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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the second leading 

cause of cancer-related mortality worldwide [1]. In the 

United States, the incidence of HCC has been rising  

faster than any other cancer type [2]. Common risk 

factors associated with HCC include hepatitis B or C 

infection, high alcohol consumption, autoimmune 

hepatitis, and metabolic diseases [3]. The intra-tumor 

and interpatient heterogeneities in HCC [4–6] make 
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ABSTRACT 
 

Hepatocellular carcinoma (HCC) is a heterogeneous disease with various genetic and epigenetic abnormalities. 
Previous studies of HCC driver genes were primarily based on frequency of mutations and copy number 
alterations. Here, we performed an integrative analysis of genomic and epigenomic data from 377 HCC patients 
to identify driver genes that regulate gene expression in HCC. This integrative approach has significant 
advantages over single-platform analyses for identifying cancer drivers. Using this approach, HCC tissues were 
divided into four subgroups, based on expression of the transcription factor E2F and the mutation status of 
TP53. HCC tissues with E2F overexpression and TP53 mutation had the highest cell cycle activity, indicating a 
synergistic effect of E2F and TP53. We found that overexpression of the identified driver genes, stratifin (SFN) 
and SPP1, correlates with tumor grade and poor survival in HCC and promotes HCC cell proliferation. These 
findings indicate SFN and SPP1 function as oncogenes in HCC and highlight the important role of enhancers in 
the regulation of gene expression in HCC. 
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early detection and effective therapies difficult, leading 

to the low five-year survival rates [7, 8]. Thus, it is 

crucial to understand the molecular mechanisms driving 

HCC. 

 

Genome sequencing of HCC cohorts has revealed many 

genomic alterations, such as mutations of TP53, 

CTNNB1, and AXIN1, copy number alterations of 

CDKN2A/CDKN2B, and multiple alterations of TERT 

[9–14]. These genes are called drivers to distinguish 

them from randomly occurring passenger alterations. In 

addition to genetic drivers, epigenetic drivers may also 

play important roles in HCC [15–18]. While global 

DNA hypomethylation makes the genome unstable, 

promoter hypermethylation may silence tumor 

suppressor genes, such as SMPD3 and NEFH [19]. 

Since drivers contribute to tumorigenesis by different 

mechanisms, there is a need to identify the HCC drivers 

by integrative analysis of multiple omics data. 

 

Current progress in computational algorithms 

demonstrates that integrative analysis of multi-omics 

data could increase our ability to identify likely drivers. 

For example, CONEXIC integrated matched copy 

number and gene expression data to identify the 

combination of modulators in melanoma [20]. Lemon-

tree reconstructed module network and identified 

upstream regulators from multi-omics datasets [21]. 

Additionally, integrated analysis of multi-omics data 

may resolve cancer molecular classification with 

clinical relevance, and reveal previously unrecognized 

subgroups. The Cancer Genome Atlas (TCGA) study 

performed the first large scale multi-platform analysis 

of HCC [14]. They identified oncogenic drivers with 

significant mutations or copy number alterations, and 

found three subtypes by multi-platform integrative 

clustering. However, their integration approach did not 

consider the function effects of drivers. The shared data 

of TCGA project provide a valuable resource for us to 

improve the integration analysis. Since gene expression 

is an intermediate molecular phenotype that connects 

genome and phenotype, we hypothesize that alterations 

that regulate the expression of multiple genes are more 

likely to be the real drivers.  

 

In this study, we performed an integrative 

analysis using five platform data from 377 HCC 

patients to identify driver genes that regulate gene 

expression in HCC. The integrative approach has 

obvious advantages over single-omics analysis. In 

addition, we utilized the driver events to classify HCC 

tissues into four subclasses having distinct prognostic 

implications and molecular characteristics. Furthermore, 

we used histone modification data to deepen our 

understanding of the regulation of gene expression in 

HCC. 

RESULTS 
 

Identification of HCC drivers by multi-omics 

integration 
 

Multiple-omics data of 377 HCC tissues and 50 adjacent 

normal tissues were collected from TCGA project, 

including somatic mutations, copy number alterations, 

DNA methylation, and mRNA and miRNA expression. 

9560 genes differentially expressed between cancer and 

normal tissues were divided into 241 co-expression 

modules by Gibbs sampling cluster algorithm. Potential 

upstream regulators were obtained from single-platform 

analysis or literature, including 69 mutated genes, 886 

amplified and 1829 deleted genes, 570 differentially 

methylated genes, 196 differentially expressed 

microRNAs, 121 transcription factors, and 76 HCC 

associated genes (Supplementary Table 1, see Materials 

and Methods). These candidate regulators were assessed 

by an integrative multi-omics module network inference 

algorithm [21], which inferred the regulation relationship 

between co-expression modules and their associated 

regulators. High-scoring regulators were chosen as cancer 

drivers that might drive development of HCC. The final 

driver list was composed of 296 protein-coding genes and 

88 microRNAs, of which 166 genes were not reported 

previously (Figure 1A, Supplementary Table 2, 

Supplementary Figure 1A). 
 

To compare the differences between multi-omics and 

single-omics analyses, we utilized the same process, but 

only assigned candidate regulators from each single 

platform to identify the drivers. Only two significant 

drivers (TP53 and CTNNB1) regulating expression 

modules were identified from mutation data because of the 

low mutation frequency, but 172, 121, 55 and 46 drivers 

were identified from CNV, methylation, miRNA, and 

mRNA datasets, respectively. The multi-omics integrated 

analysis covered most of the drivers identified from single-

omics analysis, but also identified new drivers (Figure 1B). 

Moreover, multi-omics integration identified drivers that 

simultaneously regulated multiple modules (Wilcoxon 

rank sum test p = 0.0054, Figure 1C). To investigate the 

association between driver genes and cancer hallmarks, we 

performed gene set enrichment analysis for drivers and 

found that the drivers generated from integrated analysis 

were significantly enriched in cancer hallmarks pathways 

(Chi-square test, p = 1.194 × 10
-5

 Figure 1D, 

Supplementary Figure 1B). These results indicate that the 

integrative approach can more accurately detect cancer 

drivers with functional implications. 
 

Functions and characteristics of HCC drivers 
 

Characteristics of the drivers generated from multi-

omics integration are summarized in a circos plot 
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Figure 1. Identification and comparison of HCC drivers by integrative and single-platform approach. (A) Overview of the 

computational scheme for the systematic identification of drivers in HCC patients. Gray, red, green, purple, and orange represent mutations, 
copy number, DNA methylation, microRNA and mRNA, respectively. (B) Venn diagram and upset plot showing drivers recognized by different 
methods. (C) Regulation ability of drivers, measured by the number of modules. (D) Number of significantly enriched cancer hallmarks of 
driver genes. 
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(Figure 2A). Most of the drivers were down-regulated 

and hypermethylated in HCC tissues compared with 

normal tissues. Some drivers were enriched in copy 

number altered regions, such as chromosome 4q and 8q. 

We correctly identified known cancer genes, including 

12 oncogenes, 42 tumor suppressor genes (TSGs), and 

11 significantly mutated genes. We also found a number 

of novel driver genes that were not previously 

associated with HCC, including ANXA13, G6PC, 

STAT1, and JAK1. Some of them were significantly 

altered in at least two types of omics data, or were 

reported to participate in progression of other cancers 

[22–25]. 

 

Next, we performed a functional enrichment analysis to 

explore the biological function of these drivers. Tox 

analysis of these drivers showed that the most 

significantly associated toxicity phenotypes and clinical 

pathology endpoints included hepatocellular carcinoma, 

liver hyperplasia, and liver cirrhosis, corroborating our 

analysis (Supplementary Figure 2A). KEGG pathway 

analysis showed that the drivers were enriched not only 

in well-known pathways, such as cell cycle, WNT 

signaling, p53 signaling and HBV/HCV virus-related 

carcinogenesis, but also in several immune-related 

pathways, such as TGF-beta signaling, JAK-STAT 

signaling, and complement and coagulation cascades 

(Figure 2B). These pathways can be disrupted by 

different genes (Supplementary Figure 2B), and some 

genes have mutually exclusive mutation patterns 

(Supplementary Figure 2C, 2D); for example, 

CTNNB1, AXIN1 and APC in Wnt pathway, or RB1, 

CDKN1A and RBL1 in cell cycle pathway. Similar 

mutually exclusive patterns were observed in different 

alteration types of a single gene, such as a copy number 

deletion and mutation of AXIN1 (one-sided binomial 

tests p = 0.001). Such diverse alteration patterns may 

partly explain the heterogeneity of HCC.  

 

Drivers have the potential to regulate expression of 

downstream genes. For example, genes in a 62-gene co-

expression module were enriched in cell-cycle, and the 

predicted regulators were E2F1 expression, E2F2 

expression, and TP53 mutation (Figure 2C). This is 

consistent with the existing knowledge that E2F 

transcription factor family and TP53 are crucial for cell 

cycle regulation. To explore the potential combination 

effect of E2F and TP53 on cell cycle, we classified 

HCC into four subgroups based on the expression of 

E2F1/E2F2 and the mutation status of TP53, and 

compared gene expression and cell cycle pathway 

scores among the four subgroups (Figure 2D–2E). 

Interestingly, HCC samples with E2F overexpression 

and TP53 mutation had the highest activity level of cell 

cycle pathway, indicating the synergistic effect of E2F 

and TP53. 

Regulatory network of HCC drivers and 

experimental validation of typic driver genes 
 

To understand connections between the identified 

drivers, we constructed literature-based regulatory 

networks using IPA. The functional categorization of 

the largest network revealed an important role in the 

regulation of migration and differentiation of tumor 

cells (Figure 3A). Some genes in this network have 

clear roles in HCC carcinogenesis, such as CTNNB1 

and MYC. As for the rarely reported genes, we 

evaluated their expression changes in three independent 

datasets (GSE77314, GSE77509 and GSE97214), and 

analyzed their correlation with survival time and tumor 

grade. We found that the stratifin gene SFN was highly 

overexpressed in HCC (>8 fold in all datasets). 

Importantly, the increased expression of SFF and its 

decreased methylation correlated with the tumor grade 

(Figure 3B, 3C), and poor survival (Figure 3D). 

 

SFN encodes 14-3-3 sigma protein, which regulates cell 

cycle and inhibits cysteine-type endopeptidase involved 

in apoptosis. To evaluate the role of SFN in HCC 

tumorigenesis, two independent sgRNAs were used to 

knockout SFN in two HCC cell lines (CLC7 and Huh1) 

by CRISPR/Cas9 system. Western blotting showed that 

SFN protein expression was efficiently suppressed in 

SFN knockout cell lines, indicating functional 

inactivation of SFN (Figure 3E). Compared to parental 

cell lines, the cell lines with suppressed SFN exhibited a 

markedly reduced proliferation (Figure 3F, 3G). Similar 

results can be observed with another highly expressed 

gene SPP1 (Supplementary Figure 3A–3D).  
 

In order to further verify the reliability of the genes we 

obtained, we selected the top 50 genes with the highest 

integrative scores and upregulated in tumors for siRNA 

screening. Total 23 genes significantly inhibited cell 

proliferation after siRNA knockout, 17 of which were 

not reported in the literature (Supplementary Figure 

3E). These experiments reveal the robustness of our 

results and overexpression of SFN and SPP1 in HCC 

promotes cancer cell proliferation. 

 

Multiple-platform determinants of HCC subclasses 

 

Previous cancer classification used highly variable 

genes to categorize patients into subclasses. The TCGA 

multi-platform classification used non-redundant copy 

number regions and the most variable CpG sites, 

mRNA, and miRNA for integrative clustering [14]. 

These approaches usually use a large number of genes, 

but the gene functions are not obvious. Since driver 

genes are master regulators of gene expression, we 

stratified HCC by using multi-platform data of driver 

genes. Samples were first clustered using each single.  
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Figure 2. Functions and characteristics of HCC drivers. (A) Circos plot shows the alterations of 384 drivers. Circular tracks from outside to 

inside: regulation score, mRNA fold-change, copy number alteration, DNA methylation status, mutations, and protein interactions. The 
outermost labels indicate the significant mutated genes. Red represents high expression/methylation and CNV gain; blue represents low 
expression/methylation and CNV loss. Sex chromosomes are excluded. (B) Enriched KEGG pathways of the drivers; the dotted line indicates 
FDR=0.05. (C) Example of a co-expression module and its predicted regulators. Genes in this module are enriched in cell cycle pathway. HCC 
tissues were classified into four subgroups based on the combined alterations of E2F expression and TP53 mutation. (D) Comparison of the 
number of differentially expressed genes between any two subgroups. Only genes in the example module were used. (E) Comparison of the 
activity of cell cycle pathway among the four subgroups. ssGSEA was performed for each tumor using the genes in cell cycle pathway. Enrichment 
score (ES) represents the activity level of the pathway. TP53m and TP53w mean TP53 mutation and TP53 wildtype; E2Fh and E2Fl mean high and 
low expression of E2F. P value was determined by Wilcoxon rank sum test. ****P < 0.0001; ***P < 0.001; **P < 0.01;*P < 0.05. 
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Figure 3. SFN functions as oncogene in HCC. (A) Max regulatory network of drivers, generated by IPA analysis. Edges represent direct 

regulatory relationships obtained from literature. Red and green nodes represent genes that are increased and decreased in HCC, 
respectively. (B, C) SFN expression and methylation correlate with HCC progression. P value was determined by Wilcoxon rank sum test: 
****P < 0.0001; ***P < 0.001; **P < 0.01; **P < 0.01. (D) Survival of HCC patients with high and low SFN expression. (E) SFN protein levels 
analyzed by western blotting in SFN knockout cells. (F, G) Proliferation of CLC7 and Huh1 cells transfected with sgRNAs targeting SFN (n=3, 
regression analysis).  
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platform, and then a cluster of cluster analysis (COCA) 

was performed to determine the integrative clusters 

[26]. This analysis revealed four robust HCC 

subclasses: C1 (n=128), C2 (n=22), C3 (n=72), and C4 

(n=126) (Figure 4A). The COCA-subclasses displayed a 

higher similarity with mRNA subclasses compared with 

other platforms (Supplementary Figure 4A), similar  

to a previous study in oligodendroglial tumors
21

. To 

compare our results with the classic HCC classification, 

we applied Hoshida’s [27] expression signatures to 

classify patients into three subclasses: S1 (n=112), S2 

(n=74), and S3 (n=176). C1 predominantly consisted of 

Hoshida S3 tumors, whereas C4 predominantly 

consisted of Hoshida S1 tumors. 

 

We observed significant survival differences among the 

subclasses identified by integrative analysis (Log-rank 

test p = 0.03). C2 tumors had significantly worse 

prognosis than other tumors, and C3 tumors had a better 

prognosis (Figure 4B). However, there was no 

significant difference in overall survival using 

Hoshida’s classification or single-platform classification 

in TCGA cohort (Supplementary Figure 4B–4D). To 

understand the characteristics of each subclass, we 

associated the subclasses with clinical, molecular, and 

signaling pathway features (Figure 4C). C1 tumors 

contained mutations in cell-cycle (P = 0.0039) and 

WNT (P = 0.0031) pathways, and in CTNNB1 gene  

(P = 0.0053). Differentially expressed genes between 

C1 and other tumors were enriched in DNA repair and 

viral carcinogenesis. C2 tumors were characterized by 

the mutations in NF-κB pathway (P=0.018) and NBEA 

(P=0.018). NF-κB links inflammation to cancer 

development and progression [28], and its over-

expression in tumor tissues has been associated with a 

poor prognosis in different types of tumor [29]. Genes 

specifically expressed in C3 and C4 tumors were 

associated with immune response and T cell regulation. 

C4 tumors contained increased mutations in ARID1A 

(P = 0.0035),  BAP1  (P = 0.0017) and IDH1 (P = 0.05)  

 

 
 

Figure 4. Multi-omics integration to identify HCC subclasses. (A) COCA subclasses of HCC identified by integrating multiple-platform 
data. Each column represents a patient; grey color in the spectrum of somatic mutation means patients without exome sequencing data. (B) 
Kaplan–Meier estimates of overall survival among different patient subclasses. (C) Schematic summary of molecular and clinical 
characteristics of the four HCC subclasses. 
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genes, were enriched in a signature of EpCAM 

positivity (Chi-square test P = 1.9 × 10
-13

, and 

overexpressed AFP (P = 0.018). 

 

Roles of enhancers in HCC 

 

Despite substantial advantages of multi-omics integration, 

expression changes of some driver genes cannot be 

explained by existing data. For example, copy number 

gains of AHR and PBX1I in tumors are significantly 

lower than in controls (Supplementary Figure 5). To 

investigate the epigenetic mechanisms of gene regulation, 

we defined chromatin states based on the combination of 

multiple epigenetic markers from the ENCODE project 

[30], and then defined enhancer regions by H3K4me1 and 

H3K27ac signals (see Materials and Methods).  

 

Genes in actively transcribed regions exhibited 

increased expression compared to genes in inactive 

regions, and genes near strong enhancers exhibited 

increased expression compared to genes near weak 

enhancers (Supplementary Figure 6), reflecting the 

important regulatory role of chromatin states and 

enhancers [31]. Next, we compared the enhancer-related 

H3K4me1 signals between HCC and normal liver after 

excluding promoters, categorizing the genome into 

enhancer loss, enhancer stable, and enhancer gain based 

on the change in the H3K4me1 signal (Figure 5A, 

Supplementary Figure 7A). Loss of enhancer in HCC 

(40.8%) occurred more frequently than gain of enhancer 

(30.9%). This is consistent with a previous report 

demonstrating that the global enhancer expression is 

low in HCC [32]. We found that gene expression was 

significantly reduced in the regions with enhancer loss, 

especially those regulated by strong enhancers (Figure 

5B). However, genes associated with stable enhancers 

and enhancer gain did not exhibit significant expression 

changes between HCC and normal tissues 

(Supplementary Figure 7B, 7C). We performed a 

functional enrichment analysis for genes associated with 

enhancer loss. In contrast to weak enhancers, 

inactivation of strong enhancers was associated with 

immunity and cancer pathways (Figure 5C), indicating 

that inactivation of strong enhancers plays an important 

role in HCC tumorigenesis. 

 

Furthermore, we investigated the association between 

enhancer alterations and HCC driver genes. We first 

compared enhancers of driver genes with those of other 

genes. In normal liver, driver genes were located near 

strong enhancers compared to other genes (83.7% Vs. 

72.9%, chi-square test, p = 7.37 × 10
−6

, Figure 5D). We 

also compared the enhancer alterations of driver genes 

between HCC and normal tissues, and found that the 

driver genes were associated with a loss of enhancers in 

HCC (45.6% loss vs. 16.9% gain, Figure 5E), similar 

with the low global expression of enhancers in HCC 

genomes. Next, we compared the enhancer alterations 

of well-known oncogenes, TSGs, and other drivers. 

TSGs were more likely to locate near the regions with 

enhancer loss (59.1%, chi-square test,  

p = 0.0793, Figure 5F), resulting in their decreased 

expression. Finally, we explored the role of enhancers 

in the regulation of driver gene expression. Copy 

number gain and promoter hypermethylation lead to 

increased expression, while somatic mutation was 

associated with both decreased and increased 

expression. Integrative analysis of copy numbers, 

mutations, and DNA methylation could explain the 

expression changes of 61% drivers, while enhancers 

could explain the expression changes of 16% drivers 

(Figure 5G). For example, although there was an 

obvious copy number gain in AHR and PBX1 genes, 

the lost enhancer signals might have resulted in their 

decreased expression in HCC (Figure 5H).  

 

DISCUSSION 
 

The rapidly decreasing cost of omics experiments and 

increasing size of omics data have created an 

unprecedented opportunity to study cancer biology. 

However, multi-dimensional data pose a huge challenge 

for data analysis. In this study, we performed an 

integrative analysis of five platforms to identify driver 

genes and infer molecular classification of HCC. 

Compared to the original integrative analysis by TCGA 

network, our work is unique in several aspects: 1) 

Driver genes identified by TCGA are genes with 

significant somatic mutations or DNA copy number 

alterations; the TCGA approach does not consider the 

function effects of genomic alterations. Since we 

integrated several platforms and used a module network 

inference algorithm to evaluate the regulatory effects of 

genomic alterations on gene expression, the genes 

obtained by our approach are more likely to play 

important roles in HCC. 2) For multi-omics clustering, 

TCGA and our study used different genes and clustering 

algorithms. Since our study used driver genes instead of 

highly variable genes, the number of identified genes 

was smaller, and the subclasses had a better prognostic 

value than the TCGA subclasses. 3) Considering the 

alterations of histone methyltransferase [14], we 

analyzed histone modifications data and found the 

importance of gene enhancers for the regulation of gene 

expression. 

 

Compared to single platform analysis, the integrative 

analysis of multi-platform data has obvious advantages. 

The integrative analysis can effectively remove random 

events from a single platform level and observe the true 

changes at multiple levels. The drivers identified from 

multi-omics analysis cover most of the drivers from 
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Figure 5. Role of enhancers in HCC. (A) Comparison of H3K4me1 signals in HCC cells (HepG2) and normal liver tissues. (B) Gene 

expression in enhancer loss regions in HCC and normal tissues. Enhancers were subdivided into strong and weak enhancers by H3K27ac 
signals. P value was determined by student’s t test: ***P < 0.001; **P < 0.01; *P < 0.05; NS:P ≥ 0.05. (C) Functional enrichment for genes 
associated with the inactivation of strong/weak enhancers. (D) Percentage of driver genes located in strong enhancers. P value was 
determined by chi-square test: ****P < 0.0001. (E) Distribution of drivers in different regions; the regions were divided according to the types 
of enhancers and their expression in HCC and normal tissues. (F) Comparison of enhancer alterations of oncogenes, TSGs and other drivers. 
(G) Proportion of drivers that change expression. “Genome” means proportion of drivers whose down-regulation may be caused by 
mutation, hyper-methylation, or copy number deletion; up-regulation may be caused by mutations or copy number amplification. 
“Enhancer” means proportion of drivers whose down-regulation may be caused by enhancer loss, and up-regulation may be caused by 
enhancer gain. (H) ChIP–seq signal tracks for H3K4me1 and H3K27ac in the regions around PBX1 and AHR. 
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single-omics, act predominantly as hub genes 

regulating multiple modules, and correlate well with 

cancer hallmarks. Multi-omics integrative analysis 

can also reveal the combined action of different omics 

leading to disorders of the same genes or pathways. 

Subgroups derived from integrative analysis have 

more obvious survival differences than results from 

single-platform analysis. Overall, integration of multi-

omics data is an effective strategy for identifying key 

genes involved in carcinogenesis. 

 

Our study provides a comprehensive list of candidate 

driver genes in HCC. It will be important to conduct 

follow-up experimental studies to validate the roles of 

the identified novel drivers in HCC. For example, our 

computational analysis showed that the increased 

expression of SFN and SPP1 were associated with 

higher tumor grades and worse survival outcomes, 

indicating that SFN and SPP1 might act as oncogenes 

in HCC. Indeed, our knockdown experiments 

demonstrated that SFN and SPP1 promoted migration 

of HCC cells, validating the computational analysis. 

Although the exact oncogenic mechanism of SFN and 

SPP1 remains to be elucidated, our data demonstrate 

that integrative analysis can discover novel drivers 

with biological importance. Identification of the 

mechanisms of these candidate drivers will provide a 

more comprehensive and systematic understanding of 

HCC. 

 

Additionally, our analysis provides a unique insight 

into the role of enhancers in HCC. Previous studies 

reported that histone methyltransferase EZH2 was 

overexpressed in HCC, contributing to malignant 

transformation and poor prognosis [33, 34]. Due to 

the lack of histone modification data from a large 

HCC cohort, histone modifications cannot be directly 

integrated with other omics data. We used ChIP-seq 

data of H3K4me1 and H3K27ac obtained from 

HepG2 and normal liver tissues. We found that a loss 

of strong enhancers in HCC lead to a decreased 

expression of genes associated with carcinogenesis 

and immunity. Changes in the enhancer status could 

explain the expression changes of 16% drivers, which 

could not be explained by other types of omics data.  

 

Together, our study shows that somatic mutations, 

copy number alterations, differential DNA 

methylation, and enhancer alterations coordinately 

regulate gene expression involved in hepato-

carcinogenesis. A comprehensive driver list will 

provide a valuable resource for better understanding 

of the mechanisms responsible for HCC pathogenesis. 

The computational approach of integrating trans-

criptomic, genomic, and epigenetic data may be used 

also for other diseases.  

MATERIALS AND METHODS 
 

Data source 
 

Multi-omics data of HCC were obtained from the Broad 

Institute TCGA Data Portal (http://firebrowse.org), 

including 377 HCC cases and 50 paired normal tissues 

on five platforms (RNA sequencing, DNA methylation 

arrays, miRNA sequencing, Affymetrix SNP arrays, and 

whole-exome sequencing). To minimize the possible 

batch effects, we applied the combat algorithm [35] to 

expression and methylation profiles.  

 

Identification of cancer driver genes by multi-omics 

integration 

 

Genomic, epigenetic and transcriptomic data were used 

to select the candidate gene regulators (Supplementary 

Table 1). 1) Significantly mutated genes were identified 

by the Mutsig2CV algorithm. 2) Copy number 

amplified or deleted regions were obtained from 

GISTIC algorithms. 3) Differentially methylated genes 

were identified with MethylMix [36], which uses a beta 

mixture model to find differential and transcriptionally 

predictive methylation states. 4) Experimentally 

validated miRNA-target interactions were collected 

from miRTarbase Database [37]. Spearman correlation 

coefficients between microRNAs and target genes were 

calculated; significantly negatively correlated miRNA-

targets were selected by FDR <0.05. A list of 

transcription factors (TFs) [38, 39] was obtained from 

the UCSC Genome Browser, and HCC associated genes 

were obtained from literature [9–13, 40, 41].  

 

Differentially expressed genes between tumor and 

normal tissues (student t test with FDR < 0.05) were 

regarded as downstream genes. An integrative multi-

omics module network was reconstructed by Lemon-

Tree to predict causal regulators [21]. It first infers co-

expression modules from expression profiles of 

downstream genes; Gibbs sampling procedure was used 

to update the cluster assignment of each gene and 

sample. Then it employs regulation programs by fuzzy 

decision trees, which use the candidate regulators to 

predict the mean expression of genes in a module. 

Finally, a regulator-to-module score was computed by 

regulatory programs for that module. Top 1% of high-

scoring regulators for each module, or top 10% of high-

scoring regulators for sum scores of all modules were 

regarded as potential cancer drivers [21]. 

 

Functional enrichment analysis 
 

Driver genes, genes in co-expression modules, and 

differentially expressed genes in HCC subclasses were 

subjected to functional enrichment analysis. Cancer 

http://firebrowse.org/
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hallmarks were downloaded from MSigDB [42]. Enriched 

biological pathways and disease processes were found by 

DAVID [43] and GSEA (FDR<0.05). Potential toxic 

effects and molecular networks were generated by 

Ingenuity Pathways Analysis software (IPA) [44]. 

 

Cell culture 
 

HCC cell line Huh1 was purchased from Japanese 

Collection of Research Bio-resources (JCRB, http:// 

cellbank.nibiohn.go.jp/english/). HCC cell line CLC1 

and CLC7 was established from Chinese HCC patients 

by Dr. Lijian Hui’ lab. CLC1 and CLC7 cells were 

cultured in RPMI 1640 (HyClone) supplemented with 

10% FBS (HyClone), 1 × ITS (Insulin, Transferrin, 

Selenium Solution), 40 ng/mL EGF (epithelial growth 

factor), 100 U/ml penicillin, and 100 µg/ml 

streptomycin. Huh1 cells were cultured in DMEM 

(Gibco) supplemented with 10% FBS, 100 U/ml 

penicillin, and 100 µg/ml streptomycin. Both cell lines 

were maintained in a humidified incubator at 37° C with 

5% CO2, and passaged every 3 days. 

 

SFN and SPP1 knockout 

 

To knockout SFN and SPP1, we used CRISPR/Cas9 

system. 20-nucleotide single-guide RNA (sgRNA) 

sequences targeting SFN (5’ AGCCTTCATGAAAG 

GCGCCG) and SPP1 (5’ TGTACTCACTGGTAT 

GGCAC) were designed using the CRISPR design tool 

at http://crispr.mit.edu/. The sgRNA was cloned into the 

lentiCRISPR V2 vector (Addgene plasmid # 52961) and 

co-transfected with psPAX2 (Addgene plasmid # 

12260) and pMD2.G (Addgene plasmid # 12259) 

packaging plasmids into 293FT cells. Virus containing 

supernatants were collected 48 h after transfection, 

filtered to remove cells using 0.45 um filter, and then 

used to infect HCC cell lines CLC1, CLC7 and Huh1 in 

the presence of 8 ug/ml polybrene. 16 h post-

transfection, cells were selected with puromycin (1 

ug/ml; 72 h); SFN silencing was confirmed by Sanger 

sequencing and western blotting. 

 

Cell proliferation assay 

 

Cell proliferation was determined by CellTiter-Glo 

reagent (Promega). 50 µL of CellTiter-Glo reagent was 

added to each well of 96-well plates, and after a 10 min 

incubation at room temperature, luminescence was 

measured by EnVision Multilabel Reader 

(PerkinElmer), and normalized to day 1. 

 

SiRNA screening  

 

A panel of 4X siRNAs for 50 genes (4 siRNAs/gene) 

were picked up from Human Genome siRNA library 

(Dharmacon) and dispensed 10 µl siRNA/well in 384-

well plate by Biomek FX (Beckman Coulter). Three 

siRNAs were used as nontargeting control. 0.1 µl 

RNAimax (Invitrogen) in 10 µl serum-free opti-MEM 

medium (Thermo Fisher Scientific) was added by 

Multidrop Combi Reagent Dispenser (Thermo Fisher 

Scientific). Following a 20 min incubation, CLC7 cell 

line was seeded at a density of 3000 cells/well in 30 µl 

medium. The plate was transferred to the incubator for 

96 hr. At the end point of treatment, each well was 

added 25 µl CellTiter-Glo reagent (Promega), and after 

10 min incubation in room temperature, the luminescent 

signals were measured by EnVision Multilabel Reader 

(PerkinElmer) to determine the cell viabilities. The 

siRNA screening was performed twice. 

 

Multi-platform based molecular subclasses 
 

Cluster of Cluster analysis (COCA) [26] was used to 

classify HCC into subclasses. First, using drivers as 

features, data from each molecular platform (copy 

number alteration, DNA methylation, mRNA, and 

microRNA expression) were clustered as described 

[26]. The robustness of the clusters was estimated 

according to the factorization rank and cophenetic 

correlation coefficient. Then, a second-level clustering 

was derived from the class assignments of individual 

molecular platforms, and the optimal combination of 

clusters was determined by maximizing the consensus 

cumulative distribution function. The final COCA 

subclasses represent a common cluster among the single 

platforms. 

 

Using differentially expressed genes in each subclass, 

pathway enrichment analysis was done to assess the 

potential functions of the subclasses. Frequently 

mutated pathways in each subclass were evaluated by 

the proportion of tumors with any gene alteration. 

Survival curves were estimated and plotted using the 

Kaplan-Meier method. Log-rank tests were used to 

compare the survival curves among COCA subgroups. 

To associate molecular subclasses with clinical 

variables, Fisher’s exact test and two-way analysis of 

variance (ANOVA) were used to examine the difference 

in categorical and continuous variables among COCA 

subclasses, respectively. All statistical analyses were 

performed in R. 

 

ChIP-Seq analysis 
 

ChIP-seq data of H3K4me1 and H3K27ac for HCC cell 

line (HepG2) and liver tissues were downloaded from the 

ENCODE database. ChIP-seq signal tracks were quantile-

normalized using Haystack [45] with 50-bp windows. The 

blacklisted regions were downloaded from ENCODE and 

excluded in subsequent analysis. Promoter regions were 

http://cellbank.nibiohn.go.jp/english/
http://cellbank.nibiohn.go.jp/english/
http://crispr.mit.edu/
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identified by HOMER v4.10 [46]. The remaining 

differential peaks between HCC and normal tissues were 

determined by 2x fold-change. Heatmap and profile plot 

were generated using DeepTools v2.1.0 [47]. Genes 

associated with ChIP-seq peaks were identified via 

GREAT [48] with the basal plus extension (20kb) 

association rule. Genomic contexts were visualized by 

Integrative Genomics Viewer (IGV) software [49].  

 

Chromatin state and enhancer 
 

To delineate the chromatin contexts, 18 chromatin states 

(E1~E18) of normal liver tissues and HCC cells 

(HepG2) were downloaded from http://compbio. 

mit.edu/roadmap [30]. Genome was subdivided into 

active regions (E1~E12) and inactive regions (E13~E18) 

by the chromatin state composition. H3K4me1 and 

H3K27ac are histone markers for active enhancers. 

Regions absent promoters with both H3K4me1 and 

H3K27ac marks were called strong enhancers, while 

regions with only H3K4me1 marks were called weak 

enhancers. Wilcoxon rank sum test was used to compare 

gene expression levels in different genomic regions. Chi-

square test was used to compare the occurrence of super-

enhancers in HCC and normal samples. 
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SUPPLEMENTARY MATERIALS 
 

 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Comparison between our results and previously published methods. (A) Comparison of the driver 

genes identified by our integrative analysis, and mutated genes and genes potentially associated with HCC identified from literature. 
Previously reported significantly mutated HCC-associated genes were obtained from Cancer Gene Census (CGC) and Network of Cancer 
Genes (NGC) databases. Genes potentially associated with HCC were obtained from PubMed by searching “hepatocellular carcinoma” and 
“gene” in the abstracts. (B) Cancer hallmarks enrichment for drivers identified by different omics data. Drivers from the integrated analysis 
were significantly enriched in the cancer hallmarks related terms, compared to independent analyses from each omics. Cancer hallmark 
terms were downloaded from MsigDB datasets. The size of the circle indicates the significance of the enrichment and the color indicates the 
number of drivers. 
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Supplementary Figure 2. Multi-omics landscape of Wnt and cell cycle pathways associated with HCC driver genes. (A) Tox 

analysis of drivers; hepatocellular carcinoma, liver hyperplasia/hyperproliferation and liver cirrhosis were significantly enriched, indicating 
correlation with liver cancer. (B) Overview of alterations in Wnt and cell cycle pathways. The solid rectangles represent drivers and dashed 
rectangles represent necessary linking genes in pathways that are not drivers. Colors represent the percentage of patients with mutations, 
copy number alterations, and dysregulation of methylation and expression. (C, D). Mutation landscape of Wnt and cell cycle pathway. 
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Supplementary Figure 3. Experimental validation of typic driver genes. (A, B) SPP1 methylation and expression correlate with HCC 
progression. P value was determined by Wilcoxon rank sum test:  ****p <0.0001; ***p <0.001; **p < 0.01; *p < 0.05. (C) Survival of HCC 
patients with high and low SPP1 expression. (D) Proliferation of CLC7 and CLC1 cells transfected with sgRNAs targeting SPP1 and SFN (n=3, 
regression analysis) after 96 hours. The relative cell number is normalized by the first day. (E) siRNA screening for top 50 genes with the 
highest integrative scores and upregulated in tumors. The genes that affect cell proliferation are determined by a 10% decrease or a 10% 
increase in cell proliferation rate in at least half of the repeated experiments after siRNA knockout.  
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Supplementary Figure 4. Comparison of integrative classification and other single-platform methods. (A) The consistency of 
integrative clustering and single-platform clustering. (B) The heat-map depicts gene expression profiles of 619 genes in Hoshida’s subtypes. 
(C, D). Kaplan–Meier estimates of the overall survival. Patients were classified according to Hoshida’s signature genes or single-platform 
drivers. 
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Supplementary Figure 5. Genomic alteration and expression of PBX1 and AHR. P value was determined by Wilcoxon rank sum test: 

***P<0.001; **P<0.01; *P<0.05; NS:P≥0.05. 
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Supplementary Figure 6. Relationship of chromatin states and enhancers with gene expression in HCC and normal samples. 
(A) Genes in activation regions (chromatin states E1-E12) show higher levels of gene expression than in inactivated regions (chromatin states 
E13-E18). (B) Enhancers significantly affect gene expression in activation regions. Strong enhancers are regions marked with both H3K4me1 
and H3K27ac, and weak enhancers are regions only marked with H3K4me1, excluding promoters. (C) High-expression genes show greater 
association with strong enhancers. Genes associated with genome regions are assigned by 20kb from the TSS. P value was determined by 
Wilcoxon rank sum test: ***P < 0.001; **P < 0.01; *P < 0.05.  
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Supplementary Figure 7. Enhancer subgroups and gene expression in stable and gain regions. (A) Scatter plot of H3K4me1 signal 

in HCC cell line (HepG2) and normal liver tissue. Lost, stable, and gained peaks were labelled by blue, black, and red, respectively. (B, C) Gene 
expression in enhancer stable and gained regions. P value was determined by student’s t test: ***P<0.001; **P<0.01:*P<0.05; NS P≥0.05.  
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. List of candidate gene regulators selected by comparing the genomic, epigenetic and 
transcriptomic data between HCC and normal tissues. 

 

Supplementary Table 2. List of HCC driver genes identified by integrative analysis of five platforms. 

 


