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INTRODUCTION 
 

Alzheimer’s disease (AD), referring to a chronic, 

acquired and progressive impairment of cognition, is 

characterized pathologically by the extracellular 

accumulation of amyloid beta (Aβ) and intracellular 

inclusions of phosphorylated tau protein [1]. An 

estimated population of at least 20 million worldwide 

suffer from this clinical entity, with its attendant 

enormous human and financial burden on society and 

families [2]. Since the course of AD cannot be 

postponed or reversed by the available clinical 

interventions, many efforts are directed towards 

symptomatic relief similar to palliative care. Practically, 

there is a growing concern regarding preventive 

medicine related to risk factors for AD, including 
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ABSTRACT 
 

The purpose of this study was to investigate the potential roles of protein kinase C beta (PRKCB) in the 
pathogenesis of Alzheimer’s disease (AD). We identified 2,254 differentially expressed genes from 19,245 
background genes in AD versus control as well as PRKCB-low versus high group. Five co-expression modules 
were constructed by weight gene correlation network analysis. Among them, the 1,222 genes of the turquoise 
module had the strongest relation to AD and those with low PRKCB expression, which were enriched in 
apoptosis, axon guidance, gap junction, Fc gamma receptor (FcγR)-mediated phagocytosis, mitogen-activated 
protein kinase (MAPK) and vascular endothelial growth factor (VEGF) signaling pathways. The intersection 
pathways of PRKCB in AD were determined, including gap junction, FcγR-mediated phagocytosis, MAPK and 
VEGF signaling pathways. Based on the performance evaluation of the area under the curve of 75.3%, PRKCB 
could accurately predict the onset of AD. Therefore, low expressions of PRKCB was a potential causative factor 
of AD, which might be involved in gap junction, FcγR-mediated phagocytosis, MAPK and VEGF signaling 
pathways. 
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lifestyles, environment, comorbidities, and genetic 

predisposition [3–5]. 

 

Mutations in genes such as presenilin 1, presenilin 2, 

amyloid precursor protein and apolipoprotein E have 

been confirmed to increase the risk of AD [4]. Protein 

kinase C beta (PRKCB), an enzyme in the serine-

threonine kinase family, has been implicated in the 

conversion of extracellular signals to biological 

responses with its functional changes possibly 

contributing to the development of AD [6]. Both in vitro 

and in vivo experiments demonstrated that early 

reduction of protein kinase C was an essential step and a 

prognostic feature of excitotoxic neuronal death [7]. 

Nevertheless, the mechanisms of PRKCB underlying 

the progress of AD were not well understood. We 

performed an integrated analysis of PRKCB based on 

gene expression data in AD and functional annotations, 

aiming to elucidate the potential roles of PRKCB in the 

pathogenesis of AD. 

 

RESULTS 
 

Identification of differentially expressed genes 
 

The conceptual level roadmap is shown in Figure 1. 

According to the gene data of all samples, the mean 

expressions of PRKCB in 97 AD patients (10.08 ± 

1.16) were significantly lower than those in 98 non-

dementia controls (11.07 ± 0.95; P < 0.001) (Figure 

2A). Totally 19,245 background genes were selected 

in our differential expression analyses after having 

removed the unannotated and duplicated genes. 

Among them, 2,365 DEGs with 1,205 down-regulated 

and 1,160 up-regulated were established in AD 

patients compared to controls (Figure 2B); whereas 

4,679 DEGs with 2,356 down-regulated and 2,323 up-

regulated were identified in subjects with low versus 

high expression of PRKCB (Figure 2C). There were 

2,254 overlapping DEGs in AD / control and PRKCB-

low / high groups. The top 25 down-regulated and up-

regulated overlapping DEGs associated with AD and 

low PRKCB expression were represented as a 

heatmap (Figure 2D). 

 

Co-expression modules and functional enrichment 

analysis 
 

The results of our sample clustering showed that all 

the samples passed the predefined cutoff and were 

included in some clusters (Figure 3A). Five co-

expression modules with different colors were 

predicted by WGCNA based on the expression data of 

DEGs associated with PRKCB and AD (Figure 3B). 

The modules colored in blue, brown, turquoise and 

yellow consist of 627, 226, 1,222 and 101 DEGs, 

respectively. As shown in Figure 3C, the turquoise 

module positively correlated with AD (correlation 

coefficient = 0.52, P = 8e-15) and negatively 

correlated with PRKCB expression (correlation 

coefficient = -0.95, P = 6e-103), whilst the blue, 

brown and yellow modules all had a negative 

correlation with AD (blue: correlation coefficient = -

0.46, P = 2e-11; brown: correlation coefficient = -

0.46, P = 2e-11; yellow: correlation coefficient = -

0.47, P = 5e-11) and positive correlation with PRKCB 

expression (blue: correlation coefficient = 0.89, P = 

2e-66; brown: correlation coefficient = 0.87, P = 4e-

61; yellow: correlation coefficient = 0.62, P = 5e-22). 

Functional enrichment analyses (Figure 3D) revealed 

that the DEGs of the blue module were involved in 

KEGG pathways of oxidative phosphorylation, 

pyruvate metabolism and protein processing in 

endoplasmic reticulum; the brown and yellow 

modules DEGs were enriched in synaptic vesicle 

cycle and calcium signaling pathways; the DEGs of 

the turquoise module participated in apoptosis, axon 

guidance, gap junction, Fc gamma receptor (FcγR)-

mediated phagocytosis, mitogen-activated protein 

kinase (MAPK) and vascular endothelial growth 

factor (VEGF) signaling pathways. 

 

Global regulation network and AUC analysis of 

PRKCB 
 

In the scatter plot of the relationships between GS and 

MM (Figure 4A), the intramodular connectivity within 

the turquoise module most closely correlated with the 

genetic phenotypes (correlation coefficient = 0.93, P = 

1e-200). Low expression of PRKCB interacting with 

DEGs in the turquoise module was exhibited in the 

global regulation network (Figure 4B). The intersection 

pathways of PRKCB, such as gap junction, FcγR-

mediated phagocytosis, MAPK and VEGF signaling 

pathways, were identified, and all the genes enriching 

these pathways were shown in Figure 4C. The 

performance evaluation of PRKCB in predicting AD 

was measured using the AUC analysis (AUC = 75.3%) 

(Figure 4D). 

 

GESA verification in biological processes 

 

The gene set enrichment analysis showed that biological 

processes of neurotransmitter secretion, oxidative 

phosphorylation, synaptic vesicle cycle and synaptic 

vesicle transport were significantly enriched in AD 

patients compared to non-dementia controls (Figure 

5A). Likewise, biological processes of neurotransmitter 

secretion, regulation of neurotransmitter transport, 

synaptic vesicle cycle and synaptic vesicle transport 

were significantly enriched in PRKCB-low expression 

versus high expression group (Figure 5B). 
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DISCUSSION 
 

In the present study, a total of 195 subjects involving 

19,245 genes were analyzed to investigate the 

relationship between PRKCB and the incidence of AD. 

The results of GSEA revealed that DEGs in both AD/ 

control and PRKCB-low/ high cohorts enriched 

biological processes of synaptic vesicle cycle, synaptic 

vesicle transport and neurotransmitter secretion. With 

the exception of a steady and unanimous pathology in 

AD, abnormalities in synapse and neurotransmitter were 

the primary configurational correlations with cognitive 

severity [8–10]. Of particular note was that these 

processes were possibly linked to AD as well as the low 

expression of PRKCB. Thereafter, the regulatory 

network and co-expression modules of DEGs associated 

with PRKCB were constructed for further exploration, 

which could deepen the knowledge into the genome-

scale pathogenesis of PRKCB in AD.  

 

In line with the GSEA results, functional enrichment 

analysis showed that DEGs in the brown and yellow 

modules participated in KEGG pathway of synaptic 

vesicle cycle, supporting its fundamental process for 

AD development. More specifically, as a prime site for 

the production and toxicity of Aβ polymers, synaptic 

vesicle cycle held a central role in the presynaptic 

terminal pathology of AD [11]. The turquoise module 

exhibited the greatest negative correlation with AD and 

PRKCB in our results, hence supporting the 

involvement of DEGs in apoptosis, axon guidance, gap 

junction, FcγR-mediated phagocytosis, MAPK and 

VEGF signaling pathways. Among them, neuronal 

death of hippocampus in AD was the result of an 

 

 
 

Figure 1. The roadmap of the present study. AD: Alzheimer’s disease. 
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apoptotic mechanism [12] and MAPK signaling 

pathway engaged irreversible cellular decisions of 

apoptosis [13]. PRKCB, a highly expressed member of 

protein kinase C, was activated by the second 

messengers Ca
2+

 and diacylglycerol to mediate the 

proliferation of cells [14]. Its localization in 

mitochondria was found to increase the hypoxic stress 

and vascular dysfunction, and trigger the MAPK 

signaling pathway of phosphorylation linked to AD 

progression [15, 16]. In vitro model of PRKCB 

deficient cells, the development of germinal centers was 

impeded by the impairment of antigen polarization and 

presentation, a remarkable finding given that PRKCB 

was largely considered as the dominator of cell-fate 

tendency [17]. 

 

Apart from the MAPK signaling pathway, the analysis 

of intersection pathways revealed that PRKCB was 

jointly involved in gap junction, FcγR-mediated 

phagocytosis and VEGF signaling pathway. Less is 

known about the association of PRKCB with gap 

junction and FcγR-mediated phagocytosis. In AD 

patients and murine models of familial AD, gap 

junction communication in astrocytes contacting 

amyloid plaques was attributed to the expression of 

connexins, which were reversed by protein kinase C 

inhibitors [18, 19]. However, this involvement in AD 

pathology was only beginning to be appreciated. 

Phagocytosis is a complicated process involving the 

synergistic effects of signal-transduction cascades, 

resulting in ingestion, subsequent phagolysosome 

fusion, and oxidative activation [20]. FcγR and 

complement receptor 3 are two well-studied types of 

phagocytic receptors, both of which recruit Arp2/3 

complex-mediated actin polymerization and particle 

internalization to phagocytic activity of microglia 

 

 
 

Figure 2. Differential expression gene analysis. The expression of PRKCB in AD and non-dementia controls (A) Volcano plot of the AD / 

control (B) and PRKCB-low / high group (C) blue, black and red indicate down-regulated, non-significant and up-regulated DEGs, respectively. 
The heatmap of the top 25 down-regulated and up-regulated DEGs (D) AD: Alzheimer’s disease, DEGs: differential expression genes. 
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[21, 22]. The inflammatory response in AD was initiated 

by the complement system [23], which up-regulated 

microglial phagocytosis through the activation and 

migration of immune cells [24]. There was evidence that 

the complement activation and its products such as the 

membrane attack complex (C5b-9) were exposed to 

amyloid plaques in AD brains [25, 26]. In non-radioactive 

in situ hybridization, transcripts encoding complement 

C1q and C3 participated in the neuronal degeneration in 

the frontal cortex of AD [27]. Additionally, as a 

downstream adaptor of complement receptor 3, TYRO 

protein tyrosine kinase-binding protein was reported to be 

responsible for the clearance of Aβ and apoptotic neurons, 

which supported the involvement of complement receptor 

in the pathogenesis of AD [28]. PRKCB related to 

superoxide generation and activation of FcγR-mediated 

phagocytosis in microglia, had also raised concerns on the 

context of potential treatment for AD [29, 30]. A recent 

study in mouse models of AD showed that FcγR binding 

to Aβ peptides facilitated the oxidative phosphorylation of 

tau protein [31], which was consistent with our 

enrichment analysis of the blue module. Intriguingly, this 

effect was alleviated by FcγR knockout in neurons or 

antagonizing its connection with Aβ [31]. Besides, several 

studies reported that VEGF was not only involved in 

providing pro-survival signals, but also drove extracellular 

calcium influx and expression of the PKCB gene [32, 33]. 

Increased intracellular calcium further expedited the 

activation of protein kinase C, leading to the activator 

protein-1 overexpression, which in turn promoted the up-

regulation of VEGF [34]. In case of the subnormal VEGF, 

vascular insufficiency ensued with aggravated cerebral 

hypoperfusion and impaired clearance of Aβ [35, 36]. The 

resultant accumulation of Aβ prevented the bond of 

VEGF to its receptors against the angiogenic activity, and 

thus to neuronal dysfunction and loss [37]. 

 

 
 

Figure 3. Weighted correlation network analysis. All the samples were included in the clusters (A) Cluster dendrogram of five modules 

with different colors (B) grey represents non-clustering genes. The heatmap of module-trait relationships (C) red indicates positive 
correlation and green represents negative correlation. Enrichment analysis of KEGG pathways in co-expression modules (D) AD: Alzheimer’s 
disease, KEGG: Kyoto Encyclopedia of Genes and Genomes. 
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Figure 4. Module-pathway regulatory network and AUC analysis. Scatterplot of module membership vs. gene significance (A) Global 
regulatory network of turquoise module (B) node size represents the degree of gene connectivity; yellow and blue indicate low expression of 
gene, whilst red represents high expression. The intersection pathways of PRKCB (C) yellow indicates the low PRKCB expression. Performance 
evaluation of AUC analysis (D) AUC: area under the curve. 

 

 
 

Figure 5. Gene set enrichment analysis. Biological processes enriched in AD (A) and low expression of PRKCB (B). AD: Alzheimer’s 
disease. 
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On the basis of the scatter plot between MM and GS, 

the turquoise module with the highest degree of 

correlation coefficient validated the strongest 

interactions of its DEGs with the PRKCB expression. 

Subsequently, DEGs of the turquoise module were 

displayed in the global regulatory network to identify 

the intersection pathways of PRKCB, which supported 

the pleiotropic roles of PRKCB in AD pathophysiology 

responsible for gap junction [18], FcγR-mediated 

phagocytosis [31], MAPK and VEGF signaling 

pathways [16, 38]. Due to the low expression of 

PRKCB, the vulnerability of relevant pathways might 

be strikingly apparent, resulting in the occurrence of 

AD under the comprehensive pathogenic effects. 

Furthermore, the diagnostic performance of PRKCB 

showed an AUC value of 75.3%, which implied that 

PRKCB might be served as a predictive factor for the 

incidence of AD. There was a lack of gene expression 

confirmation using reverse transcription-polymerase 

chain reaction or Western blot or a combination of both. 

However, previous study using quantitative polymerase 

chain reaction revealed that Enzastaurin, a selective 

PRKCB inhibitor, reduced the overnight retention and 

presented worse performance on the latter testing day, 

indicating that the decreased PRKCB expression might 

contribute to impaired hippocampal learning and 

memory function [39]. Future experiments in cells or in 

vivo were needed to validate the presented mechanisms 

of PRKCB in AD, particularly with regard to gap 

junction and FcγR-mediated phagocytosis. 

 

CONCLUSIONS 
 

In aggregate, the results emerging from the current 

study provided support that bioinformatic analysis was 

a promising approach to elucidate complicated 

pathways underlying the AD onset. Low expression of 

PRKCB had important implications in the pathogenesis 

of AD, possibly associated with gap junction, FcγR-

mediated phagocytosis, MAPK and VEGF signaling 

pathways. 

 

MATERIALS AND METHODS 
 

Data resources 

 

RNA expression data of middle temporal gyrus and 

clinical traits between 97 AD patients and 98 non-

dementia controls were obtained from the GSE132903 

dataset of Gene Expression Omnibus (GEO, https:// 

www.ncbi.nlm.nih.gov/geo/) database [40]. According to 

the clinical data recorded in a previous study [41], the two 

groups were age-and sex-matched. The mean age was 

85.02 ± 6.75 years (range: 70-98 years) for AD and 84.98 

± 6.90 years (range: 70-102) for non-dementia. Although 

individual data on medication and dementia severity were 

unavailable, we found that mean Mini-mental State 

Examination (MMSE) of the case group was 12.14 ± 

9.21 (range: 0-28), indicating moderate dementia, whilst 

that of non-dementia controls was 28.12 ± 1.76 (range: 

24-30). This dataset was produced on the platform of 

GPL10558 using the Illumina HumanHT-12 V4.0  

arrays. A gene that corresponded to multiple probes 

retained the one with the highest value of expression. In 

the limma package of R software version 3.6.2, 

normalizeBetweenArrays function was applied for 

normalization processing of the gene expression data [42]. 

 

Gene set enrichment analysis (GSEA) 

 

The biological process of Gene Ontology terms 

potentially linked to AD and low PRKCB expression 

were filtrated through the analysis of GSEA [43, 44]. 

The permutation of 1000 times was performed using 

default weight statistic with the normalized P < 0.05 as 

the threshold for significant enrichment. The packages 

of ClusterProfler, ggplot2, enrichplot and GSEABase 

were utilized to accomplish the visualization of 

enrichment data in GSEA analysis. 

 

Identification of differentially expressed genes 

(DEGs) 

 

The included samples were dichotomized into 

PRKCB-low and high cohorts according to the 

average expression value of PRKCB as the cut-off 

point. The DEGs of AD / control and PRKCB-low / 

high groups were respectively established by adapting 

lmFit and eBayes functions of limma packages. A 

false discovery rate (FDR)-adjusted P < 0.05 and 

logFC (fold change) > 0.3 were considered to be 

statistically significant in the differential analysis of 

gene expression [42, 45]. 

 

Weight gene correlation network analysis (WGCNA) 

 

An unbiased gene co-expression analysis on the 

overlapping DEGs between AD / control and PRKCB-

low / high cohorts was conducted by WGCNA. The 

unique advantage of WGCNA was that it transformed 

complicated data of gene expression into modules of co-

expressed genes, providing in-depth understanding of 

signal networks that were possibly responsible for 

phenotypic traits of interest [46]. Not only could it 

contribute to the process of comparing DEGs, but also 

help in the identification of gene co-expression modules 

specific to the disease [47]. The clustering dendrogram 

was plotted to exclude the sample outliers using the 

hclust function. During the process of module 

construction, the pickSoftThreshold function was utilized 

to screen the soft threshold, and an appropriate power  

of 15 was determined to maintain the degree of 
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independence higher than 0.8. Co-expression modules 

with different color labels were constructed using the 

WGCNA package [48]. The minimum numbers of genes 

in each module were set to 30 for the reliability of the 

results. Functional enrichment analysis was carried out to 

filtrate genes that were enriched in Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways using the 

clusterProfiler package; the enrichment of FDR < 0.05 

was statistically significant. 

 

Construction of global regulatory network and 

intersection pathways of PRKCB 
 

The verboseScatterplot function was used to plot the 

scatter diagram on the relationship between module 

membership (MM) and gene significance (GS), which 

represented intramodular connectivity and genetic 

phenotypes, respectively [49]. Based on the STRING 

database (Search Tool for the Retrieval of Interacting 

Genes, https://www.string-db.org/) [50], the module with 

the highest degree of correlation were determined to 

construct the global regulatory network. Then, cytoscape 

software was adapted to visualize the global regulatory 

network and the intersection pathways of PRKCB [51]. 

 

Analysis of area under the curve (AUC) 

 

The performance of PRKCB in differentiating AD from 

non-dementia was estimated by using pROC function. In 

general, a random selection was indicated by an AUC 

value of 50%, and a complete prediction was represented 

by 100%. All P values were bilateral, and those less than 

0.05 were considered as statistically significant. 

 

Abbreviations 
 

Aβ: amyloid beta; AD: Alzheimer’s disease; AUC: area 

under the curve; DEGs: differentially expressed genes; 

FcγR: Fc gamma receptor; GEO: Gene Expression 

Omnibus; GS: gene significance; GSEA: Gene set 

enrichment analysis; KEGG: Kyoto Encyclopedia of 

Genes and Genomes; MAPK: mitogen-activated protein 
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Genes; VEGF: vascular endothelial growth factor; 
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