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ABSTRACT

Voxel-based morphometry (VBM) analysis of nuclear Magnetic Resonance Imaging (MRI) data allows the
identification of medial temporal lobe (MTL) atrophy and is widely used to assist the diagnosis of Alzheimer’s
disease (AD). However, its reliability in the clinical environment has not yet been confirmed. To determine the
credibility of VBM, amyloid positron emission tomography (PET) and VBM studies were compared
retrospectively. Patients who underwent Pittsburgh Compound B (PiB) PET were retrospectively recruited.
Ninety-seven patients were found to be amyloid negative and 116 were amyloid positive. MTL atrophy in the
PiB positive group, as quantified by thin sliced 3D MRI and VBM software, was significantly more severe (p
=0.0039) than in the PiB negative group. However, data histogram showed a vast overlap between the two
groups. The area under the ROC curve (AUC) was 0.646. MMSE scores of patients in the amyloid negative and
positive groups were also significantly different (p = 0.0028), and the AUC was 0.672. Thus, MTL atrophy could
not reliably differentiate between amyloid positive and negative patients in a clinical setting, possibly due to
the wide array of dementia-type diseases that exist other than AD.

INTRODUCTION

Voxel-based morphometry (VBM) is widely used to
help diagnose Alzheimer’s disease (AD). It is a
convenient tool that has gained importance due to the
increasing accessibility of nuclear Magnetic Resonance
Imaging (MRI). VBM normalizes the 3D MRI data of a

subject to a standardized space, extracts gray matter
data by segmentation, undertakes spatial smoothing, and
statistically analyzes the data using a normal database.
VBM is able to detect regions that are atrophic relative
to the entire cerebral cortex. VBM software, such as
Voxel-Based Specific Regional Analysis System for
Alzheimer’s Disease (VSRAD ®, Eisai Co., Tokyo,
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Japan), provides a score by which medial temporal lobe
(MTL) atrophy can be assessed objectively, thus,
bypassing the need of specially trained staff for
interpretation [1, 2].

AD has two main pathological features, senile plaques
made of the B-amyloid (AP), which invariably occur as
a part of the pathological process of AD, and
neurofibrillary tangles (NFT) made of phosphorylated
tau. NFT develops first in the MTL [3] causing atrophy.
The MTL including the hippocampus and entorhinal
and perirhinal cortices plays a very important role in
memory [4]. Therefore, it is plausible that MTL atrophy
might be a useful marker for detecting AD pathology.
Several studies have reported that MTL atrophy can be
detected in patients with AD from a very early stage [5—
8] and, therefore, is useful to distinguish prodromal AD
from normal aging [1, 9-11]. Particularly, the CA1l
region of the hippocampus shows the most severe
atrophy in AD [12-16]. Hippocampal volume provides
a quantitative marker of the pathologic substrate that
produces the observed cognitive deficit in AD [17].

Although VBM-derived MTL atrophy scores are easy to
interpret, they are not without fault and can sometimes
produce false positives, categorizing cognitively normal
subjects as AD patients. General practitioners in Japan
often refer healthy patients with high VBM scores to
dementia specialists and prescribe dementia drugs such
as donepezil (Aricept ®, Eisai Co., Tokyo, Japan)
without undertaking memory examinations. This
overprescribing of AD medications and unnecessary
referral to dementia specialists places an extraneous
burden on the Japanese health insurance system and
medical infrastructure.

Although a previous study showed that MTL atrophy
scores calculated using VSRAD ® Advance have a high
sensitivity (86.4%) and a high specificity (97.5%) [2],
there are two serious limitations of the study, which
impede its reliability in an actual clinical setting. First,
the study population included only AD and cognitively
normal subjects. In reality, however, clinicians must be
able to differentiate between the different types of
cognitive disorders such as dementia with Lewy bodies
(DLB), fronto-temporal lobe dementia (FTLD),
progressive supranuclear palsy (PSP), cortico-basal
degeneration (CBD), neurofibrillary tangle-predominant
dementia (NFTD), and argyrophilic grain dementia
(AGD). Representative MTL images are shown in
Figure 1. A previous study showed that only 34% of
patients with neurodegenerative dementia (clinical
dementia rating scale; CDR > 1) had AD pathology [18]
and another showed that there was no significant
difference in MTL atrophy between subjects with AD
and non-AD dementia [17]. Therefore, while VSRAD ©

Advance may be useful for differentiating AD from
cognitive normal subjects, the score alone is not
sufficient to diagnose AD. Second, the patients assigned
to the AD arm of the study were diagnosed based on
clinical criteria. However, false positive diagnosis of
AD is possible when using clinical criteria alone and
similarly, patients with AD pathologies are often
misdiagnosed with normal cognition [19]. A paper
reviewing the reliability and validity of NINDS-ARDA
Alzheimer’s criteria [20] found that the sensitivity and
specificity of the ‘probable AD’ category was 76.6 —
70.9% and 59.5 — 70.8%, respectively; and those of the
‘probable AD’ and ‘possible AD’ categories combined
were 87.3 — 82.7% and 44.3 — 54.5%, respectively [21].
Lim et al. [22] also showed that the ‘probable AD’
category had 83% sensitivity and 55% specificity;
‘probable AD’ and ‘possible AD’ categories combined
had 85% sensitivity and 50% specificity. In a
population-based study by Petrovitch et al. [23], only
65% of the clinically diagnosed AD was reported to be
pathologically accurate. Amyloid imaging is reported to
alter the presumptive diagnosis in approximately 30%
of cases, increase the diagnostic confidence in about
60% of cases, and change the patient management in
about 60% of cases [24]. Owing to the high reliability
of amyloid positron emission tomography (PET), a
positive result can be considered as a clear confirmation
of AD pathology.

This study aimed to investigate the clinical reliability of
VBM in diagnosing AD. We compared hippocampal
atrophy assessed using VSRAD Z-score and amyloid
PET retrospectively.

RESULTS
Demographics

Seventy-three out of 286 patients were excluded from
the analysis. Eighteen patients did not have 3D MRI
data suitable for VBM. MR images of 46 patients
showed bad segmentation, two images were of low
quality due to the head movement, and one showed
susceptible artifact due to a cochlea implant. One
patient had a large arachnoid cyst, one had a large
infarction, and one had normal pressure
hydrocephalus. Three patients with cerebral amyloid
angiopathy were also excluded, as they may show
amyloid positivity in the absence of senile plaques and
MRI can be influenced by hemorrhage. Of the 213
remaining patients, 97 were amyloid negative and 116
were amyloid positive. Patient characteristics are
shown in Table 1. For all patients, the diagnosis at the
time of scanning and the most recent diagnosis by
neurology specialists are shown in Supplementary
Figure 1.
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Distribution of hippocampal atrophy

VSRAD Z scores of PiB negative and positive patients
were significantly different (p = 0.00393). However,
histograms showed a vast overlap of scores between the
two groups (Figure 2A). A Receiver Operating
Characteristic (ROC) curve of VSRAD Z values is
shown in Figure 2B. VSRAD ® had 78.4% sensitivity,
54.6% specificity, and 67.6% accuracy at a Z value of
1.20. The Area Under the ROC curve (AUC) was 0.646.

MMSE

The histogram of MMSE scores is shown in Figure 3A.
It also showed a vast overlap of scores between the two
groups.

The ROC curve of MMSE scores is shown in Figure
3B. As calculated, the sensitivity, specificity, and
accuracy of MMSE was 64.3%, 65.2%, and 64.7%,
respectively, at MMSE 24.5. AUC was 0.672.

Correlation analysis

We assessed the correlation between amyloid positivity
and MMSE score, VSRAD Z score, age, and sex. The

model was significant (y?>= 23.42, p = 0.0029). The lack-
of-fit test by logistic regression analysis showed that
amyloid positivity was significantly correlated with the
MMSE score (x* = 4.97, p = 0.0258), but not with the
VSRAD Z score (x®= 1.44, p = 0.2301). Moreover, age
(x*= 0.61, p = 0.4366) and sex (x*>= 0.59, p = 0.4428)
were not significantly correlated with amyloid positivity.
This indicates that MMSE has a closer correlation with
amyloid positivity than VSRAD Z scores.

DISCUSSION

We observed that MTL atrophy, determined using VBM
with MRI was not a reliable indicator of AP deposition.
The significant difference between the VSRAD Z scores
of AP positive and negative patients can be explained
by a difference in MMSE score. The ROC analysis of
VSRAD Z scores showed a low AUC value (0.646),
which was similar to the AUC value of MMSE scores
(0.672). Since MMSE is much simpler and inexpensive
than MRI examination, MMSE would be preferable to
VBM as a tool to diagnose AD.

The low reliability of VBM observed in this study is
likely attributable to the existence of many different
forms of dementias other than AD, a factor not

CBS Z:0.20, AB (-)

FTLD Z:4.90 AB (-)

Figure 1. Representative medial temporal lobe images, VSRAD Z scores, and amyloid positivity.
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Table 1. Demographics.

AB () AB () P
n (male/female) 97 (42/55) 116 (40/76) 0.188
age 71.8+£10.2 72.7£10.0 0.515
age range 43 — 88 48 - 97
MMSE* 24.0+6.8 20.6+7.5 0.003

+ denotes standard deviation. *MMSE were available for 153 patients. x>-test for sex ratio and t-test (bilateral) for age and
MMSE were executed.

A B
25% A
negative 05 |
20% A positive
2 06
15% - p = 0.0039 =
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10% A 0 specificity: 54.6%
accuracy: 67.6%
5% A 02 at Z: 1.20
AUC: 0.646
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1 - Specificity

Figure 2. (A) Histogram of VSRAD Z scores. VSRAD Z scores of PiB negative and positive patients were significantly different.
However, histogram showed a vast overlap of scores between PiB positive and negative patients. (B) ROC analysis of VSRAD

Z values.
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20% T negative (69)
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at MMSE 24.5
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% AUC 0.672
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Figure 3. Histogram (A) and ROC analysis (B) of MMSE scores.
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accounted for in the previous study on VBM [2].
Although MTL atrophy detected by MRI correlates with
NFT pathology, it is not specific to AD [17].
Furthermore, hippocampal-sparing AD, which does not
involve hippocampal atrophy, is reported in
approximately 11% of cases, which should also be
taken into consideration when designing a study
involving AD patients [25]. Early stage AD before
hippocampal shrinkage [26] (preclinical stages of
AD or MCI due to AD) would also result in a false
negative VBM.

VBM for MTL atrophy and PiB PET for AP deposition
target two different components of AD pathology, NFT
and senile plaques, respectively. Tateno et al. [27]
reported no correlation between AP deposition and
MTL atrophy, while Jack et al. [28] reported a weak
correlation. Studies showed that AP deposition in the
neocortex is related to MTL atrophy only at a very early
stage [29-31], and moreover the relationship is of a
weak and inconsistent nature [32]. This phenomenon
can be explained by the fact that AP accumulation
reaches a plateau very early during the disease
progression [26, 28]. Within AP (+) patients,
hippocampal atrophy showed a significant correlation
with Braak and Braak staging and the level of tau
in the cerebrospinal fluid (CSF), moreover,
hippocampal atrophy showed a weak correlation with
AP burden [33].

Although our study demonstrated that VBM is not
useful in diagnosing AD, it may be useful in other
situations. VBM can be used to access MTL atrophy for
research purpose [34]. It has been reported that the
pattern of gray matter atrophy is associated with NFT
pathology in Braak stage V and VI patients [35].
Identification of the atrophy pattern would be useful for
classifying patients into the pathological subtypes of
AD, i.e. typical AD, hippocampal-sparing AD, and
limbic-predominant AD [36], and to distinguish nonAD
degenerative dementia from MCI due to AD [37, 38].
Moreover, VBM is routinely used to evaluate disease-
specific atrophic regions [39].

There are several limitations to this study. First, it
should be noted that amyloid positivity does not
conclusively equate to a diagnosis of AD, although an
amyloid negative result can rule out the possibility of
AD. Moreover, it takes many vyears to develop
hippocampal atrophy after amyloid deposition [26].
Second, although the study population was large, this
retrospective study might be biased since patients who
are difficult to be diagnosed require amyloid PET
scanning. Therefore, the patient population in this study
may not be a true representation of the wider
population. However, a pathological study showed that

the proportion of patients with cognitive impairment
with pure Alzheimer’s disease was as little as 34% [18].
Third, the MRI machine was updated to a newer model
during the studied period. The difference in machines
may influence the VBM results obtained. However, the
effect is likely to be insignificant in clinical settings.

In conclusion, our study demonstrated that VBM based
analysis of MRI data reliably detects hippocampal
atrophy, but is not useful for the diagnosis of AD.

MATERIALS AND METHODS
Patients

286 patients, who underwent Pittsburgh Compound B
(PiB) PET between March 2, 2006 and January 25,
2017, were retrospectively recruited. For patients who
underwent PiB PET no less than twice during this
period, the first scan was used.

Ethical approval and consent to participate

The study was conducted in accordance with the Ethical
Guidelines for Medical and Health Research Involving
Human Subjects in Japan and conformed to the Helsinki
Declaration. The study protocol was approved by the
institutional review board of the Tokyo Metropolitan
Institute of Gerontology. Patients and their families
were provided with detailed information, and written
informed consents were obtained from all participants.

Amyloid PET

555 MBq of [*!C] PiB was administered intravenously.
Patients underwent either a 70 minute dynamic scan or
a 20 minute static scan 40 or 50 minutes after
administration of the radiotracer using PET scanner.
Discovery PET/CT 710 (GE Healthcare, Waukesha,
WI, USA) and Headtome V (Shimadzu Corporation,
Kyoto, Japan) were the two machines used.

Amyloid positivity was determined by two experts
(MK, K. Ishibashi) according to the standard criteria.
Images in which the tracer accumulation was higher in
the cortex or striatum than in the white matter were
considered amyloid positive. Where the opinions of the
two experts differed, categorization was determined
through discussion.

MRI

MR images for VBM (3D Ti-weighted images) were
executed on Signa Excite HD (1.5T), Signa HDxt (1.5T)
or Discovery 750w (3T) (GE Healthcare, Waukesha, W1,
USA). A VBM program based on Statistical Parametric
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Mapping (SPM) 8 with Diffeomorphic Anatomic
Registration Through Exponentiated Lie algebra
(DARTEL) (VSRAD ® Advance 2, Eisai Co., Tokyo,
Japan) [2] was applied and a VSRAD Z score,
representing MTL atrophy, was obtained.

Segmentation error was assessed by two experts (MK,
K. Ishibashi). Again, where the opinions of the two
experts differed, a consensus was reached through
discussion.

Statistical analysis

All statistical analyses, excluding logistic regression
analysis, were performed using a standard spread sheet
software, Excel ® 2016, (Microsoft Corporation,
Redmond, WA, USA). Logistic regression analysis was
performed using JMP ® version 11.0.0 (SAS Institute
Inc., Cary, NC, USA).

Abbreviations

AD: Alzheimer’s disease; AGD: argyrophilic grain
dementia; DARTEL: diffeomorphic  anatomical
registration through exponentiated lie algebra; FTLD:
fronto-temporal lobe dementia; DLB: dementia with
Lewy bodies; MCI: mild cognitive impairment; MMSE:
Mini-Mental State Examination; MRI: nuclear magnetic
resonance  imaging; PET:  positron  emission
tomography; PiB: Pittsburgh Compound B; PSP:
progressive  supranuclear palsy; ROC: receiver
operating characteristic analysis; SPM: statistical
parametric mapping; VBM: voxel-based morphometry
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SUPPLEMENTARY MATERIALS

Supplementary Figure
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Supplementary Figure 1. Clinical diagnosis of participants. Inside: before amyloid PET; Outside: latest diagnosis.
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