disability, loss of independent 

living ability, and failure of wound and pressure ulcer 

healing. A 40% reduction in muscle mass results in a 

markedly increased risk of death from pneumonia, 

respiratory dysfunction, etc. [8]. In addition, muscle is a 

protein repository and the primary tissue site of 

glycolipid metabolism. Muscle is responsible for the 

consumption of nearly 80% of the body’s glucose 

content, and its resting metabolic rate accounts for 30% 

of the entire body’s resting metabolic rate [9]. 

 

The main manifestations of sarcopenia in elderly 

individuals are a decreased cross-sectional area of muscle 

fibers and reduced muscle strength and function [10]. 

Clinical studies have shown that the reduction in muscle 

mass is much greater in the lower limbs than in the upper 

limbs [8]. Gait speed or the short physical performance 

battery (SPPB) are commonly used to assess muscle 

function [11]. Muscle strength tends to decrease with age, 

as manifested by reduced grip strength and knee joint 

extension, weakened hip joint bending activity, decreased 

pace, and increased time to maximal muscle contraction 

compared with those of young individuals [12]. 

Additionally, the number and the proliferation and 

differentiation abilities of muscle stem cells (MuSCs), 

which play an important role in muscle cell regeneration, 

are reduced. The number of MuSCs in aged mice is 50% 

lower than that in young mice [13]. 

 

Currently, the treatment methods for sarcopenia remain 

limited to improving nutrition and enhancing exercise. 

Seeking effective methods to delay and treat sarcopenia, 

thus improving the quality and prolonging the life of 

elderly individuals, has become a trending research 

topic in modern geriatric medicine. 

 

EFFECT OF CALORIC RESTRICTION ON 

SARCOPENIA 
 

CR has recently been found to not only extend the 

lifespan but also reduce or delay the occurrence of 

aging-related diseases [14]. Organisms in CR 

experimental groups have shown less pathological 

damage, lower disease risk during aging, longer 

lifespans and better maintenance of metabolic health 

than those in the corresponding control groups. For 

example, in yeast, reducing the glucose content in the 

culture medium from 2% to 0.5% significantly extended 

both the chronological and replicative lifespans [15]. 

The above conclusions have been confirmed in early 

studies of relatively simple model organisms (including 

yeast, nematodes, fruit flies, etc.), and subsequent 

studies have shown that dietary restriction is also 

effective in mammals such as mice and primates [3, 16–

18]. More interestingly, research on nematodes 

published in Cell in 2014 revealed that this benefit 

could not only be realized in the present generation but 

also be passed on to future generations [19]. In addition, 

the risk of sarcopenia, type 2 diabetes, cancer and 

cardiovascular diseases was significantly decreased in 

rhesus monkeys in the CR group compared with those 

in the control group [20]. Can CR improve sarcopenia 

in elderly individuals? This review elaborates on this 

issue based on the aspects shown in Figure 1. 

 

Caloric restriction maintains muscle mass and 

muscle homeostasis 

 
Muscle fibers can be divided into three types according 

to their metabolic energy conversion rate: fatigue-

resistant slow-twitch type I muscle fibers, fast-twitch 

type IIa fibers and type IIb, or “intermediate” fibers [21]. 

Muscle protein synthesis decreases and the muscle 

protein degradation rate increases with age. Studies have 

shown that with aging, the levels of hormones related to 

anabolism (e.g., testosterone, growth hormone, and 

insulin-like growth factor 1 (IGF-1)) decrease and the 

activities of enzymes related to protein decomposition 

(e.g., ubiquitin proteases, cathepsin and calcium 

activators) increase [22]. CR has a protective effect on 

muscular atrophy in rodents and primate mammals, and 

the number of satellite cells and the content of collagen 

VI were found to increase after short-term 35% CR or 

50% CR in 17-month-old rats [23]. Treatment with 

resveratrol, which mimics CR, was confirmed to prevent 

muscle loss and decreases in the size of myofibers, 

improve grip strength and abolish excessive fat 

accumulation in aged rats. In vitro, resveratrol inhibited 

the palmitate acid-mediated reductions in the myosin 

heavy chain content and myotube diameter [24]. Time-

restricted eating (TRE), a regimen in which all daily 

calories are consumed within a truncated period of time, 

is another regimen of CR. A recent report indicated 

equivalent lean mass accretion and increases in skeletal 

muscle thickness in the group subjected to daily TRE, in 

which all calories were consumed within an average of 

~7.5 h/day and a control group, in which calories were 

consumed within an average of ~13 h/day [25]. 
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Analysis of lateral thigh muscle slices showed that rats 

subjected to 50% CR retained a number and composition 

of fibers similar to that of rats in the control group and 

rats subjected to 35% CR by a mechanism possibly 

related to a reduction in inflammation [26]. Yang et al. 

found through further research that muscle protein 

quality may be improved by long-term CR through 

enhancement of autophagy and a reduction in 

inflammation to maintain muscle homeostasis [4]. The 

most recent research in rhesus monkeys showed that CR 

induced profound changes in muscle composition and the 

cellular metabolic environment. At the tissue level, CR 

maintained the contractile content and attenuated age-

related metabolic shifts among individual fiber types, 

accompanied by increased mitochondrial activity, altered 

redox metabolism, and reduced lipid droplet size [27]. 
 

Caloric restriction improves muscle function 
 

The muscle is an important motor organ that can guide 

the lever-like movements of the skeleton and enable the 

body to perform activities by shortening, elongating and 

contracting muscle fibers. Muscle function depends not 

only on the structure of the muscle tissue itself but also 

on ATP consumption to supply energy [28]. 

Mitochondria are the main sites of oxidative phospho-

rylation and ATP generation. Via intake of energy 

substrates (such as proteins, carbohydrates, and lipids), 

mitochondrial oxidative phosphorylation and ATP 

generation can be a source for the energy production, 

maintenance and metabolism required for athletic 

activities. Previous studies have indicated that skeletal 

muscle contraction accounts for most of the body’s total 

energy consumption [29]. Compared with 4-month-old 

mice, 30-month-old mice showed differences in the 

transcription and translation of up to 35 proteins, 

especially those related to redox homeostasis and iron 

loading [30]. Proteins participate in redox homeostasis; 

thus, mitochondria in aging muscle cells produce more 

free radicals than young muscle cells via cellular 

respiration. Recently, a study on cell metabolism 

showed that CR can extend the lifespan by regulating 

mitochondrial networks and promoting peroxisome 

production [31]. Elderly mice either lack cytochrome C 

oxidase (COX) activity or exhibit increased succinate 

dehydrogenase (SDH++) activity. However, the COX 

content was decreased and the activity of SDH++ was 

significantly decreased in the muscle of mice in the 

50% CR group compared with the muscle of mice in the 

35% CR and control groups [26]. Moreover, 

Almundarij et al. found that after caloric intake was 

reduced by 50% in rats, the work efficiency of muscle 

increased comparably, i.e., by 50%. Less energy was 

consumed to complete the same amount of work [32]. 

This effect may be due to the reduction in sympathetic 

nerve excitation and the conversion of endocrine 

hormones, thus increasing the energy supply available 

for muscle exercise and reducing the energy supply 

produced by heat. Limiting caloric intake can also 

significantly improve mitochondrial structure and 

function, increase the number of mitochondria and 

promote mitochondrial fusion, thus augmenting ATP 

synthesis and maintaining the body’s energy supply 

under starvation conditions. 

 

 
 

Figure 1. Effect of calorie restriction on sarcopenia. 
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Caloric restriction improves the regeneration 

ability and microenvironment of muscle stem 

cells 
 

MuSCs are one type of adult stem cell and are the most 

important participants in muscle regeneration [33]. In 

the neonatal period, MuSCs are highly activated and 

proliferate rapidly to support the rapid growth of the 

body. The number of MuSCs is the highest during this 

stage, accounting for approximately 30% of the total 

number of muscle nuclei. In adulthood, the number of 

MuSCs decreases, and the MuSCs present are usually in 

a resting state [34]. When muscle is damaged, the 

MuSCs in the resting state are activated, enter the 

proliferation stage and further differentiate and fuse to 

form myotubes, which exhibit an orderly arrangement 

and fuse to generate muscle fibers, thus forming 

muscles [35]. The number and the proliferation and 

differentiation abilities of MuSCs gradually decrease 

with increasing age. 

 

A recent study found that CR can improve the function 

of adult stem cells, including the regeneration ability of 

skeletal MuSCs. To study whether CR can affect the 

rhythmic activity of stem cells during aging, researchers 

conducted a 25-week comparative observation of aged 

mice (60 weeks) that consumed a control diet or a diet 

with 30% fewer calories than the control diet. In this 

study [36], except for the reduction in body weight, the 

aging characteristics related to epidermal and muscle 

tissue in mice were significantly ameliorated in the CR 

group compared with the control group; for example, 

the capsule cuticle thickness was decreased, the fur 

thickness was increased, and the number of skeletal 

MuSCs increased. Even more surprisingly, genes 

involved in inflammation or mitochondrial DNA 

(mtDNA) repair were not regularly transcribed in the 

aging skeletal MuSCs of mice in the CR group, while 

genes related to cell self-balance were regularly 

transcribed. In other words, CR restores the aging stem 

cells of mice to a state similar to that observed in young 

stem cells, thus delaying aging. 

 

Additional studies have indicated that not stem cells 

themselves but the stem cell microenvironment is the 

key factor mediating stem cell activation, proliferation 

and differentiation [37]. After short-term CR, the 

Notch signaling pathway can be activated in cells in 

the microenvironment, leading to increased expression 

of the stem cell-specific gene Pax7 in skeletal muscle 

and concurrent increases in mitochondrial number, 

oxidative respiratory chain enzyme expression and 

aerobic utilization rate in stem cells [38]. However, 

recent studies have reached different conclusions. 

Although CR increases the activity of stem cells, it 

leads to a delayed regeneration response to injury [13]. 

 

Possible mechanism by which caloric restriction 

delays sarcopenia 
 

CR delays sarcopenia via a complex mechanism. 

Current research generally focuses on the regulation of 

oxidative stress, mitochondrial function, inflammation, 

apoptosis and autophagy, as shown in Figure 2 [39–43]. 

 

 
 

Figure 2. Possible mechanism of calorie restriction delaying sarcopenia. 
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Caloric restriction alleviates the decline in 

mitochondrial function in skeletal muscle and 

decreases oxidative stress 
 

Mitochondrial dysfunction is an important factor leading 

to age-related muscular atrophy [44]. Considering the 

dependence of skeletal muscle on ATP, loss of 

mitochondrial function, which can lead to a decrease in 

strength and endurance, is especially obvious in skeletal 

muscle. Previous experimental evidence showed that the 

oxidative phosphorylation ability of muscle mitochondria 

decreases with age. Notably, point mutations in mtDNA 

in aging muscles accumulate continuously, resulting in 

electron transfer chain abnormalities and fiber atrophy 

[45]. MtDNA is particularly vulnerable to oxidative 

damage because it is localized near the electron transport 

chain (ETC) and lacks protective tissue proteins. In 

addition, with aging, the efficiency of the primary 

mechanism for removing small mtDNA bases (base 

excision repair, BER) in vivo decreases variably. 

Moreover, the content of mitochondrial reactive oxygen 

species (ROS) increases with muscle aging, which may 

be the main cause of mtDNA mutations [46]. Studies on 

different species have found that the mtDNA damage 

associated with sarcopenia occurs mainly in genes 

encoding components related to mitochondrial 

respiratory complexes I and IV, mitochondrial ETC and 

other processes [47]. Aging-related mtDNA deletion 

mutations in fibers usually manifest as morphological 

distortions, including segmental atrophy, fiber division 

and breakage. Importantly, CR can reduce and prevent 

mtDNA deletion mutations and increase the ETC protein 

content [48]. 

 

CR can preserve the integrity and function of 

mitochondrial structure via reducing oxidative damage. 

Previous studies have shown that CR reduces proton 

leakage and ROS generation in mitochondria in skeletal 

muscle while enhancing the expression of ROS 

scavenging-related genes. In addition, CR may alter the 

fatty acid composition of the mitochondrial membrane, 

reduce lipid oxidation and reduce proton leakage [46]. 

Lass et al. found that CR can also reverse the generation 

of superoxide anion radicals, lipid peroxidation and 

mitochondrial protein damage related to age in skeletal 

muscle [49]. Moreover, Drew et al. reported that CR 

can reduce oxidative damage to mtDNA in the 

gastrocnemius muscle [50]. Interestingly, in a recent 

population study, CR of 25% for 6 months not only 

increased the synthesis of skeletal muscle mitochondria 

but also reduced DNA damage in middle-aged, 

overweight healthy individuals [51]. The increase in the 

mitochondrial number can be explained as a positive 

adaptation promoted by CR, because a larger number of 

mitochondria reduces the workload per mitochondria, 

thus limiting oxidative radical generation. 

Caloric restriction inhibits iron accumulation in 

skeletal muscle 
 

Iron is an essential metal in the body and plays an 

important role in cellular biological activities, including 

oxygen and electron transport, drug metabolism, steroid 

and DNA biosynthesis, and other activities. Seventy 

percent of the iron in the body is stored in hemoglobin, 

and most remaining iron is stored in iron-containing 

proteins in the liver and in myoglobin in muscle cells 

[52]. Accumulating evidence shows that age-related 

iron overload underlies the pathogenesis of degenerative 

diseases, including Alzheimer's disease, Parkinson's 

disease, and sarcopenia, [53, 54]. 

 

Iron is an active metal with a high redox potential that 

can convert oxidant intermediates such as hydrogen 

peroxide to harmful oxygen free radicals. In addition, 

iron has been shown to catalyze the nitration of 

tyrosine residues, resulting in protein damage [55]. 

Excess iron can promote oxidative damage-mediated 

muscle deterioration, leading to muscle atrophy. Hofer 

et al confirmed the existence of iron overload in 

atrophic muscle [56]. In addition, studies have shown 

that the iron content increases with age in skeletal 

muscle mitochondria; moreover, addition of the iron 

chelator desferrioxamine was shown to delay oxidative 

damage and muscle atrophy in rats [54]. Notably, iron 

is more likely to accumulate under the sarcolemma 

than in muscle and commonly causes mtRNA 

oxidation, which increases the sensitivity of 

mitochondrial permeability transition pore (mPTP) 

opening, a process associated with apoptosis [57]. 

 

CR has been shown to reduce iron accumulation and 

oxidative damage in the kidneys of aged rats [58]. 

Recently, age-related iron accumulation in the 

gastrocnemius muscle was reported, and CR was found to 

ameliorate iron accumulation and oxidative damage to 

nucleic acids in mice [59]. Interestingly, inhibition of iron 

deposition by CR was positively correlated with forelimb 

grip strength, suggesting that iron accumulation in the 

muscles of elderly individuals may lead to loss of 

function. Therefore, the decrease in iron overload by CR 

may be an important direction for sarcopenia intervention. 

 

Caloric restriction inhibits skeletal muscle 

apoptosis 
 

Accumulating evidence suggests that apoptosis may 

constitute a fundamental mechanism driving the onset 

and progression of sarcopenia [60]. Apoptosis is a 

process that ultimately leads to DNA fragmentation 

through specific signaling pathways, including nuclear 

DNA rotation, nuclear condensation, proteolysis, 

submembrane and cell division, apoptotic body 
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formation, and phagocytosis by macrophages. There are 

two main pathways of apoptosis: activation of the 

apoptotic enzyme caspase through extracellular 

signaling and activation of caspases through the release 

of mitochondrial apoptosis activators [61]. These 

activated caspases can degrade important proteins in 

cells and induce apoptosis [62]. 

 

The gene expression and cleavage of pre-caspase-3 in 

the gastrocnemius muscle were significantly reduced in 

CR mice compared with control mice [63]. In addition, 

CR increased the content of apoptosis inhibitors in the 

cytoplasm. Recently, CR was also found to inhibit death 

receptor-induced myocyte apoptosis initiated by TNF-a 

in aged rats [64]. Further studies confirmed that the 

inhibitory effect of CR was achieved by blocking 

caspase-8 expression downstream of TNF-a [65]. 

 

Caloric restriction suppresses mammalian 

target of rapamycin (mtor) signaling 

 

Experimental data strongly suggest that mTOR activity 

increases during aging, beginning in middle age and 

resulting in progressively altered mitochondria, in turn 

leading to mitochondrial oxidative stress and thus the 

induction of catabolic processes, including protein 

degradation, apoptosis, and necrosis [66]. This elevated 

catabolic activity results in muscle fiber loss, atrophy, 

and damage [67]. Therefore, mTOR inhibition may 

delay the progression of sarcopenia by modulating 

multiple age-associated pathways. 

 

A decade ago, rapamycin, a mTORC1 inhibitor, was 

reported to extend the lifespan of mice [68]. 

Rapamycin’s effect on aging skeletal muscle, however, 

was not explored until recently. Inhibition of mTOR 

with rapamycin prevents age-related muscle loss [69]. 

For example, rapamycin blocks GDF expression in 

elderly mice and prevents age-related muscle fiber loss 

[70]. At the cellular level, rapamycin decreases the 

number of myocytes with abnormal desmin 

accumulation and decreases the amount of desmin in 

muscle tissue. Recent evidence has shown that CR 

downregulates mTORC1 signaling in skeletal muscle 

independent of dietary protein intake [71]. Moreover, a 

paper published in 2019 indicated that the effects of CR 

on mTOR signaling in skeletal muscles are age-

dependent [72]. CR altered mTOR signaling in the 

soleus muscles in middle-aged rats but not in young and 

adult rats. 

 

Caloric restriction activates autophagy 
 

Autophagy is essential for overall cellular health because 

in some residual tissues, the lack of an autophagic 

response gradually results in the accumulation of 

damage within the cells, eventually leading to cell death 

and loss of tissue function. Thus, in both worm and  

fly studies, the proper initiation and execution of 

autophagy has been found to be associated with 

increased longevity [73].  

 

The effect of autophagy on lifespan and cellular 

homeostasis is widely supported. Studies on the skeletal 

muscle cell line C2C12 showed that nutrient restriction 

leads to autophagy, which may be driven by at least two 

signaling pathways: Class III phosphoinositide 3-

kinase-Beclin1 complex formation and reduced mTOR 

synthesis [74]. Another study showed that mTOR 

deficiency may extend the lifespan of worms by 

increasing autophagy [75]. Moreover, in vivo studies 

have demonstrated that CR can increase autophagic 

responses in skeletal muscle [76]. Additional studies 

have shown that CR regulates the transcription factor 

Forkhead box O3 (FOXO3), which is associated with 

human longevity [77], and recent studies have shown 

that muscle atrophy is associated with the expression of 

the transcription factor FOXO3 and other downstream 

target skeletal muscle atrophy-related proteins, namely, 

Atrogin 1 and MuRF1 [78]. Mammucari et al. [79] 

found that the autophagic process driven by FOXO3 

transcription factors in skeletal muscle cells can 

ultimately lead to autophagic proteolysis by 

deactivating or rapidly inducing the transcription of 

BNIP3 and LC3. 

 

Controversies regarding the delay of sarcopenia 

by caloric restriction 
 

Although some evidence indicates that CR reduces or 

delays many of the age-related defects that occur in 

rodent skeletal muscle, the levels of nutrition, different 

contents of dietary macronutrients, different timing and 

different animal strains used in these studies have 

potentially important effects on the observed effects of 

CR [80]. Currently, no consensus has been reached 

regarding the use of micronutrient supplementation in 

CR studies, and protocols vary widely [81]. Boldrin et 

al. investigated the effect of short-term (2.5 months) and 

longer-term (8.5 and 18.5 months) CR on skeletal 

muscle in male and female C57BL/6 and DBA/2 mice 

[23]. Overall, CR extended the lifespan of C57BL/6 

mice but not DBA/2 mice. The changes induced by CR 

did not persist with time and were independent of the 

dissimilarities between the two mouse strains. 

Additionally, short-term CR increased the number of 

satellite cells and collagen VI content in muscle but 

resulted in a delayed regenerative response to injury. 

Consistent with this finding, the in vitro proliferation of 
satellite cells derived from these muscles was reduced by 

CR. In addition, Mitchell et al reported that the 

interaction and contribution of each of these factors may 
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impact the overall energetic balance of the organism, 

which determines the outcome of the intervention on 

health [82]. In contrast, in a study by Park et al., CR was 

found to promote muscle loss in aged mice [83]. 

Moreover, studies have shown that overweight and even 

obese elderly individuals live longer than normal-weight 

individuals. The survival times of overweight and obese 

individuals were longer than those of normal-weight 

individuals (2.3 years for men and 4.6 years for women) 

[84]. In addition, both men and women with overweight 

(BMI 25-30 kg/m2) had the longest disability-free life 

span [85]. Hence, CR should be used with caution in 

elderly adults, as excessive CR promotes muscle loss 

and a low body mass index and increases the risk of 

disability and mortality in elderly individuals. 

 

CONCLUSIONS 
 

Sarcopenia is a prominent manifestation of human 

weakness and aging, presenting as the loss of skeletal 

muscle mass and strength with aging. Delaying aging 

while promoting healthy aging has historically been a 

challenge for humans. The protective effects of CR on 

sarcopenia are manifested as improved protein quality, 

maintenance of muscle strength, and enhanced muscle 

function, and these effects may be achieved via 

mitigation of cellular oxidative stress, promotion of 

mitochondrial function, alleviation of the inflammatory 

response, inhibition of apoptosis and activation of 

autophagy, and other mechanisms. 

 

However, the relationships between CR and genetics, 

sex, animal strain, regimen duration and energy intake 

level are complex. From a translational therapeutic 

perspective, determining the proper timing and 

application method of CR to prevent sarcopenia in 

humans, especially in elderly adults, is challenging, as 

CR exacerbates weight loss in elderly individuals. 

Therefore, further study on CR and sarcopenia is highly 

important for the aging population. 
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