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INTRODUCTION 
 

At the end of 2019, the novel severe acute respiratory 

syndrome coronavirus (SARS-CoV-2) emerged in Wuhan, 

China, as the causative agent of Coronavirus Disease 2019 

(COVID-19) [1, 2]. The most prominent clinical symptom 

of COVID-19 is extensive lung damage, accompanied by 

respiratory distress of varying severity [3]. Within only 2-3 

months, SARS-CoV-2 caused a worldwide health 

emergency and a pandemic, by infecting over 15 million 

people and, at the point of writing of this text, taking more 

than 633,000 lives. Within this short period, the pandemic 

has also triggered an avalanche of social and economic 

consequences that promise to continue growing, and that 

will scar our society [1].  

SARS-CoV-2 belongs to the family of coronaviruses 

(CoV), together with SARS-CoV and Middle East 

respiratory syndrome CoV – two highly pathogenic viral 

strains that caused significant medical turmoil in the 

recent past and were responsible for considerable lethality 

[4]. The same family also includes several harmless 

viruses (HKU, 229E) [5]. The coronavirus family shares 

some overall similarities with the influenza A virus (IAV) 

H1N1 in the context of immune system activation, which 

includes allowing interferon-stimulated genes (ISG) 

effector response, responsible for the first defense against 

viral infection [6]. 

 

SARS-CoV-2 is a large and enveloped virus with 

positive-sense, single-stranded RNA genome [7]. The 
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infection is initiated by the binding of the viral spike (S) 

protein to ACE2 receptor at the host cell surface (Figure 

1) [8], followed by the internalization and replication of 

the virus, culminating in the cell lysis and the exit of 

newly formed viral particles [9].  

 

Although no treatment or preventive measures against 

SARS-CoV-2 exist at the present moment, the scientific 

community is working tirelessly, producing daily results 

on the molecular properties of the new virus and the 

plethora of its interaction with the host cells and tissues. 

 

While at the clinical level, the respiratory problems are 

one of the main hallmarks of the disease, the molecular 

alterations among the severe cases of COVID-19 

include signs of hyperinflammation characteristic of 

immunopathologies. The most striking example is a 

systemic inflammatory response known as cytokine 

release syndrome (or cytokine storm) due to massive T 

cell stimulation [10].  

 

Here, we address the major clinical features of COVID-

19 and discuss its potential effects on the aged 

population, from the perspective of its incidence and 

severity, as well as long-term effects in developing age-

related diseases of the central nervous system.  

On the one hand, aging affects the severity of COVID-

19 and, on the other, is the leading risk factor for the 

development of neurodegenerative diseases [11]. 

Although the link between the SARS-CoV-2 and 

neurodegeneration has yet to be established, the 

cocktail of infection stress, chronic inflammation, and 

advanced chronological age may cause multiple 

detrimental unforeseen consequences to the risk and 

severity of neurodegenerative diseases. Therefore, it 

needs to be seriously considered so that we can be 

prepared to deal with future outcomes of the ongoing 

pandemic. 

 

Clinical aspects of SARS-CoV-2 infection 
 

The clinical spectrum associated with SARS-CoV-2 

infection varies among the infected population 

depending on the time point of the diagnosis. At the 

moment of seeking medical attention, the most common 

symptoms are fever (>37.4°C), fatigue, dry cough, 

myalgia, and dyspnea [12]. The reduced ability to smell, 

or hyposmia, has been characterized as a major 

symptom in otherwise mild cases [13]. The other typical 

symptoms associated with a common viral upper 

respiratory infection, such as nasal congestion and 

rhinorrhea, are very uncommon (< 5%) [14, 15]. 

 

 
 

Figure 1. SARS-CoV-2 spike protein binds to the ACE2 receptor to enter the cells. Viral spike protein binds to the ACE2 receptor in 
the human cell membrane, followed by the internalization of the virus. SARS-CoV-2 consists also of the ribonucleoprotein, envelope protein 
and a membrane protein. The image was generated using CellPAINT Software [100]. 
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The SARS-CoV-2 infection primarily affects adults, 

with fewer cases reported in children of 15 years or 

younger [15, 16]. The virus enters the host through 

the upper airway, and the viral load peaks at 

approximately day ten after the onset of symptoms 

[17]. The highest spread during the initial phase of 

the epidemic in Wuhan was observed as a human-to-

human transmission among otolaryngologists 

[18]..Subsequent studies conducted on infected 

patients demonstrated high SARS-CoV-2 titers in the 

mucosa of the nasal and oral cavity [19], which 

represents the way SARS-CoV-2 enters the host, 

most readily transmitted by respiratory droplets  

and direct contact. The asymptomatic form of 

transmission may have contributed to the rapid 

spread of the disease [12], but there is still no 

scientific consensus regarding this mechanism  

[20–22]. 

 

 A significant portion of patients infected with SARS-

CoV-2 also shows neurological symptoms such as 

headache, nausea, and vomiting (<5%). Other described 

neurologic manifestations associated with SARS-CoV-2 

infections are impaired consciousness and cerebro-

vascular disease [15, 23]. The first case of meningitis/ 

encephalitis associated with SARS-CoV-2 infection was 

also recently reported [24].  

 

SARS-CoV, a closely related virus, enters into human 

host cells mediated mainly by the angiotensin-

converting enzyme 2 (ACE2) receptor, expressed in 

human airway epithelia and lung parenchyma, but also 

present in vascular endothelial cells, kidney cells, 

cells from the small intestine, and the brain (Figure 1) 

[25, 26]. Usually located on type I and II alveolar 

cells in the lung, the ACE2 receptor was also found to 

bind SARS-CoV-2 with an estimated binding affinity 

10-20 times greater than the one of SARS-CoV [27]. 

The mechanism of entry into the host target cells, for 

both SARS-CoV and SARS-CoV-2, is warranted by 

the spike (S) protein [28, 29]. When attached to 

ACE2, the cellular transmembrane serine protease 2 

(TMPRSS2) primes the spike protein to trigger the 

entry of the virus into the cell [19, 29]. Therefore, the 

spread of SARS-CoV-2 also depends on TMPRSS2 

activity [29]. 

 

Neurotropism highlights the prerequisite of awareness 

towards SARS-CoV-2 entering the central nervous 

system. The neuroinvasive propensity of CoV has been 

documented for almost all of the β-CoV, including 

SARS-CoV [30], MERS-CoV [31], HCoV-229E [32] 

and HCoV-OC43 [23]. Evidence suggests that the virus 

might first invade peripheral nerve terminals, thus 

gaining access to the central nervous system via 

synapse-connected route [33, 34]. 

SARS-CoV-2: immunosenescence and increased 

severity among older adults 
 

Epidemiological studies show that older adults are the 

most affected by this pandemic [35], rendering the 

chronological age a risk factor in COVID-19. 

Moreover, studies reveal the variable host resistance 

between patients from the same age groups. 

 

Casualties in all age groups are also associated with pre-

existing conditions such as reduced lung function, 

cardiovascular problems, and oncological disease 

spectrum. However, other factors might affect the 

outcome of patients with COVID-19 [36], such as 

variable genetic background and epigenetic pre-

disposition. All these effectors converge at the level of 

immune system attenuation.  

 

Since the beginning of the SARS-CoV-2 outbreak, 

parallels were made with the influenza A virus H1N1 

infection, due to its contributions to the mortality of the 

elderly. Influenza remains a serious global health threat 

that impacts all countries, with 290,000-750,000 

influenza-related respiratory deaths worldwide every 

year [37].  

 

Senescence defines a stable growth arrest induced when 

cells reach the end of their replicative potential or are 

exposed to various stressors, such as infection. 

Senescent cells accumulate in aging tissues and 

contribute to the development of age-related disorders 

[38]. However, it was only in 2011 when evidence was 

presented showing that the clearance of senescent cells 

can delay aging-associated diseases [39]. This discovery 

confirmed senescence as a hallmark of aging.  

 

Like other tissues, the immune system is characterized 

by the decline of its functions with age (immuno-

senescence), reflected not only in increased cancer 

prevalence, autoimmune and other chronic diseases but 

also in greater susceptibility to infections [40]. 

Understood as a gradual deterioration of the immune 

system brought on by natural age advancement, 

immunosenescence originates as a disability of T  

Cells (CD4 as well as CD8 positive) to function 

correctly [41].  

 

Senescence compromises the ability of CD4+ T cells to 

correctly activate, differentiate, proliferate, and respond 

to the H1N1 virus [42]. Aged CD4+ T cells accumulate 

intrinsic defects that contribute to a reduced helper 

function during influenza infection [43, 44]. In vivo 

studies conducted on senescent mice have evidenced 

low H1N1 influenza-specific antibody titers after 

influenza infection that reflects the age-related lowered 

immune response [44].  
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Viral infections are also known as stressors that can 

induce senescence in different cell lines. The Dengue 

virus can cause senescence in endothelial cells [45], and 

the Measles virus leads to cellular senescence in normal 

and cancer fibroblasts [46]. Senescent cells can play a 

role during viral infection by limiting the proliferation 

of damaged cells. In fact, these cells help to control the 

viral replication, while in experimental studies, 

senescence induction restricts the infection in mice [47]. 

Moreover, the NS1 protein of the avian influenza H7N9 

virus can induce growth arrest and cellular senescence 

in Neuro2a cells [48]. Neurons infected with influenza 

A virus can respond to the infection by producing 

oxygen radicals and nitric oxide (NO) [49]. NS1 protein 

leads to an increased release of NO in Neuro2a cells 

which causes a reduced proliferation, enlarged cell 

morphology, an up-regulation of IL-6 and IL-8 as well 

as increased SA-β-gal activity, all features of senescent 

cells [48]. 

 

Immunosenescence offers insights into the differential 

resistance of young vs. old individuals, as well as men 

vs. women, to SARS-CoV-2 infection [50]. The 

depletion of B lymphocyte-driven acquired immunity is 

a characteristic of old age, affecting predominantly men 

[51]. Aging diminishes the upregulation molecules 

essential for T cell priming and also reduces antiviral 

interferon (IFN) production by alveolar macrophages 

and dendritic cells (DCs) [52]. 

 

In summary, impairment in number, function, and 

activation of cells involved in the immune response 

[53–55] and aging of hematopoietic stem cells [56] are 

major phenotypes of the immune system associated 

with immunosenescence (Figure 2). Ultimately, these 

changes lead to a process termed "inflammaging," 

where low-grade inflammation is present at an 

advanced age and is associated with a worsening of 

chronic progressive medical conditions, such as 

congestive heart failure [57], and the onset of age-

related diseases involving the central nervous system 

(e.g., Alzheimer's disease) [58]. When the age-

associated inflammation persists in the long-term, it 

may lead to oxidative stress in various tissues, while 

also triggering organelle dysfunction (e.g., 

mitochondrial and lysosomal), which could, in turn, 

increase the cell vulnerability to infection.  

 

Inflammaging: an ally of SARS-CoV-2 
 

An age-related decline in cellular repair mechanisms 

causes accumulation of damage at genome and 

proteome levels. This can lead to systemic changes in 

the immune system and increase pro-inflammatory 

cytokine production (interferon, interleukin, etc.), 

resulting in inflammaging [57]. The increase in cytokine 

production originates from the tissue macrophages, 

which initiate and regulate the inflammation [59]. 

Macrophages may, therefore, play significant roles in 

inflammaging. Some of the cellular hallmarks of aging, 

such as deregulated nutrient signaling and mito-

chondrial dysfunction, are also implicated in inflam-

maging, thus promoting the inflammatory environment 

[60].  

 

Macrophages are also affected by aging, characterized 

mainly by the reduced potential for phagocytosis, and a 

decline in the gut barrier function [61]. Alveolar 

macrophages (AM) maintain lung homeostasis and play 

an important role in the influenza infection [62]. In 

particular, aged AM have a reduced power to control 

lung damage during influenza infection. During the 

progress of aging, the number of AM is reduced, 

leading to a lowered ability for phagocytosis [63]. 

Previous studies have also shown a decline of innate 

immune receptor functions and a substantial increase in 

viral replication efficiency after influenza infection in 

aged or senescent cells [64]. While the detailed 

mechanisms remain to be further studied, a reduction of 

the interferon (IFN) response in senescent cells after 
 

 
 

Figure 2. Immunosencescence and inflammaging create a 
vicious cycle creating an environment favorable for the 
development of neurodegenerative diseases. Such a 
relationship between these processes is mainly characteristic of 
the elderly and is the most likely reason for the increased 
incidence and adversity of COVID-19 among the elderly. 
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viral infection may play an important role. Moreover, a 

significant decrease in percentages and numbers of CD8+ 

T cells specific for at least one of the dominant epitopes of 

the influenza virus (influenza A nucleoprotein, NP, 

epitope) is typical for aged mice [65].  

 

Pro-inflammatory cytokines play an important role in 

aging processes. The activation and the high levels of 

inflammatory cytokines such as IL-1, IL-6, TNF, and 

IFN-gamma are linked with morbidity and mortality in 

older patients [66]. In particular, IL-6 is a multi-

functional cytokine produced in response to tissue 

damage and infections by multiple cell types [67]. 

Previous studies demonstrate its critical role in 

promoting lung tissue inflammation [68] and 

stimulating viral replication [69]. Moreover, elevated 

IL-6 is correlated with respiratory failure [10], and high 

concentrations of IL-6 in the serum is considered one of 

the hallmarks of severe MERS-CoV infections [70].  

Additionally, an increase of IL-6 levels predicts adverse 

outcomes of COVID-19, underscoring inflammaging as 

the main ally of SARS-CoV-2 [35, 71]. Moreover, a 

recent study investigated the occurrence of cytokine 

storm in COVID-19 patients, also focusing on 

immunological characteristics of the response to 

COVID-19. In both mild and severe cases of COVID-

19, increased levels of IL-6 are typical, while this is not 

the case among asymptomatic patients [10].  

 

Inflammaging is also consistent with the gender bias of 

SARS-CoV-2. The more robust age-dependent 

activation of the innate pro-inflammatory pathways in 

COVID-19 is demonstrated in men compared to women 

[51], which is consistent with a higher rate of 

inflammaging among men [72]. A different situation 

among centenarians lends further support to the 

inflammaging importance for COVID-19 progression. 

Distinct longevity traits characterize centenarians, anti-

inflammatory markers being the most prominent 

example, likely protecting them against the adverse 

outcomes of sustained inflammation as well as from the 

most severe forms of COVID-19 [73, 74].  

 

Another critical factor is the impact of senescence in the 

lungs. Although COVID-19 shows symptoms across the 

entire body, the most prominent symptoms are respiratory 

and those associated with respiratory illness. The lung 

function tends to decrease with age having decreased 

alveolar elasticity [75], and increased senescence of 

epithelial cells and fibroblasts render cells frail to injuries 

such as the one caused by age-associated inflammation 

and viral infection [76]. Resident immune cells, most 

notably neutrophils, are also present in the lungs and are 

subject to immunosenescence. These cells become less 

functional due to age-associated chronic exposure to 

inflammatory cytokines [77], ultimately leading to fibrosis 

and aberrant tissue regeneration. The senescence 

phenotype, however, can be controlled by external factors, 

such as smoking [78], thus increasing the pool variability 

found in patients from the same age. In summary, the 

literature reviewed above may hold the key as to why the 

combination of immunosenescence and inflammaging 

does not allow an efficient response to the invasion of 

SARS-CoV-2 and why older individuals with co-

morbidity are more prone to adverse outcomes of 

COVID-19 [79]. 
 

Diminished immune functions characterize 

immunosenescence, and inflammaging leads to a lack of 

anti-inflammatory modulators. The existing evidence 

suggests that inflammaging and immunosenescence, 

taken together, have vital roles in the decline of immune 

system functions to fight SARS-CoV-2 infection and 

lead to severe COVID-19 in older subjects (Figure 2). 
 

SARS-CoV-2: a possible tipping point for 

inflammaging and neurodegeneration 
 

Aging is the most significant risk factor for the 

development of neurodegenerative diseases such as 

Parkinson's disease (PD), Alzheimer's disease, or 

amyotrophic lateral sclerosis (ALS). In PD, 

inflammation in the central nervous system (CNS), i.e., 

neuroinflammation, plays a vital role in the severity of 

the pathogenesis and is considered a key player in nigral 

cell loss [80]. 

 

Neuroinflammation is mainly regulated by glial cells, 

such as microglia and astrocytes. Microglia are 

considered the resident macrophages of the brain, 

therefore representing the first line of immune defense 

in the CNS. Moreover, they perform clearance of the 

metabolic waste, damaged cells, and pathogens, thus 

regulating both the pro-inflammatory and anti-

inflammatory response [81]. During pathogenesis, 

microglia become activated due to cellular damage and 

the presence of protein aggregates in their surroundings, 

triggering the production of chemokines and cytokines 

such as TNF-α, IL-6, IL-1β, IFN-γ and CCL2 [82]. The 

resulting oxidative stress amplifies the damage to 

cellular components and further activates neighboring 

glial cells, thus causing a chronic activation [83]. 

Moreover, recent studies show that microglia can play a 

crucial role in defense of olfactory neuronal cells 

against viral infection [84]. Although data regarding the 

role of chemokines in SARS-CoV-2 infection is still 

scarce, it is known that infected epithelial cells 

upregulate genes encoding multiple chemokines such as 

CXCL1, CXCL3, CXCL6, CXCL16, and CXCL1. This 

increases the immune activation and recruitment of 

immune cells to the infected tissue, thus representing a 

potential therapeutic target [85]. 
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It has been long established that peripheral 

inflammation associated with chronic diseases increases 

the production of cytokines, in particular IL-1β, in the 

CNS [86]. However, viral infections, such as with 

H1N1, can cause microglial activation [87]. This, in 

turn, increases the risk of developing diseases such as 

PD [88] and may trigger protein aggregation [89]. 

Another pointer towards neuro-immune crosstalk in 

neurodegeneration is the fact that nonsteroidal anti-

inflammatory drugs also show a protective effect in the 

case of neurodegenerative diseases [90]. 

 

A milestone in the research on mechanisms of neuro-

immune crosstalk was the discovery of the brain 

meningeal lymphatic system that clears proteins and 

metabolic waste from the cerebrospinal fluid (CSF) 

[91]. During aging, the lymphatic system becomes 

impaired due to a reduction in the lymphatic vessel 

diameter and leads to an increase in waste accumulation 

in the brain [92]. Such CNS-derived antigens contribute 

to the neuroinflammatory conditions, and their 

clearance is essential to counter the inflammation [91]. 

It is possible that due to peripheral inflammation, not 

only blood-borne cytokines can enter the brain, causing 

the detrimental neuroinflammatory effects, but also the 

immune cells present in the lymphatic system, exposing 

the brain to a vicious circle increasing its vulnerability 

to additional injuries. 

 

The available literature on SARS-CoV-2 suggests that 

the virus may enter the nervous system via the 

lymphatic circulation [93]. SARS-CoV-2 can infect 

lymph endothelial cells [94] and, therefore, may use the 

paranasal lymph vessels to reach the brain. The 

presence of the virus was confirmed in the neuronal and 

capillary cells in the frontal lobe of the COVID-19 

patients [95], associated with a worsening of neuro-

logical symptoms. The convergence of viral load in the 

nervous system and its relationship with brain 

lymphatics and microglial reaction against the virus 

may explain why some patients have prominent 

neurological symptoms, while others do not appear to 

experience these at all. 

 

Aging triggers debilitating conditions, such as systemic 

low-grade inflammation and neurodegeneration. Such 

conditions can be set off or aggravated by viral 

infections, as evidenced by the H1N1 infection shown 

to contribute to PD development. The severity of 

SARS-CoV-2 infection indicates not only an 

overwhelming response of the immune system, but the 

presence of neurological symptoms suggests the 

connection with the CNS.  

 

Severe neurological symptoms associated with COVID-

19 have become increasingly noticeable after SARS-

CoV-2 has been detected in the CSF of some patients 

[24]. A growing number of cases show neurological 

manifestations in COVID-19 patients, including 

examples of cerebrovascular disease, Guillain-Barré 

syndrome, encephalitis, and necrotizing encephalopathy 

[96]. The neurological symptoms appear in proportion 

with the severity of SARS-CoV-2 infection: patients 

with severe cases of COVID-19 show neurological 

manifestations (45.5%) with a higher incidence relative 

to the mild cases [97, 98]. The overall number of 

patients who displayed neurological symptoms is still 

low compared to respiratory manifestations. Still, the 

continuing pandemic and the data collected so far 

predict an increase in the number of neurological 

diseases that should not be underestimated [98]. It has 

also been proposed that SARS-CoV-2 infection may 

disrupt cellular homeostasis, ultimately leading to 

protein misfolding and, this way, increasing the 

propensity for the future development of neuro-

degenerative diseases [99].  

 

This relationship calls for caution and extensive 

research related to the development of neuro-

inflammation and neurodegenerative diseases among 

COVID-19 survivors. 

 

CONCLUDING REMARKS 
 

Our understanding of COVID-19 is growing by the day 

due to the increasing amount of clinical data and 

laboratory studies. The most prominent symptoms are 

associated with the tissues expressing the ACE2 

receptor (airway epithelia and lung parenchyma). Still, 

the presence of neurological symptoms draws attention 

to the potential interaction of COVID-19 with the CNS. 
 

Older people and people with co-morbidities are more 

prone to display severe symptoms of COVID-19 due to 

cellular senescence in the affected tissues and the 

immune system. Therefore, in the elderly, SARS-CoV-2 

'preys' on the tissue debility and the deficiency of the 

immune system. The knowledge of immunosenescence 

and inflammaging provides a potential interpretation of 

epidemiological data underscoring the elderly as the 

population most sensitive to COVID-19. 
 

Peripheral inflammation associated with aging and 

chronic diseases increases the production of cytokines 

also in the CNS. Similar effects can be triggered by 

viral infection via microglia activation, promoting 

protein aggregation, and, in turn, increasing the risk of 

developing neurodegenerative diseases [99]. Therefore, 

understanding the triangle between SARS-CoV2, 

immunosenescence, and inflammaging may shed 

important light on the molecular underpinnings of 

COVID-19, and open novel avenues for therapeutic 
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interventions. These are desperately needed so that our 

lives can return to the 'normality' we used to know 

before this pandemic. 
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