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INTRODUCTION 
 

Nonalcoholic fatty liver disease (NAFLD) is the most 

common chronic liver disorder worldwide, affecting one 

in four adults, with the global prevalence between 

22.10% to 28.65% [1]. Although the frequency of its 

liver related mortality is low, the staggering denominator 

of over a billion adults with NAFLD coupled with a ~2% 

lifetime risk of liver related mortality will eventually lead 

to ~20,000,000 liver related deaths among patients 

currently alive with NAFLD [2]. NAFLD is becoming 

the most common cause of liver disease and liver related 

death globally [1]. However, no proven effective medial 

therapy is available for NAFLD currently [3]. 

 

NAFLD is defined by the accumulation of fat in the 

liver, with more than 5% of hepatocytes containing 

visible intracellular triglyceride, in the absence of 
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ABSTRACT 
 

Background: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder worldwide. 
Multiple metabolic disorders, such as hyperlipidemia, hyperglycemia, insulin resistance and obesity, have been 
reportedly associated with NAFLD, but little is known about the detailed mechanisms. 
Methods and Results: Here, we explored the effects of multiple metabolic disorders, especially hyperglycemia 
on lipid accumulation in liver using several well-established animal models. We found that liver lipid deposition 
was increased in both type 1 diabetes and high-fat diet (HFD) induced hyperlipidemia models, suggesting that 
either hyperglycemia or hyperlipidemia alone or together was able to trigger NAFLD. Moreover, we tested 
whether miR-320, a miRNA promoting lipid accumulation in heart revealed by our previous study, also 
participated in NAFLD. Though miR-320 treatment further increased liver lipid deposition in type 1 diabetes and 
HFD-feeding mice, it showed no effect in leptin-receptor deficient db/db mice. Interestingly, miR-320 affected 
different target genes in cytosol and nucleus, respectively, which collectively led to liver lipid overload. 
Conclusions: Our findings illustrated the complex roles of miRNAs in subcellular fractions including nucleus and 
cytoplasm, which may lead to new insights into the mechanisms and treatment strategies for NAFLD in the future. 
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excessive alcohol consumption and other causes of 

hepatic steatosis [4]. NAFLD is closely associated with 

metabolic co-morbidities including obesity, insulin 

resistance and dyslipidemia. Specifically, more than 

three-quarters of type 2 diabetes patients were reported 

having NAFLD [5, 6]. It is now clear that liver 

steatosis is closely linked to impaired insulin sensitivity 

and type 2 diabetes. Interestingly, previous studies 

suggested that hepatic steatosis preceded the 

development of hepatic and adipose tissue insulin 

resistance, as well as systemic hyperglycemia and 

hyperinsulinemia in mice fed with high-fat diet (HFD) 

[7, 8]. Notably, changes occurring in the fatty liver of 

NAFLD could cause insulin resistance by altering 

paracrine and endocrine functions, which in turn would 

accelerate the development of NAFLD itself through 

impaired ability of insulin to suppress adipose tissue 

lipolysis, increased delivery of free fatty acids to the 

liver, and increased de novo lipogenesis [9], eventually 

triggering a vicious cycle between NAFLD and 

metabolic co-morbidities [10]. 

 

While the roles of HFD and type 2 diabetes in NAFLD 

are becoming clear, few data are available regarding the 

prevalence and natural history of NAFLD in people 

with type 1 diabetes [11]. In animal studies, NAFLD 

was usually induced by specific diet (e.g. HFD) or 

genetic manipulation (e.g. db/db or ob/ob) [12]. 

Because multiple metabolic disorders, such as 

hyperglycemia, hyperlipemia and insulin resistance, 

were observed in these animals simultaneously, the 

specific effects of hyperglycemia alone on NAFLD is 

unclear. Therefore, in this study, we take advantage of a 

well-established animal model, the streptozotocin 

(STZ)-induced type 1 diabetic model, in comparison 

with the HFD-induced hyperlipidemia model, and db/db 

(leptin receptor deficient) type 2 diabetes model,  

to explore the certain effects of each metabolic disorder, 

especially the effects of hyperglycemia alone on 

NAFLD. 

 

MiRNAs are recently discovered small (~22 nt) non-

coding RNAs that usually negatively regulate gene 

expression at post-transcriptional levels in various 

biological processes. We have previously demonstrated 

that miR-320 overexpression could increase circulating 

triglyceride and cholesterol levels in ApoE
−/−

 mice [13], 

and moreover, miR-320 overexpression promoted while 

miR-320 inhibition rescued aortic lipid accumulation in 

ApoE
−/−

 mice [13]. Interestingly, we subsequently 

found that miR-320 was also presented in the nucleus to 

enhance CD36 transcription and induce fatty acids 

accumulation in diabetic db/db mice [14]. Importantly, 

miR-320 inhibition was able to prevent cardiac lipid 

accumulation in db/db mice [14]. Our previous data 

strongly suggested that miR-320 was a potent regulator 

in multiple metabolic disorders, but its role in NAFLD 

was largely unknown. 

 

In the current study, we evaluated the effects of 

metabolic disorders, especially the effects of 

hyperglycemia alone on NAFLD. Furthermore, we 

investigated the effects of miR-320 on liver lipid 

accumulation and whether it could serve as a potential 

therapeutic target for NAFLD in three different animal 

models. Finally, we identified the direct targets of miR-

320 and evaluated the subcellular regulation pattern in 

hepatocytes. 

 

RESULTS 
 

Lipid content in the liver of differently treated mice 
 

To explore the effects of single metabolic disorder on 

NAFLD, we utilized three animal models including the 

STZ-induced type 1 diabetes model, HFD-induced 

obesity model and the db/db type 2 diabetes model 

(Figure 1A). In STZ-treated C57BL/6 mice, previous 

studies have demonstrated that as early as 4-5 weeks 

after STZ administration, only hyperglycemia was 

observed. Later, hyperlipidemia will be induced 5-17 

weeks after STZ administration [15]. To investigate the 

effect of hyperglycemia alone on NAFLD, in this study, 

we analyzed the circulating biochemical parameters and 

liver lipid levels. As expected, 4 weeks after STZ 

treatment, only fasting blood glucose (FBG) was 

increased, while circulating triglyceride (TG) and total 

cholesterol (TC) remained unchanged (Figure 1B). 

 

We also analyzed the same parameters in HFD-treated 

C57BL/6 mice. Previously, we have shown that blood 

glucose level was increased in 8-week-HFD treated 

mice but not in 4-week-HFD treated mice [14]. 

Therefore, in the current study, we treated mice with 

HFD for 4 weeks to explore the effect of hyperlipidemia 

alone on NAFLD. In contrast to the 4 weeks STZ 

treatment, 4 weeks HFD treatment led to upregulated 

TG but unchanged FBG and TC (Figure 1C). 

 

In the third model, the leptin receptor (LEPR) deficient 

db/db mice, hyperglycaemia combined with 

hyperlipidemia were observed in 12-week-old db/db 

mice, compared to wild type mice (Figure 1D). 

 

Meanwhile, oil-red staining revealed that liver lipid 

levels were increased at 12-week-old in all the three 

models (Figure 1E–1G). HE staining also showed clear 

steatosis at 12-week-old in these animal models 

(Supplementary Figure 2). These data suggested that 

either STZ-induced hyperglycaemia or HFD-induced 

hyperlipidemia alone was sufficient to trigger increased 

lipid deposition in liver, respectively. 
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Fatty acids uptake and lipogenesis in liver of 

differently treated mice 
 

To explore the mechanism underlying increased liver 

lipid deposition in differently treated mice, we analysed 

critical gene markers for fatty acids uptake, lipogenesis 

and lipid oxidation processes by qRT-PCR. Interestingly, 

we found that among the four fatty acids uptake relative 

genes, only fatty acid translocase (FAT)/CD36 was 

significantly increased in all three animal models  

(Figure 2A), indicating that hyperglycaemia alone or 

hyperlipidemia alone could increase fatty acids transport 

into hepatocytes. 
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Figure 1. Lipid content in the liver of differently treated mice. (A) Summarized data of the effects of short-term (4 weeks) STZ-, HFD-, 

LEPR-deficiency (db/db) treatments on circulating glucose and lipid levels. (B) Time course analysis of circulating glucose, TG, TC levels in STZ-
treated C57BL/6 mice and control mice (n=3-4, *p<0.05). (C) Time course analysis of circulating glucose, TG, TC levels in HFD-treated C57BL/6 
mice and control mice (n=3-4, *p<0.05). (D) Time course analysis of circulating glucose, TG, TC levels in db/db mice in comparison with wild 
type mice (n=3-4, *p<0.05). (E–G) Representative image of liver lipid contents detected by oil-red staining in STZ-treated C57BL/6 mice (E), 
HFD-treated C57BL/6 mice (F) and db/db mice (G). 
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In terms of lipogenesis, we detected lipogenic enzymes 

Acetyl-CoA carboxylase 1 (ACC1, a biotin-containing 

enzyme which catalyzes the carboxylation of acetyl-

CoA to malonyl-CoA, the rate-limiting step in fatty acid 

synthesis), Fatty Acid Synthase (FAS, catalyzes the 

conversion of acetyl-CoA and malonyl-CoA to the 16-

carbon fatty acid palmitate), Diacylglycerol O-

Acyltransferase 1 (DGAT1, a key enzyme to catalyze 

the conversion of diacylglycerol and fatty acyl CoA to 

triacylglycerol) and DGAT2 (catalyzes the terminal and 

only committed step in triacylglycerol synthesis). 

Interestingly, we found that ACC1 and FAS were 

increased by STZ treatment, while DGAT2 was 

upregulated in HFD-treated mice (Figure 2B), 

indicating that hyperglycemia and hyperlipidemia might 

promote lipogenesis by activating distinct lipogenic 

genes, respectively. Moreover, we noted that FAS, but 

not ACC1, was increased in both type 1 (STZ induced) 

and type 2 (db/db) diabetes model, indicating that 

lipogenic enzyme FAS might be specifically induced by 

hyperglycemia. 

 

In terms of lipid oxidative genes, including HMGCS2, 

CPT2 and CPT1A, no significant changes were 

observed (Figure 2C), indicating that lipid oxidation 

might not be responsible for the increased lipid 

deposition in liver, at least not in the early stages of 

hyperglycaemia or hyperlipidemia induced NAFLD. 

 

Notably, protein levels of these crucial genes showed 

consistent regulation patterns as mRNA levels in these 

animal models (Figure 2D). 

 

MiR-320 overexpression increased liver lipid content 

in differently treated mice 

 

Previously, we have shown that miR-320, a small non-

coding RNA molecule, promoted lipid accumulation in 

aorta and heart by targeting SRF and CD36, 

respectively, while miR-320 inhibition rescued lipid 

overload in these tissues [13, 14]. We then tested 

whether miR-320 was participated in the increased liver 

lipid deposition. Although we found that the global 

miR-320 level in liver was unchanged in these animal 

models (Figure 3A), as our previous work and other 

studies have suggested the distinct roles of one certain 

miRNA in different subcellular fractions [16, 17], we 

then measured the subcellular localization of miR-320 

in liver of these animal models, finding that miR-320 

was similarly expressed in cytoplasm and nucleus in 

mouse liver under normal condition (Figure 3B). 

Interestingly, increased nuclear miR-320 was observed 

in livers from STZ-treated, HFD-treated C57BL/6 mice 

and db/db mice in comparison with control mice, 

respectively (Figure 3C). While in cytosol, miR-320 

levels showed a decreasing trend in these animal models 

(Figure 3D). These data indicated that miR-320 might 

translocate from cytoplasm into nucleus in NAFLD. 

 

A step further, we tested whether overexpression or 

inhibition of miR-320 would change the lipid content in 

liver of these animal models. Successful induction or 

suppression of miR-320 in liver was introduced by 

using rAAV system or miR-320 transgenic mice (Figure 

3E, 3F). We found that miR-320 overexpression 

increased STZ-induced lipid deposition in C57BL/6 

mice while miR-320 inhibition reduced lipid content in 

liver (Figure 3G and Supplementary Figure 3A, 3D). 

Consistently, lipid acumination was more abundant in 

miR-320 transgenic mice fed with HFD compared to 

their wild type counterparts (Figure 3H and 

Supplementary Figure 3B, 3D). These data indicated 

that miR-320 overexpression was able to further 

promote hyperglycemia or hyperlipidemia induced lipid 

deposition, respectively, and miR-320 inhibition might 

be a therapeutic strategy for NAFLD. In normal 

unstressed mice, neither miR-320 overexpression nor 

inhibition had any detectable effect on lipid 

acumination in liver (Figure 3G, 3H). On the contrary, 

we found that miR-320 had no effect on lipid 

accumulation in db/db mice liver (Figure 3I and 

Supplementary Figure 3C, 3D), indicating that miR-320 

exhibited different regulation pattern in LEPR deficient 

db/db mice. In terms of circulating glucose, TG and TC, 

miR-320 overexpression or inhibition did not affect 

these parameters in all three animal models 

(Supplementary Figure 4). 

 

Moreover, we took advantage of AAV8-TBG system to 

specifically investigate the role of miR-320 in liver. 

These data showed that AAV8-TBG-miR-320 treatment 

exclusively increased hepatic miR-320 level, and 

promoted lipid deposition in STZ-induced and HFD-

treated mice but not in db/db mice, which were 

consistent with the observations in global rAAV9 

treatment (Supplementary Figure 5). These data 

suggested that miR-320 overexpression or knockdown, 

whether by using liver specific AAV8-TBG vector or 

global AAV9-CMV-vector, were both able to affect the 

outcomes of NAFLD. 

 

The regulation of miR-320 on lipogenesis was leptin-

receptor dependent 

 

We further investigated the mechanism underlying the 

different effects of miR-320 on lipid content between 

STZ or HFD-treated mice and the LEPR deficient db/db 

mice. Coincidently, by bioinformatic prediction, we 

found that LEPR 3’ UTR harbored a miR-320 binding 

site, which was conserved among human and mouse 

(Figure 4A). We then tested whether miR-320 regulated 

liver lipid metabolism through leptin receptor pathway. 
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Figure 2. Fatty acids uptake and lipogenesis in liver of differently treated mice. (A–C) Quantitative real-time PCR was performed to 
determine the hepatic mRNA levels of fatty acids uptake-, de novo lipogenesis- and lipid oxidation related genes in STZ-treated C57BL/6 mice, 
HFD-treated C57BL/6 mice and db/db mice (n=6, *p<0.05). (D) Western blot was used to analyse the hepatic protein levels of fatty acids 
uptake-, de novo lipogenesis- and lipid oxidation related genes in STZ-treated C57BL/6 mice, HFD-treated C57BL/6 mice and db/db mice 
(n=3). 



 

www.aging-us.com 22025 AGING 

We found that miR-320 indeed decreased LEPR, but 

not leptin in human hepatic L02 cells (Figure 4B). We 

then evaluated the effects of miR-320 on lipid 

metabolism related gene in LEPR-knockdown L02 

cells. Interestingly, we found that LEPR-knockdown 

completely blocked miR-320 induced FAS activation 

and partly blocked CD36 activation (Figure 4C). These 

data suggested that the regulation of miR-320 on 

lipogenesis gene FAS might be leptin-receptor 

dependent, while the regulation of miR-320 on fatty 

acids uptake gene CD36 was partly leptin-receptor 

dependent. 

 

In terms of fatty acids uptake gene CD36, we have 

previously demonstrated the direct activation of CD36 

by nuclear miR-320 in cardiomyocytes [14], we then 

tested whether this is also the case for nuclear and 

cytosol miR-320 in hepatocytes. As miRNAs regulate 

gene expression through Ago2, a key protein binds 

microRNAs and mediates the loading of these small 

noncoding RNAs onto RISC to recognize specific 

targets through base-pairing [18]. We therefore 

performed RNA co-immunoprecipitation and Chromatin 

Immunoprecipitation with anti-Ago2. As a result, Ago2-

CHIP and Ago2-RIP analysis further confirmed the 

direct binding of Ago2-miR-320 complex on promoter 

DNA of CD36 gene and 3’ UTR of LEPR mRNA, 

respectively (Figure 4D). 

 

These data suggested that miR-320 directly targeted 

LEPR mRNA and CD36 DNA, respectively, to regulate 

these genes expression, indicating complicated roles of 

one certain miRNA in different subcellular fractions 

(Figure 4E). 

 

miR-320 targeted CD36 promoter DNA in nucleus 

and leptin receptor mRNA in cytoplasm respectively 

 

To answer the question whether the regulation of miR-

320 on these lipid metabolic relative genes were mainly 

cytoplasmic or nuclear effects, we took advantage of 

Ago2 knockdown hepatocytes to functionally rescue 

miR-320-meidiated gene regulation with pcDNA-

Ago2nes (nuclear export signal) targeting cytoplasm or 

pcDNA-Ago2nls carrying a nuclear targeting signal 

peptide, respectively. We found that miR-320 decreased 

LEPR and increased CD36 expression in control 

hepatocytes, while it lost these effects in Ago2 

knockdown (siRNA treated) L02 cells (Figure 5A–5E). 

In Ago2 knockdown cells, re-expression of Ago2 in the 

cytoplasm restored miR-320-mediated LEPR suppression 

(Figure 5A, 5D). While re-expression of Ago2 in the 

nucleus restored miR-320-mediated CD36 activation 

(Figure 5A, 5E). In animal models, we also observed 

upregulation of CD36 and downregulation of LEPR by 

miR-320 overexpression (Supplementary Figure 6). 

 

Collectively, these data demonstrated that miR-320 could 

directly target CD36 promoter DNA in nucleus and 

LEPR mRNA in cytoplasm to regulate their expression, 

respectively. Notably, miR-320 activated its nuclear 

target CD36 while suppressed its cytoplasmic target 

LEPR simultaneously, indicating the complicated and 

coordinated regulation pattern of miRNAs in diseases. 
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Figure 3. MiR-320 overexpression increased liver lipid content in differently treated mice. (A) MiR-320 levels in STZ-treated 
C57BL/6 mice, HFD-treated C57BL/6 mice, and db/db mice liver were determined by quantitative real-time PCR (n=6). (B) Cytoplasmic and 
nuclear miR-320 levels in normal mice liver were detected by cell fractionation followed by RT-qPCR. GAPDH mRNA and U6 RNA were  
served as cytoplasmic and nuclear markers. MiR-320 was similarly expressed in nucleus and cytoplasm (n=3, *p<0.05). (C, D) Cytoplasmic and 
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nuclear miR-320 levels in STZ-treated C57BL/6 mice (B), HFD-treated C57BL/6 mice (C), and db/db mice (D) liver were determined using cell 
fractionation followed by quantitative real-time PCR (n=3, *p<0.05). (E, F) Nuclear and cytosol miR-320 levels in miR-320 transgenic and 
rAAV-miR-320 treated mice were detected by quantitative real-time PCR (n=3, *p<0.05). (G) The effects of rAAV-miR-320 on lipid 
accumulation in liver determined by oil red staining in STZ-treated C57BL/6 mice. (H) Detection of lipid levels by oil red staining in miR-320 
transgenic mice treated with HFD. (I) The effects of rAAV-miR-320 on lipid accumulation in liver determined by oil red staining in db/db mice. 
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Figure 4. The regulation of miR-320 on lipogenesis was leptin-receptor dependent. (A) Sequence alignment of miR-320 on 3’ UTR 
of LEPR from mouse and human. (B) Western blot was performed to determine the protein levels of LEP and LEPR in L02 cells treated with 
miR-320 mimic (n=3, *p<0.05). (C) Effects of miR-320 mimic on protein levels of CD36, FAS and DGAT2 in si-NC and si-LEPR treated L02 cells 
detected By Western blot (n=3, *p<0.05). (D) Relative mRNA levels and promoter DNA levels of LEPR and CD36 detected by Ago2-RIP and 
Ago-2 CHIP, respectively (n=3, *p<0.05). (E) A model to illustrate the effects of cytosol and nuclear miR-320 on lipid accumulation. 

 

 
 

Figure 5. miR-320 targeted CD36 promoter DNA in nucleus and leptin receptor mRNA in cytoplasm respectively. (A–E) 

Western blotting analysis of the effects of miR-320 on CD36 and LEPR rescued with nuclear or cytosol Ago2 re-expression. In Ago2 
knockdown cells, re-expression of Ago2 in the cytoplasm restored miR-320-mediated LEPR suppression. While re-expression of Ago2 in the 
nucleus restored miR-320-mediated CD36 activation (n=3, *p<0.05). 
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DISCUSSION 
 

In this study, we found that liver lipid deposition was 

increased in type 1 diabetes and HFD induced 

hyperlipidemia models, suggesting that hyperglycaemia 

alone or hyperlipidemia alone was able to trigger 

NAFLD. Moreover, we also tested whether miR-320, a 

miRNA we have previous shown to promote lipid 

accumulation in aorta and heart, was able to affect 

NAFLD. Interestingly, miR-320 treatment further 

increased liver lipid deposition in STZ-induced and 

HFD-treated mice but not in db/db mice, partly because 

miR-320 promoted lipogenesis through leptin-receptor 

signaling. Mechanically, miR-320 inhibition decreased 

miR-320 level in cytosol, increased leptin receptor 

translation and decreased de novo lipogenesis, 

meanwhile, miR-320 inhibitor also decreased miR-320 

level in nucleus, reduced CD36 transcription and lipid 

uptake, which collectively leading to rescued liver lipid 

overload. These new mechanisms suggested a new 

potential therapy for treating NAFLD with miR-320 

inhibitor and illustrated the complex roles of miRNAs in 

subcellular fractions including nucleus and cytoplasm, 

which may lead to new insights into the mechanisms and 

treatment strategies for NAFLD in the future. 

 

Though the associations between NAFLD and metabolic 

co-morbidities such as diabetes and dyslipidemia are 

generally clear, the underlying mechanisms are largely 

unknown. Especially, whether hyperglycemia alone 

would lead to increased liver lipid accumulation is 

largely unclear. To explore whether hyperglycemia or 

dyslipidemia contributed to liver lipid deposition, we 

took advantage of STZ-induced and high fat feeding 

mice and evaluated liver lipids only 4-weeks after the 

treatment, which resulted in isolated hyperglycemia or 

dyslipidemia. Because a longer time treatment would 

lead to multiple metabolism disorders triggering the 

formation of a vicious cycle between hyperglycemia and 

dyslipidemia [14, 15], which would make it harder to 

determine the cause-and-effect factors for NAFLD. As 

for this reason, we only analyzed liver lipid deposition 

after 4-weeks STZ- or high fat diet treatment and 

observed only modest induction in liver lipid content. 

Notably, inflammation and fibrosis, the crucial 

indicators for non-alcoholic steatohepatitis (NASH) or 

cirrhosis, were undetectable yet in our study (data not 

shown). Here, because we only focused to study the 

early stage of fatty liver disease, the metabolic changes 

and the mechanisms underline the advanced or end-stage 

of NAFLD still await investigation. 

 

We noted that miR-320 directly decreased LEPR 

translation in hepatocyte. Moreover, lipogenic gene 

FAS activation mediated by miR-320 was abolished by 

LEPR knockdown, suggesting that the effect of miR-

320 on lipid deposition in liver was mainly through 

LEPR. This might explain why miR-320 promoted liver 

lipid deposition in STZ-induced and high fat feeding 

mice but not in db/db (leptin receptor deficient) mice. 

Very interestingly, we found that in db/db mice, miR-

320 was actually able to promote lipid deposition in 

heart [14], which was very different to liver. We 

reasoned that this might because lipid accumulation in 

heart was mainly attributed by lipid uptake while in 

liver was contributed by lipogenesis and lipid uptake 

[19, 20]. Because lipogenic genes were regulated by 

LEPR, this might explain why miR-320 mediated 

lipogenesis was abolished in LEPR deficient db/db mice 

liver, while in STZ- and HFD mice (LEPR pathway and 

lipogenesis were preserved), miR-320 was able to 

promote lipid accumulation by enhancing both the 

lipogenesis and lipid uptake processes. In contrast, in 

db/db heart, miR-320 continued to enhance cardiac lipid 

accumulation by directly activating CD36 transcription 

through an LEPR in-dependent manner. 

 

Back to these animal models, we did have observed 

upregulation of CD36 in liver of these mice (Figure 

2D), which was consistent with increased nuclear miR-

320 level (Figure 3C). Interestingly, increased hepatic 

LEPR level was also observed (Supplementary Figure 

6), which was consistent with decreased miR-320 

expression in cytoplasm (Figure 3D). Because LEPR 

loss of function led to liver lipid overload in db/db 

mice. The increase of LEPR in STZ- treated mice 

seemed to be a compensatory mechanism by which 

maintains the stability of the lipid metabolism. 

However, due to other pro-lipogenic factors induced by 

hyperglycemia, the overall lipogenic gene (FAS) in 

STZ- treated mice was still increased. In this study, we 

revealed the complicated roles of miR-320 in nucleus 

and cytoplasm. Exogenous miR-320 administration 

increased cytoplasmic miR-320 level and suppressed 

LEPR, leading to further increased lipogenic enzyme 

FAS, while in nucleus, miR-320 enhanced CD36 

activation and increased fatty acid uptake. Together, 

nuclear miR-320 and cytosol miR-320 collectively 

promoted lipid content in hepatic cells by targeting 

CD36 and leptin receptor respectively. Conversely, 

miR-320 knockdown decreased lipogenic gene FAS by 

enhancing LEPR in the cytoplasm and downregulating 

CD36 transcription in the nucleus, which provided a 

potential therapeutic target for treating NAFLD in the 

future. 

 

MiRNAs are in the spotlight as post-transcriptional 

regulators for gene expression. MiRNAs usually 

negatively regulate gene translation by affecting mRNA 

stability in the cytoplasm [21]. However, the roles of 

miRNAs in subcellular fractions such as nucleus and 

mitochondria have been revealed recently [16, 17]. In 
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fact, the majority of cellular miRNAs were present in 

both the nucleus and the cytoplasm [22, 23]. In the 

nucleus, miRNAs acted to regulate the stability of 

nuclear transcripts, induce epigenetic alterations that 

either silence or activate transcription at specific gene 

promoters [24]. Despite these findings, the 

comprehensive roles and detailed mechanisms of 

nuclear miRNAs are largely unknown. Moreover, it’s 

also unknown why nuclear miR-320 was increased 

while cytosol miR-320 was decreased in NAFLD mice. 

Several studies showed that XPO1 (Exportin-1) and 

IPO8 (Importin-8) facilitated the shuttle of mature 

miRNAs between the cytoplasm and nucleus [25, 26]. 

Whether XPO1 and IPO8 were responsible for 

rearranged subcellular miR-320 localization in NAFLD 

remain to be determined in the future. 

 

Our previous work has demonstrated that miR-320 is 

up-regulated in the heart by hyperglycaemia, which acts 

in the nucleus to enhance CD36 transcription and 

promote FA uptake, eventually leading to myocardial 

lipid deposition [14]. Our present work indicated that 

this is also the case for nuclear miR-320 action in liver, 

that miR-320 translocated into nucleus to enhance 

CD36 activation in NAFLD. Inhibition of miR-320 

decreased miR-320 level in cytosol, increased leptin 

receptor translation and decreased de novo lipogenesis. 

Meanwhile, miR-320 inhibitor also decreased miR-320 

level in nucleus, reduced CD36 transcription and lipid 

uptake, which collectively leading to rescued liver lipid 

overload. miR-320 might serve as an intriguing subject 

for future studies to understand the complex and 

coordinated action of miRNAs in subcellular fractions 

during multiple diseases. 

 

MATERIALS AND METHODS 
 

Biochemical parameters 

 

Circulating Triglyceride (TG), total cholesterol (TC) 

levels were detected using GRO-PAP method (Nanjing 

Jiancheng Bioengineering Institute, Nanjing, China). 

Mice were fasted overnight, then blood glucose levels 

were measured by Glucose LiquiColor Test (Stanbio 

Laboratory, Boerne, TX). 

 

Hepatic triglyceride levels were determined using liver 

homogenate by GRO-PAP method (Nanjing Jiancheng 

Bioengineering Institute, Nanjing, China) after mice 

were sacrificed. 

 

Generation of miR-320 transgenic (tg) mice and in 

situ hybridization 

 
To generate miR-320 tg mice, a DNA fragment 

containing murine miR-320 was inserted into the pUBC 

vector for expression under the control of the ubiquitin 

C promoter. Microinjection was performed according to 

standard protocols. miR-320 tg mice were back-crossed 

into the C57BL/6 background for six generations, 

yielding wt and miR-320 tg mice that were > 95% of 

the C57BL/6 genotype. The primers for genotyping 

miR-320 tg mice were described previously [14]. 

 

STZ treatment 

 

Type 1 diabetes model was established by 

intraperitoneal STZ (Sigma, St. Louis, MO; dissolved in 

100 mM Na-Citrate Buffer, pH 4.5) injection at a dose 

of 50 mg/kg for 5 consecutive days as described [27, 

28]. One week after STZ administration, C57BL/6 mice 

with fasting blood glucose over 11.1 mmol/L in two 

consecutive analyses were considered as diabetes mice. 

Detailed animal procedure was presented in 

Supplementary Figure 1A, 1D, 1G. 

 

HFD treatment 

 

8-week old C57BL/6 mice were fed with a control diet 

(CHOW) or an HFD for 4 weeks until euthanization at 

12 weeks of age. HFD contains 20 kcal% protein, 20 

kcal% carbohydrate, and 60 kcal% fat. In contrast, 

control diet contains 20 kcal% protein, 70 kcal% 

carbohydrate and 10 kcal% fat. HFD and control diet 

were purchased from Beijing Huafukang Bioscience 

Co., Ltd. (Beijing, China). Detailed animal procedure 

was presented in Supplementary Figure 1B, 1E, 1H. 

 

db/db model 
 

6-week-old male db/db mice (LEPR deficiency) and 

their wild type littermates (BKS) were purchased from 

GemPharmatech (Nanjing, China). Detailed animal 

procedure was presented in Supplementary Figure 1C, 

1F, 1I. 

 

Application of recombinant adeno-associated viruses 

in animals 

 

Recombinant adeno-associated virus (rAAV) vectors 

(type 9) were used to express miR-320, miR-320-TUD 

(i.e., inhibitor), or appropriate controls in the liver 

in vivo. The rAAV9-CMV system was a kind gift from 

Dr. Xiao Xiao (University of North Carolina at Chapel 

Hill). The three plasmids used to co-transfect HEK293 

cells were purified as we described previously [16, 29]. 

 

rAAV8-TBG-vector were used to specifically express 

miR-320 or miR-320-TUD into liver. The rAAV8 

vectors were constructed by ViGene BioSciences 

(Shandong, China). pAAV-miR-320 sequence: TCGC 

CCTCTCAACCCAGCTTTTTTCAAGAGAAAAAG 
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CTGGGTTGAGAGGGCGA, pAAV-miR-320-TUD 

sequence: GACGGCGCTAGGATCATCAACTCGCC 

CTCTCAAATCTCCCAGCTTTTCAAGTATTCTGGT

CACAGAATACAACTCGCCCTCTCAAATCTCCCA

GCTTTTCAAGATGATCCTAGCGCCGTCTTTTTT. 

 

The viruses (at 1×10
12

 vector copy numbers) were 

delivered into C57BL/6 mice at 6 weeks old via tail 

vein infection. As it usually required 1-2 weeks for 

rAAV to express stably, STZ or HFD were 

administrated to these mice two weeks after rAAV 

injection (8 weeks old). BKS and db/db mice were also 

treated with rAAV at 6 weeks old. All animals were 

sacrificed and detected at 12 weeks of age. Detailed 

animal procedure was presented in Supplementary 

Figure 1D–1I. 

 

Cell culture and transfection 

 

Human hepatic cell line cells (L02) were maintained in 

RPMI-1640 medium with 10% FBS (Life Technologies, 

Carlsbad, CA). miRNA mimics (50 nM, AAAAGCUG 

GGUUGAGAGGGCGA, 5’ to 3’), inhibitors (50 nM, 

UCGCCCUCUCAACCCAGCUUUU, 5’ to 3’), siRNAs 

(50 nM), and random small RNA controls (50 nM) were 

transfected by Lipofectamine 2000 (Life Technologies, 

Carlsbad, CA). All the small RNAs used in the present 

study were purchased from Riobio Co., Ltd (Guangzhou, 

China). 

 

RNA extraction and quantitative RT-PCR 

 

Total RNA was isolated using TRIzol (Invitrogen, 

Carlsbad, CA) and reversely transcribed with RevertAid 

First Strand cDNA Synthesis Kit (Thermo Scientific, 

Carlsbad, CA). Real-time PCR assays were performed 

with the SYBR® Select Master Mix (Life 

Technologies, Carlsbad, CA) on a 7900HT FAST Real-

Time PCR System (Life Technologies, Carlsbad, CA). 

Relative expression levels were calculated with the 2
-

ΔΔct
 relative quantification method as described [30]. 

 

Protein extraction and western blotting 

 

The protein concentrations were determined by BCA 

method. For western blotting, the total cell lysate was 

resolved by SDS-PAGE, transferred on to nitrocellulose 

membrane, and blocked with 5% non-fat dry milk in 

TBS-T. The membrane was incubated with indicated 

primary antibody overnight at 4 °C, followed by 

incubation with peroxidase-conjugated secondary 

antibody for 2 h, and finally developed with the ECL 

system (Beyotime Institute of Biotechnology, Nanjing, 

China). The antibodies used in the present study are 

listed in Supplementary Table 1. The western blotting 

results were quantified by densitometry and processed 

with Image J software (National Institutes of Health 

software). 

 

Chromatin immunoprecipitation (ChIP)-PCR 
 

ChIP assay was performed to evaluate Ago2 targeting 

sites at specific promoters. Briefly, the L02 cells were 

fixed with 1% formaldehyde for 10 min at room 

temperature and then quenched by adding 125 mM 

glycine. The samples were homogenized in lysis buffer 

and sonicated to generate chromatin samples with 

average fragment sizes of 200-1000 bps. The samples 

were then incubated with anti-Ago2 (Abnova, Cat# 

H00027161-M01), or control IgG at 4 °C for overnight 

in an inverse rotator. Following that, the Pierce™ 

protein A/G Magnetic Beads (Thermo Fisher Scientific, 

Cat# 88802) was added to the reaction and gently 

vortexed. After standard wash, the immunoprecipitated 

DNA was eluted and purified with PCR Purification 

Kit. RT-PCR was then performed using primers 

targeting the promoter regions of the selected genes 

(Supplementary Table 2). 

 

RNA immunoprecipitation 

 

Lysed cell extracts were immunoprecipitated with anti-

Ago2 antibody or IgG, as described [30]. After elution 

from the beads, bound RNA was extracted with TRIzol 

and quantified by real time RT-PCR. 

 

Subcellular fractionation 

 

The cytoplasmic and nuclear fractions were prepared 

using a Cell Fractionation Kit (Cell Signalling 

Technology, Danvers, MA; Cat# 9038) following the 

manufacturer’s instructions. Real-time PCR analysis 

was performed using glyceraldehyde 3-phosphate 

dehydrogenase or U6 as the cytoplasmic and nuclear 

markers, respectively. 

 

Histopathology and immunohistochemical staining 
 

The formalin-fixed livers were embedded in paraffin 

and sectioned into 4 μm slices. The morphology and 

lipid deposition were detected by Hematoxylin and 

Eosin (H&E) and Oil red O staining, respectively. The 

tissue sections were visualized by microscope and 

quantified by mage-Pro Plus Version 6.0 (Media 

Cybernetics, Bethesda, MD). 

 

Statistical analysis 
 

Data are presented as mean ± SEM (n was noted in 

specific figure legends). Student’s t tests and ANOVA 

with Bonferroni post hoc analysis were performed to 

determine statistical significance between different 
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groups. In all cases, statistical significance was defined 

as p < 0.05. 

 

Ethics 
 

All animal studies were conducted with the approval of 

the Animal Research Committee of Tongji Medical 

College, and in accordance with the NIH Guide for the 

Care and Use of Laboratory Animals. 6-week-old male 
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(Nanjing, China). 
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Supplementary Figure 1. The different animal treatment strategies. (A–C) The effects of single metabolic disorder on NAFLD. (D–F) 

The effects of miR-320 on liver lipid content by rAAV9 vector in differently treated mice. (G–I) The effects of miR-320 on liver lipid content by 
AAV8-TBG vector in differently treated mice. 
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Supplementary Figure 2. HE staining in liver of differently treated mice. (A–C) Representative image of liver steatosis detected by 
HE staining in STZ-treated C57BL/6 mice (A), HFD-treated C57BL/6 mice (B) and db/db mice (C) at different time point. 
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Supplementary Figure 3. MiR-320 overexpression increased hepatic steatosis and lipid content in differently treated mice. 
(A) Representative image of hepatic H&E staining in STZ-treated C57BL/6 mice with various rAAV9 treatments. (B) Representative image of 
hepatic H&E staining in miR-320 transgenic mice treated with normal diet or HFD. (C) Representative image of hepatic H&E staining in db/db 
mice and BKS controls with various rAAV9 treatments. (D) Hepatic triglyceride levels in these three animal models (n=3-5, *p<0.05). 
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Supplementary Figure 4. Circulating glucose, TC and TG levels in differently treated mice. (A) Circulating glucose, TC and TG levels 

in STZ-induced C57BL/6 mice treated with rAAV-miR-320 (n=4-5, *p<0.05). (B) Circulating glucose, TC and TG levels in miR-320 transgenic 
mice treated with high fat diet (n=4-5, *p<0.05). (C) Circulating glucose, TC and TG levels in db/db mice treated with rAAV-miR-320 (n=4-5, 
*p<0.05). 
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Supplementary Figure 5. MiR-320 overexpression by AAV-TBG vectors increased liver lipid content in differently treated 
mice. AAV8-TBG vectors were purchased from Vigene-Bioscience (Shangdong, China), and delivered to mice via tail vein injection.  
(A) Relative miR-320 levels of various organs in AAV8-TBG-miR-320 treated mice (n=3-4, *p<0.05). (B–D) The effects of rAAV8-TBG-miR-320 
on lipid accumulation in liver determined by oil red staining in STZ-treated C57BL/6 mice (B), HFD-treated C57BL/6 mice (C), and db/db 
mice(D). (E–G) Representive images of hepatic H&E staining in STZ-treated C57BL/6 mice (E), HFD-treated C57BL/6 mice (F), and db/db mice 
(G) delivered with rAAV8-TBG-miR-320. 
 



 

www.aging-us.com 22043 AGING 

 



 

www.aging-us.com 22044 AGING 

 
 

Supplementary Figure 6. miR-320 overexpression upreguleated hepatic CD36 while reduced LEPR protein levels in vivo.  
(A) The effect of rAAV9-miR-320 on the hepatic protein levels of CD36, LEPR and Ago2 in STZ-treated C57BL/6 mice (n=3, *p<0.05). (B) 
Hepatic protein levels of CD36, LEPR and Ago2 in miR-320 transgenic mice treated with HFD (n=3, *p<0.05). (C) The effect of rAAV9-miR-320 
on the hepatic protein levels of CD36, and Ago2 in db/db mice (n=3, *p<0.05). 
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Supplementary Tables 
 

Supplementary Table 1. List of antibodies. 

Antibody Company Catalog number 

AGO2 Abnova H00027161-M01 

ACC1 ABclonal A15606 

FASN ABclonal A0461 

CD36 ABclonal A5792 

DGAT1 ABclonal A6857 

DGAT2 ABclonal A13891 

LEPR Boster BA1234 

LEP Boster BA1231 

GAPDH Boster BM1623 

 

Supplementary Table 2. List of primers. 

 Forward 5’→3’ Reverse 5’→3’ 

m-SLC27A1 TCAACAGCCGTATCCTCACG GGCTCCATCGTGTCCTCATT 

m-SLC29A2 GCTGGAGGAAAGACCCAGAC CACGGTCGATCATCAGGAGG 

m-CD36 TGATACTATGCCCGCCTCTCC TTTCCCACACTCCTTTCTCCTCTA 

m-FABP1 AGGGGGTGTCAGAAATCGTG CCCCCAGGGTGAACTCATTG 

m-ACC1 TGGTGAAGCTGGACCTAGAAG CCTGTAAGCCAGAGATCCCC 

m-FAS AGGCCCCTCTGTTAATTGGC CCCCATGCTCCAGGGATAAC 

m-DGAT1 GTTTCCGTCCAGGGTGGTAG TGGCACCTCAGATCCCAGTA 

m-DGAT2 ATTTGGAAGCGTCATGGGTG CTCCACCTTGAGCAGGACAC 

m-HMGCS2 GGATCGATGCTATGCAGCCT TCAACCGAGCCAGGGATTTC 

m-CPT2 CACAGCATCGTACCCACCAT TCCTTCCCAATGCCGTTCTC 

m-CPT1A ACGTTGGACGAATCGGAACA CCATGCAGCAGAGATTTGGC 

m-GAPDH GGTGAAGGTCGGTGTGAACG CTCGCTCCTGGAAGATGGTG 

h-LEPR TGCCTGCTGGACTCTCAAAG TGCTCACTCCGAAAGCAACA 

h-GAPDH CAATGACCCCTTCATTGACC GACAAGCTTCCCGTTCTCAG 

h-LEPR-pro CTTCGAGTAGCGGTAGCGAG CCTGATAGTTCAGACCCGGC 

h-CD36-pro GGAAACTGACTCAAATACACGGA CAGCTGAGACCACACTCTCAA 

h-GAPDH-pro CATTAAGAGGGCGAATGCAGC CGTATGACTGGGGGTGTTGG 

m, mouse; h, human 


