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ABSTRACT 
 

Background: Papillary renal cell carcinoma (PRCC) accounts for 15% of all renal cell carcinomas. The 
molecular mechanisms of renal papillary cell carcinoma remain unclear, and treatments for advanced 
disease are limited.  
Result: We built the computing model as follows: Risk score = 1.806 * TPX2 - 0.355 * TXNRD2 - 0.805 * SLC6A20. 
The 3-year AUC of overall survival was 0.917 in the training set (147 PRCC samples) and 0.760 in the test set 
(142 PRCC samples). Based on the robust model, M2 macrophages showed positive correlation with risk score, 
while M1 macrophages were the opposite. PRCC patients with low risk score showed higher tumor mutation 
burden. TPX2 is a risk factor, and co-expression factors were enriched in cell proliferation and cancer-related 
pathways. Finally, the proliferation and invasion of PRCC cell line were decreased in the TPX2 reduced group, 
and the differential expression was identified. TPX2 is a potential risk biomarker which involved in cell 
proliferation in PRCC.  
Conclusion: We conducted a study to develop a three gene model for predicting prognosis in patients with 
papillary renal cell carcinoma. Our findings may provide candidate biomarkers for prognosis that have 
important implications for understanding the therapeutic targets of papillary renal cell carcinoma. 
Method: Gene expression matrix and clinical data were obtained from TCGA (The Cancer Genome Atlas), 
GSE26574, GSE2048, and GSE7023. Prognostic factors were identified using “survival” and “rbsurv” 
packages, and a risk score was constructed using Multivariate Cox regression analysis. The co-expression 
networks of the factors in model were constructed using the “WGCNA” package. The co-expression genes of 
factors were enriched and displayed the biological process. Based on this robust risk model, immune cells 
infiltration proportions and tumor mutation burdens were compared between risk groups. Subsequently, 
using the PRCC cell line, the role of TPX2 was determined by Cell proliferation assay, 5-Ethynyl-20-
deoxyuridine assay and Transwell assay.  
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INTRODUCTION 
 

Renal cell carcinoma accounts for 2–3% of all cancers. 

In recent years, the associated incidence and mortality 

have increased [1]. Renal cancer includes various tissue  

types, characterized by various genetic driving factors 

[2]. Papillary renal cell carcinoma (PRCC), which 

accounts for 15–20% of renal cancer, is a heterogeneous 

disease, divided into two subtypes, PRCC1 and PRCC2 

[3]. Compared with clear cell renal cell carcinoma 

(ccRCC), the occurrence of organ-defined tumors (pT1-

2N0M0) of PRCC and the five-year tumor-specific 

survival rate are higher [4]. There is no effective 

treatment for patients with advanced papillary renal cell 

carcinoma. Focusing on the molecular mechanisms of 

PRCC occurrence and development will help to identify 

candidate biomarkers and therapeutic targets. 

 

With the development of high-throughput sequencing 

technology, we obtained a disease expression matrix from 

open source databases. At present, the predictive model 

method acts as effective method to find the key prognosis 

factors. Cao et al. constructed a recurrence prediction 

model based on 17 prognosis-related protein coding genes 

[5]. Zhang et al. constructed a prognostic survival model 

based on 17 mutation genes [6]. Klatte et al. constructed a 

VENUSS prognostic model to predict disease recurrence 

for non-metastatic papillary renal cell carcinoma, which 

VENUSS contained four clinical indicators (VEnous 

extension, NUclear grade, Size, Stage) score [7]. Gao et 

al. constructed a prognostic score model composed of five 

protein-editing genes [8]. Lee et al. updated the Leibovich 

score to obtain more accurate results for mortality and 

prognosis of renal cell carcinoma [9]. These studies 

assessed prognostic status by establishing prognostic 

scoring systems and assigning risk scores to each patient. 

After external data verification, they achieved good 

predictive power. These findings suggest that it is critical 

to mine key prognostic factors to establishing prognostic 

prediction models. 

 

In this paper, by constructing a prognostic prediction 

model in The Cancer Genome Atlas (TCGA), we 

identified key risk factors and protection factors of the 

disease. By establishing the prognostic co-expression 

network of key factors, we clarified function of the co-

expression network and the related pathways. Finally, 

we explored the correlation between cancer-related 

immune processes, tumor mutation burden and risk 

score, and determined the important biological 

significance of risk factors. 

 

RESULTS  
 

Prognosis factors in TCGA 

 

The Overview of the strategy was shown in Figure 1. 

We obtained 289 samples of papillary renal cell 

 

 
 

Figure 1. The Overview of the strategy. 
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Table 1. Univariate regression analyses of prognostic factors for overall survival. 

ID P–valve FDR HR 95% CI of HR 

TPX2 2.97e–06 1.00e–03 2.093 1.535–2.853 

SLC6A20 8.06e–06 2.00e–03 0.724 0.628–0.834 

RILP 9.84e–06 2.00e–03 0.387 0.254–0.590 

CKB 1.14e–05 2.00e–03 0.494 0.361–0.677 

TXNRD2 1.53e–05 2.00e–03 0.301 0.175–0.519 

TMEM42 2.92e–05 4.00e–03 0.450 0.310–0.654 

CLDN3 3.62e–05 5.00e–03 0.716 0.610–0.839 

TMEM125 6.44e–05 8.00e–03 0.690 0.576–0.828 

ABAT 7.18e–04 3.50e–02 0.586 0.430–0.799 

FDR: False discovery rate; HR: Hazard rate; CI: Confidence interval 
 

Table 2. The prognosis–related model results selected by “rbsurv” package in R. 

Order Gene nloglik AIC Selected 

1 CLDN3 80.94 163.88 * 

2 TMEM125 79.55 163.09 * 

3 TMEM42 78.91 163.81 * 

4 CKB 75.88 159.76 * 

5 TXNRD2 74.48 158.95 * 

6 ABAT 72.75 157.5 * 

7 RILP 71.64 157.29 * 

8 SLC6A20 69.42 154.84 * 

9 TPX2 63.47 144.94 * 

10 DGLUCY 62.97 145.94  

AIC: Akaike information criterion; nloglik: Negative log–likelihood 
 

carcinoma and 32 normal samples from TCGA. The 

clinical information is shown in Supplementary Table 1. 

The training set contained 15 normal samples and 147 

cancer samples, and the test set contained 17 normal 

samples and 142 cancer samples. Univariate Cox 

analysis showed that T (HR = 2.347; P = 4.98e
-8

), N 

(HR = 2.814; P = 0.0004), M (HR = 1.048; P = 1.64e
-8

) 

(Supplementary Figure 1A) and 1547 protein-coding 

genes were prognostic factors. These risk ratios and 

significance of prognostic genes are shown in 

Supplementary Figure 1B. 

 

Robust prognostic gene selection 

 

A total of 1547 protein-coding genes were noise-

reduced using false discovery rate (FDR); 297 

prognosis genes were identified using FDR < 0.05. 

Nine prognosis genes were selected robustly using the 

“rbsurv” package based on these 297 prognosis genes. 

The univariate Cox regression P-value and FDR of the 

nine robust genes are shown in Table 1. The Akaike 

information criterion and negative log-likelihood of 

these nine genes are shown in Table 2. The survival 

analysis and ROC curves showed that TPX2 was a 

risk factor, and that ABAT, CKB, CLD3, RILP, 

SLC6A20, TMEM42, TMEM125, TXNRD2 were 

protective factors (Figure 2A–2R). TPX2 was the only 

risk factor closely related to prognostic status (HR = 

3.831; P < 0.0001) and had the ability to determine 

prognosis (1-year AUC = 0.8727; 3-year AUC = 

0.7805; 5-year AUC = 0.7805). 

 

Risk score model establishment and evaluation 

 

Risk scores were established using multivariate Cox 

regression (Table 3), based on the nine prognostic 

genes selected robustly. Risk score = 1.806 * TPX2 - 

0.355 * TXNRD2 - 0.805 * SLC6A20. The optimal 

threshold score with the maximal sensitivity and 

specificity was 4.6846. The risk scores, survival 

statuses and gene expression levels corresponding to 

each sample are displayed in Figure 3A–3E. We 

found that patients in the high-risk score group had 

worse prognosis, and expression levels of TPX2 were 
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higher than those in the low-expression group. The 

risk score K–M analysis (P = 3.11e
-13

; HR = 13.82) 

and AUC (1-year = 0.9225; 3-year = 0.9167; 5-year = 

0.7443) in the training set were consistent with the 

results of risk score on K–M analysis (P = 3.741e
-7

; 

HR = 8.249) and AUC (1-year = 0.890; 3-year = 

0.7601; 5-year = 0.8054) in the test set (Figure 4A–

4D). Subsequently, we evaluated the prognostic 

ability of risk score in the various subgroups of 

TCGA, and found that the risk score had important 

prognostic value in the subgroups such as T2, T3, 

gender, and age (Figure 4E–4H). 

Weighted gene co-expression network  

 

To create co-expression networks of TPX2, TXNRD2, 

SLC206A and risk score, we selected the cutoff point 

of 130 and obtained 198 clinical samples. A sample 

cluster map and phenotype-related heat map were 

constructed (Figure 5A). We set the soft threshold as 5 

(Figure 5B, 5C), R square = 0.96 (Figure 5D, 5E), and 

established a scale-free network. We set the number of 

genes in the minimum module as 30, abline as 0.25. 

We drew correlation heat maps for modules and genes 

(Figure 6A). The hierarchical clustering tree is shown 

 

 
 

Figure 2. Kaplan–Meier and ROC curves for prognosis factors generated using the “rbsurv” package. (A–I) The ROC curve of 
risk factors and protective factors. TPX2 acted as the only risk factor showed the largest AUC, 5-year AUC for TPX2 was 0.7805. ABAT, 
CKB, CLD3, RILP, SLC6A20, TMEM42, TMEM125 and TXNRD2 acted as protective factors also showed accurate diagnosis ability. (J–R) 
Kaplan–Meier curves of risk factors and protective factors. The patients were divided into various risk groups according to expression 
levels. Nine prognostic factors showed significant survival difference and the largest HR was the 3.831 for TPX2, the lowest HR value was 
0.3180 for THEM125.  
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Table 3. Multivariate Cox regression analyses of prognostic factors for overall survival.  

ID P–valve HR 95% CI of HR 

TPX2 0.001 1.806 1.287–2.533 

TXNRD2 0.001 0.355 0.192–0.658 

SLC6A20 0.007 0.805 0.689–0.941 

HR: Hazard rate; CI; Confidence interval 
 

in Figure 6B, where each leaf on the tree represents a 

gene, and each branch represents a co-expression 

module. We found that the brown module has the 

strongest positive correlation with SLC6A20 (Pearson 

Cor = 0.59; P = 3.2e
-8

) (Figure 6C). The turquoise 

module had the strongest positive correlation with 

TPX2 (Pearson Cor = 0.29; P = 1.6e
-15

) (Figure 6D), 

the yellow module had the strongest positive 

correlation with TXNRD2 (Pearson Cor = 0.56; P = 

6.6e-27) (Figure 6E) and the black module had the 

strongest positive correlation with risk score (Pearson 

Cor = 0.30; P = 2.9e-8) (Figure 6F). The correlation 

between co-expression factors and risk score are 

shown in Supplementary Figure 2. 

PPI, function analysis and GSEA 

 

Using WGCNA, we obtained the co-expression 

modules of TPX2, TXNRD2, SLC6A20 and risk score, 

the PPI (protein-protein interaction network), Function 

analysis and GSEA of them are shown in Figure 7. GO 

analysis showed that the top 20 co-expression genes of 

risk score were significantly enriched in regulation of 

positive chemotaxis, nephron development, and 

sprouting angiogenesis. GSEA analysis of risk score 

showed that cell cycle, nucleotide excision repair and 

purine metabolism were related to the high expression 

group (Figure 7A). GO analysis showed that the top 20 

co-expression genes of TPX2 were significantly 

 

 
 

Figure 3. The relation between risk score, survival state, and risk factors in the training and test sets. There were three parts in 
training and test sets. The horizontal axis represents the same order of samples. (A, B) Parts A and B showing the risk score of each patient. 
(C, D) Parts C and D showing the survival state and risk score of each patient. (E, F) Parts E and F showing the expression levels of TPX2, 
TXNRD2 and SLC6A20.  
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Figure 4. Kaplan–Meier and ROC curves for risk score in the training set, test set and subgroups. (A) The log-rank test p in 

training set was 3.11e
-13

, HR = 13.82. (B) The log-rank test p in test set was 3.741e
-7

, HR = 8.249. (C) The 1-year AUC of risk score in the 
training set was 0.9225; the 3-year AUC of risk score in the training set was 0.9167. (D) The 1-year AUC of risk score in the training set was 
0.8900; the 3-year AUC of risk score in the training set was 0.7601. (E–J) The subgroups Kaplan–Meier analysis of risk score. 

 

 
 

Figure 5. Selecting the appropriate beta value to build the cluster tree. (A) Sample tree and phenotype relation heat map, we 

selected the cutoff point of 130 and obtained 198 clinical samples. The phenotype includes overall survival, overall state, age, gender, clinical 
stage, and the expression level of TPX2, TXNRD2 and SLC6A20. The larger the value, the darker the color. (B–E) We built scale-free co-
expression networks. The best soft threshold was 5, R-squared = 0.96. 
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enriched in mitotic nuclear division, nuclear division, 

chromosome segregation. GSEA analysis of TPX2 

showed that cell cycle, RNA degradation and 

spliceosome were related to the high expression group 

of TPX2 (Figure 7B). GO analysis showed that the top 

20 co-expression genes of SLC6A20 were significantly 

enriched in tube formation, epithelial tube 

morphogenesis, and neural tube development. GSEA 

analysis of SLC6A20 showed that ether lipid 

metabolism, tight junction, and vasopressin regulated 

water reabsorption were related to the high expression 

group of SLC6A20 (Figure 7C). GO analysis showed 

that the top 20 co-expression genes of TXNRD2 were 

significantly enriched in excretion, cellular modified 

amino acid metabolic process, and glutamine family 

amino acid metabolic process. GSEA analysis of 

TXNRD2 showed that Alzheimer disease, Huntington 

disease, Parkinson disease were related to the high 

expression group of TXNRD2 (Figure 7D). 

Relationship between immune infiltration and risk 

score 
 

We calculated the percentage of immune cell content in 

the various samples using the CIBERSORT method with 

P < 0.05, and obtained 56 tumor samples. We found that 

M2 macrophages accounted for the highest proportion 

(Figure 8A). We also calculated the correlation between 

the proportion of immune cells in the samples and the 

risk score (Figure 8B). We found that the M2 

macrophages were positively related to risk score, while 

the M1 macrophages were negatively related to risk 

score. Macrophage polarization plays an important role 

in tumor progression; M1 macrophages play a protective 

role, while M2 macrophages promote tumor growth. 

Therefore, we performed survival analyses; these 

showed that M2 macrophages accounted for higher 

proportions and led to worse prognosis compared with 

M1 macrophages (Figure 8C, 8D). 

 

 
 

Figure 6. Correlation heat map among various phenotype and co-expression modules. (A) The correlation heat map. (B) The 

hierarchical clustering tree was showed, where each leaf on the tree represents a gene, and each branch represents a co-expression module. (C) 
SLC6A20 co-expression module factors were shown. The horizontal axis is module membership; the vertical axis is gene significance. (D) TPX2 co-
expression module factors. The horizontal axis is module membership; the vertical axis is gene significance. (E) TXNRD2 co-expression module 
factors were shown. The horizontal axis is module membership; the vertical axis is gene significance. (F) Risk score correlation module. The 
horizontal axis is module membership; the vertical axis is gene significance. 
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Relationship between TMB value and risk score 

 

We first evaluated the variation in each TCGA-KIRP 

sample. the results showed that somatic mutations of 

TTN (P < 0.001) were greater in number both in  

low-risk group and high-risk group (Figure 8E, 8F). 

Patients with low risk scores had higher TMB value, 

suggesting that patients had better results in terms  

of immune responses and had better outcomes  

(Figure 8G). 

 

Pan-cancer analysis  
 

The expression differences of TPX2, TXNRD2 and 

SLC6A20 in 33 cancers in TCGA are shown in Figure 

9. TPX2 was upregulated in kidney chromophobe (P < 

0.001), kidney renal clear cell carcinoma (P < 0.001), 

and kidney renal papillary cell carcinoma compared to 

normal tissue. TXNRD2 was downregulated in kidney 

chromophobe (P < 0.001), kidney renal clear cell 

carcinoma (P < 0.001), and kidney renal papillary cell 

carcinoma compared to normal tissue. The results of 

TPX2 and TXNRD2 differential expression analysis 

were consistent with their effect on patient prognosis. 

However, SLC6A20 was downregulated in kidney 

chromophobe (P < 0.001), kidney renal clear cell 

carcinoma (P < 0.001), but upregulated in kidney 

renal papillary cell carcinoma compared to normal 

tissue. SLC6A20 acted as a protective prognostic 

factor and should be downregulated in the tumor 

group; however, in TCGA, the result was the 

opposite. To explain this result, we analyzed the 

differential expression of TPX2, TXNRD2 and 

SLC6A20 in PRCC type 1 and PRCC type 2. We 

found that TPX2 was upregulated significantly in the 

PRCC type 2 group (Figure 10A), TXNRD2 and 

 

 
 

Figure 7. The protein-protein interaction network, function enrichment and GSEA analysis of co-expression modules 
(Pearson Cor > 0.4). (A) The risk score correlation genes in black module. (B) The co-expressed genes for TPX2 in turquoise module. (C) The 
co-expression genes for SLC6A20 in brown module. (D) The SLC6A20 co-expression genes in yellow module. 
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SLC6A20 downregulated significantly in the PRCC type 2 

group (Figure 10B, 10C). PRCC type 2 gave worse 

outcomes than did PRCC type 1 (Figure 10D, 10E). These 

findings suggest that SLC6A20 is downregulated 

significantly in PRCC2 compared to PRCC1, and that 

SLC6A20 acts as a prognostic protective factor. 

 

Knockdown of TPX2 significantly inhibited cell 

proliferation and invasion 

 
TPX2 is overexpressed in papillary renal cell carcinoma 

and is related to poor prognosis. In PRCC cell line, the 

role of TPX2 was determined in vitro experiments. First 

of all, TPX2 showed positively correlation to MKI67 

and PCNA in TCGA (Figure 11A). Small interfering 

RNAs was used to reduce expression levels of TPX2 in 

the papillary renal cell carcinoma cell line SKRC39 

(Figure 11A) and the TPX2 protein expression level 

were shown in Figure 11B. EdU incorporation assays 

were used to determine the effects of TPX2 on SKRC39 

cell proliferation. EdU assay suggested that TPX2 

inhibits PRCC cell lines proliferation capacity (Figure 

11C and 11D). The effects of TPX2 on the proliferation 

of SKRC39 cells were analyzed by CCK-8 assays.  

 

 
 

Figure 8. The relationship between risk score and immune infiltration, TMB value. (A) The percentage of immune cell content in 
the various samples was showed, M2 macrophages accounted for the highest proportion. (B) The correlation between the proportion of 
immune cells in the samples and the risk score. M2 macrophages were positively related to risk score, while the M1 macrophages were 
negatively related to risk score. (C, D) The survival analysis to show M2-type macrophages account more proportion and lead a worse 
prognosis compared with M1-type macrophages. (E, F) Somatic mutations of TTN (P < 0.001) was higher both in low-risk group and high-risk 
group. (G) The patients with low risk score had higher TMB value, suggesting that the patients experienced better effects on the immune 
response and had a better prognosis. 
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Figure 9. The variation analysis of 33 types of cancer in TCGA, P <0.05 was marked as *, P < 0.01 was marked as **, P < 0.001 
was marked as ***. (A) TPX2, (B) TXNRD2, (C) SLC6A20.  
 

 
 

Figure 10. The analysis of variance of normal renal tissue and papillary renal carcinoma. (A) In TCGA, GSE26574, GSE7023 and 

GSEA2748, TPX2 acted as prognostic risk factors, upregulated significantly in PRCC2. (B) TXNRD2 acted as prognostic protective factor, 
downregulated significantly in the PRCC group. (C) SLC6A20 acted as prognostic protective factor, downregulated significantly in the PRCC2 
group, compared with PRCC1. (D) PRCC2 showed worse prognosis compared with PRCC1 (P = 0.017; HR = 4.954). (E) Based on the cut off as 
4.6846, the PRCC type 2 group patients were divided into two risk groups, and the high-risk group showed the worse prognosis status (P = 
0.0004; HR = 15.48). 



 

www.aging-us.com 21864 AGING 

The results are presented as the mean ± SD of three 

independent experiments (*P < 0.05, **P < 0.01) 

(Figure 11E). Afterwards, TPX2 showed positively 

correlation to CDH2, CTNNB1, VIM and TGFB1 in 

TCGA (Figure 11F). The results of transwell assays 

showed that Knockdown of TPX2 inhibited cell 

migration (Figure 11G and 11H). 
 

DISCUSSION 
 

Papillary renal cell carcinoma carries a poor prognosis. 

In this paper, a prognostic score model for patients with 

papillary renal cell tumors was constructed. Our 

prognostic score distinguished patients with poor 

prognosis in T2 and performed determined prognosis in 

various subgroups. The prognostic score of papillary 

renal cell carcinoma was established based on TCGA 

and was verified using the test set. The scoring model 

contained three factors TPX2, TXNRD2, and SLC6A20. 

TPX2 was a risk factor and TXNRD2 and SLC6A20 

were protection factors. We analyzed their biological 

functions and related regulation pathways. Furthermore, 

M2-type macrophages and tumor mutation burden 

showed close correlation to risk, illustrating the 

important biological significance of the risk score. 

 

There have been studies to predict the risk model of 

papillary renal cell carcinoma, and the prediction 

effect was adequate; however, there were too many 

factors in the model, and the predictive abilities of  

 

 
 

Figure 11. Experiment of TPX2. (A) The correlation analysis between MKI67, PCNA and TPX2. (B) Immunoblot analysis of TPX2 protein in 

SKRC39 cells following TPX2 knockdown. GAPDH served as loading control. (C, D) EdU incorporation assays were used to determine the 
effects of TPX2 on SKRC39 cell proliferation. The ratio of EdU-positive cells (green) per field to the number of Hoechst 33342-positive cells 
(blue) in the same field was calculated in five random fields. (E) The effects of TPX2 on the proliferation of SKRC39 cells were analyzed by 
CCK-8 assays. The results are presented as the mean optical density (OD) at 450 nm for triplicate wells. The results are presented as the mean 
± SD of three independent experiments (*P < 0.05, **P < 0.01). (F) The correlation analysis between CDH2, CTNNB1, VIM, TGFB1 and TPX2. 
(G, H) Knockdown of TPX2 inhibited cell migration as detected by Transwell assays. Number of cells that invaded through the membrane was 
counted in 10 fields under magnification, ×200; compared with NC and SKRC39 control group. 



 

www.aging-us.com 21865 AGING 

single factors were not strong, suggesting that they 

cannot be used as optimal prognostic biomarkers. In our 

studies, we conducted a risk score composed by only 

three genes, and the predictive abilities of single factors 

was strong. 

 

There are three factors in our risk signature. The 

microtubule-associated protein TPX2 [10, 11] was a risk 

factor in the risk score. We identified its prognostic co- 

expression module biological process, and found that  

TPX2 co-expressed genes were significantly enriched in 

cell cycle process, mitotic cell, and cell division. The 

division and proliferation of cells depend on a normal 

cell cycle, and unscheduled proliferation is one of the 

hallmarks of tumors [12].  

 

Cell cycle regulators are also directions for promising 

tumor treatments [13]. DNA topoisomerase 2a (TOP2A) 

and centromere protein F (CENPF) were the strongest 

co-expression genes of TPX2, and have been studied in 

many tumors. TOP2A plays an important role in 

promoting tumorigenesis in breast cancer [14], ovarian 

cancer [15], prostate cancer [16], colon cancer [17], and 

acts as biomarker in renal clear cell cancer prognosis 

status [18]. CENPF has also been reported as a 

prognostic factor for breast cancer [19], renal cancer 

[20], and bladder cancer [21]. Therefore, we believe that 

factors in the TPX2 co-expression module might affect 

the prognosis of papillary renal cell carcinoma by 

participating in the process of regulating cell 

proliferation, and we verified it in function experiment.  

 

In the TPX2 co-expression module, the synergistic 

effect between CENPF and FOXM1 were found to 

activate prostate malignancies; experimental 

verification showed that the synergistic effect of 

FOXM1 and CENPF promoted tumor growth by 

activating key signaling pathways and acted as an 

important marker of tumor prognosis and survival [22]. 

Using GSEA analysis of the TPX2 prognostic co-

expression module, we found that co-expressed TPX2 

genes were closely related to cell cycle, RNA 

degradation and spliceosome. These findings suggested 

that the co-expression module of TPX2 had important 

biological significance.  

 

TXNRD2 and SLC6A20 are protective factors for PRCC. 

Thioredoxin reductase 2 (TXNRD2), the protein 

encoded by this gene belongs to the pyridine nucleotide-

disulfide oxidoreductase family, and is a member of the 

thioredoxin (Trx) system. Wang et al. suggested 

TXNRD2 polymorphisms acted as the protective factors 

of gastric cancer [23]. Solute carrier family 6 member 

20 (SLC6A20), the protein encoded by this gene is a 

member of the subgroup of transporter with unidentified 

substrates within the Na+ and Cl- coupled transporter 

family, expressed in kidney [24]. To the best of our 

knowledge, this is the first study to identify TXNRD2 

and SLC6A20 as PRCC prognosis factors. Nevertheless, 

there are few studies of the direction of papillary renal 

cell carcinoma and further research is needed to explore 

this area. 

 

Papillary renal cell carcinoma is characterized by 
various immune microenvironments. Immune 
infiltration analysis showed that the risk score had the 
strongest correlation with M2 macrophages proportion. 
Tumor associated macrophages (TAMs) play important 
roles in tumor microenvironments. In renal cell 
carcinoma, a higher density of M2 macrophages was 
associated with worse prognosis, while M1 
macrophages had the opposite effect [25]. Our present 
findings are consistent with these results, and illustrate 
the role of immune infiltration in papillary renal cell 
carcinoma.  
 
We also explored the role of tumor mutation burden in 
PRCC prognostic status. Tumor mutation burden is 
considered a biomarker for immunotherapy. It is 
currently believed that tumors with high mutation 
burden are more likely to be detected and killed by the 
immune system, and to generate a stronger immune 
response [26]. In our studies, we found the samples in 
high risk group had higher TMB value. Nevertheless, 
the ability of TMB to predict immunotherapy in PRCC 
needs further study.   
 
In conclusion, we established an accurate prognostic 
prediction model, and built papillary renal cell 
carcinoma prognostic co-expression networks. We 
identified biological process and related pathways of 
these prognostic modules. M2 macrophages and TMB 
were related to risk score. Nevertheless, the specific 
upstream and downstream regulation and mechanisms 
require further exploration.  
 
MATERIALS AND METHODS 
 
Data acquisition and processing 
 
The expression matrix and clinical information of renal 
papillary cell carcinoma were obtained from TCGA 
(http://cancergenome.nih.gov/). The expression matrix 
was normalized by log2 (exp + 1). Among protein-
coding genes, genes with median and variance of the 
top 75% were used as the input data for this paper 
(Supplementary Table 2). The data set was randomly 
grouped based on random number method using SPSS 
software 22.0 (Supplementary Table 3). We obtained 
the expression matrix and platform comment 
information of GSE26574 [27], GSE7023 [28], GSE 
2748 [29] from the GEO Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo/).  

http://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Prognostic factors selection 
 
The “Survival” package [30] was used to obtain 
prognostic factors. The screening principle was P < 
0.05. The false discovery rate was used to reduce noises 
and false positives with FDR < 0.05. The corresponding 
hazard ratio and P-value were displayed using 
GraphPad Prism 8.  
 
Identification robust prognostic genes   
 
Subsequently to obtain robust survival associated genes, 
we performed robust likelihood-based survival analyses 
based on the prognostic genes selected by univariable 
Cox regression analysis (FDR<0.05). Robust prognosis-
related genes were selected using the “Rbsurv” package 
[31–33], iteration = 100, max concern gene = 30. 
Kaplan–Meier [34] and ROC curves [35] were used to 
evaluate the prognostic value of these genes, and the 
log-rank [36] test was used to calculate the significance. 
The algorithm of rbsurv package was showed in 
Supplementary Table 4.  
 
Establishment of risk scores 
 
Multivariate Cox regression analysis was performed to 
obtain a prognostic correlation model among the nine 
robust prognostic factors using SPSS 22.0 software 
(Supplementary Table 5). In the model, the hazard ratio 
was used as the coefficient: Risk factors hazard ratio > 
1, protection factors hazard ratio < 1. We calculated the 
risk score for each patient, ranked the patients based on 
the risk score, and used the “pheatmap” package to 
determine the expression levels of risk factors. Finally, 
the risk score was evaluated in the training set, the test 
set and the various subgroups. 
 
Weighted gene co-expression network and GSEA  

 
The “WGCNA” [37] R package was used to construct 
co-expression modules for risk factors. Then we 
selected the top co-expression genes with risk factors 
(Pearson Cor > 0.4). We constructed protein-protein 
interaction networks and presented it using Cytoscape. 
To clarify the relevant functions of risk factors, DAVID 
[38] was used to perform functional enrichment analysis 
and screen biological processes among the top co-
expression genes. Gene set enrichment analysis (GSEA) 
is a calculation method that determines the significance 
and consistency differences of a predefined dataset 
between two biological states [39]. The gene matrix in 
TCGA was divided into high and low expression 
groups, in accordance with the median expression level 
of prognostic genes in model. Based on allocation, 
biological functions related to the high expression group 
was identified, allowing us to identify the mechanisms 
underlying the role of prognostic genes in model.  

Relationship between immune infiltration and risk 

score 
 

The Estimation of Stromal and Immune cells in 

Malignant Tumor tissues using Expression data 

(ESTIMATE) is a method that infers the fraction of 

stromal and immune cells using gene expression 

signatures [40]. Using the ESTIMATE algorithm, we 

calculated stromal scores, immune scores, and tumor 

purity in each papillary renal cell carcinoma sample. 

CIBERSORT is an algorithm that analyzes the cell 

proportion in bulk tissue gene expression matrices. 

LM22 is a gene signature matrix that defines 22 

immune cell subtypes [41]. This was download from the 

CIBERSORT website portal (https://cibersort. 

stanford.edu/). We analyzed immune cell proportions 

based on the LM22 matrix and CIBERSORT algorithm, 

and samples with P < 0.05 were considered to be 

significant and were considered in this study. A total of 

56 samples were selected and are shown in 

Supplementary Table 6. Based on the robust risk score, 

we divided the PRCC samples into high and low risk 

groups, and analyzed the immune cell proportion 

difference in different risk groups. The correlations 

between risk score and immune cell infiltration were 

calculated. 

 

Relationship between TMB value and risk score 
 

TMB is a measure of the total number of mutations per 

megabyte in a chromosome. This includes the total 

number of base substitution inserts, gene coding errors 

and deletions [42]; 38 MB is usually based on the length 

of human exons, and TMB is estimated to be equal to 

the total mutation frequency /38 Mb. TMB per 

megabyte is calculated by dividing the total number of 

mutations by the size of the target coding region. 

 

Pan-cancer analysis of prognostic genes 

 

The Tumor Immune Estimation Resource (TIMER; 

https://cistrome.shinyapps.io/timer/) [43] was used to 

analyze the difference expression of TPX2, TXNRD2 

and SLC6A20 between normal tissue and cancer in 33 

cancer types.   

 

Cell culture and siRNA-PTEN construction 

 

The SKRC39 cells were cultivated in 

DMEM(HighGlucose) with 10% of fetal calf serum, 

100 U/ml penicillin and 100 μg/ml streptomycin. The 

cells were cultured at 37 °C, with 5% CO2. The TPX2 

(H) - 951 siRNA sequences were as follows: 5’-

CCUGUAAUCAUCGAUGAAATT-3’ 5’-UUUCAU 

CGAUGAUUACAGGTT-3’. The TPX2 (H) - 2046 

siRNA sequences were: 5’-GCUCAACCUGUGC 

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
https://cistrome.shinyapps.io/timer/
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CACAUUTT-3’ 5’-AAUGUGGCACAGGUUGAGCT 

T-3’.  

 

Western blotting (WB) 
 

TPX2 protein content was taken from the transfected 

SKRC39 cell total proteins and were lysed in 

radioimmunoprecipitation assay (RIPA) buffer. After 

15min centrifugation, the supernatant was collected and 

injected with the bicinchoninic acid assay kit to detected 

protein concentrations. 10% SDS-PAGE was used to 

separate the proteins, and the proteins were transferred 

to polyvinylidene fluoride membranes. Afterwards, we 

added 5% non-fat milk and sealed the membranes at 37 

◦C for 1 hour. After the addition of primary antibodies 

specific for TPX2 at 4 °C. Blots were washed with 

TBST for 3 times to staining for 2 h at room 

temperature with secondary antibodies. An EasySee 

Western Blot kit (Beijing Transgen Biotech, Beijing, 

China) was then used for protein visualization, with 

ImageJ software being used to measure protein 

expression. 

 

Cell proliferation assay 

 

SKRC39 treated cells were seeded in 96-well plates, 

Cell Counting Kit-8 (CCK-8) assay reagent (Dojindo 

Molecular Technologies, Kumamoto, Japan) was added 

according to the manufacturer’s instructions, and the 

OD values were measured by an absorbance reader 

(Bio-Rad) at wavelength 450 nm. 

 

Transwell assay  
 

Transwell chambers with 8-µm pores matched with 24-

well plates were used for cell migration assays. 600 µl 

of medium (10% FBS) was added to the plate bottom of 

the chamber. Then, a certain number of SKRC39 cells 

were re-suspended with 200 ul serum-free medium and 

added to the upper chamber. After incubation at 37◦C 

for 36 h, total cells remained on the upper chamber 

were removed using cotton swabs, and those that had 

migrated to the lower side were fixed with 4% 

paraformaldehyde for 10 min, and stained with 1.0% 

crystal violet for 10 min at room temperature. After the 

chambers were washed by 1 × PBS, the images were 

captured by EVOSTM XL Core Imaging system 

(Invitrogen; Thermo Fisher Scientific, Inc.) and dealt 

with ImageJ software. 

 
Ethynyl-20-deoxyuridine assay 

 

The 5-ethynyl-20-deoxyuridine (EdU) assay kit 

(Ribobio, Guangzhou, China) was utilized to measure 

cell proliferation. Briefly, cells were seeded into each 

well of 24-well plates for 24 h and then cultured in the 

medium contained 50 μM EdU for 2 h. Subsequently, 

the cells were then fixed with 4% paraformaldehyde, 

incubated for 30 minutes with 100 μl Click Additive 

Solution and stained with 100 μl DAPI. Fluorescence 

microscope (Olympus, BX51 TRF, USA) was used to 

visualize EdU positive cells and the Image J software 

(NIH Image, Bethesda, MD, USA) was used to count 

the percentage of EdU-positive cells. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Forest plot of prognostic factors. (A) The clinical prognostic factors are shown, including HR and P-values. (B) 

The protein coding prognostic factors are shown, including HR and P-values. 
 

 
 

Supplementary Figure 2. The correlation between risk score and the co-expression genes of (A) TPX2, (B) TXNRD2 and (C) SLC6A20. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–5. 

 

Supplementary Table 1. Baseline of renal papillary cancer in TCGA.  

Type   

Normal  32 10.00% 

Tumor 288 90.00% 

Status    

Alive 248 86.10% 

Dead 40 13.90% 

Age   

≥ 60 169 58.70% 

<60 116 40.30% 

NA 3 1.00% 

Gender   

Male 212 73.60% 

Female 76 26.40% 

Clinical_stage   

I 172 59.70% 

II 21 7.30% 

III 51 17.70% 

IV 15 5.20% 

NA 29 10.10% 

Clinical_M   

M0 95 33.00% 

M1 9 3.10% 

MX 170 59.00% 

NA 14 4.90% 

Clinical_N   

N0 49 17.00% 

N1 24 8.30% 

N2 4 1.40% 

NX 210 73.00% 

NA 1 0.30% 

History_other_malignancy   

No 233 80.90% 

Yes 55 19.10% 

Body Mass Index   

Normal (18.5-24.9) 50 17.40% 

Overweight (25-29.9) 86 29.90% 

Mild obesity (30-34.9) 41 14.20% 

Moderate obesity (≥ 35) 35 12.10% 

NA 76 26.40% 

AJCC-T   

T1 193 68.06% 

T2 32 11.11% 

T3 59 20.49% 

T4 2 0.69% 

NA 2 0.69% 
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Supplementary Table 2. Among protein-coding genes, genes with median and variance of the top 75% were used as 
the input data for this paper. 
 

Supplementary Table 3. The results of randomly grouped based on random number method using SPSS software 
22.0. 
 

Supplementary Table 4. The algorithm of rbsurv package was showed. 

1. We randomly divided the training set (N = 147 samples) into the sub-training set with N*(1-p) samples and the sub-

validation set with N * p samples, p = 1/3. We fit a gene to the sub-training set of samples and obtain the parameter estimate. 

Then evaluate log likelihood with the parameter estimate and the sub-validation set. Perform this evaluation for each gene.  

2. We repeat the procedure above 100 times, thereby obtaining 100 times log likelihood for each gene. We then selected the 

best gene with the smallest mean negative log likelihood (or the largest mean log likelihood). The best gene is the most 

survival-associated one that is selected by the robust likelihood-based approach. 

3. We let gene A be the selected best gene in the previous step. We found the next best gene B by repeating the previous two 

steps. 

4. We continued this selection until there was a lack of samples, resulting in a series of K models M1 = A, M2 = A+B, MK = 

A+B+…+K.  

5. We selected the best genes in the model with the smallest AIC. 

 

Supplementary Table 5. The process of Multivariate Cox regression analysis. 
 

Supplementary Table 6. Univariable cox regression of the 56 samples. 

Variable HR 95% CI P-value 

Risk score (low risk vs high 

risk) 

2.340 1.628-3.544 <0.001 

 

Age (≤60 vs >60) 1.108 0.902-1.432 0.182 

Stage (I and II vs III and IV) 2.422 1.135-4.551 0.033 

Gender (male vs female)  2.052 1.207-8.678 0.028 

CI: confidence interval; HR: hazard ratio. 

 
 


