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INTRODUCTION 
 

The increase in life expectancy seen in developed 

countries is associated with an increased prevalence of 

chronic diseases such as cancer, neurodegeneration and 

cardiovascular disease [1]. This is due to the fact that 

aging is associated with a progressive decline in 

functional capacity of various cells and organs, 

eventually leading to disease and death [2]. Usually, the 

chronological age (i.e. the number of calendar years 

passed after birth) will deviate from biological age, which 

takes all health outcomes into account and is highly 

variable due to many interfering factors, e.g. genetics, 

environment and lifestyle [3]. Hence, in order to decipher 

how aging acts as a risk factor for chronic diseases, there 

is an urgent need for accurate measures of biological age 

[4]. A number of age predictors have been proposed to 

accurately measure biological age, e.g. telomere length 

and transcriptomic, proteomic, metabolomic and 

composite predictors. However, most of these biomarkers 

have drawbacks including a low predictive power for 

health span and insufficient validation [5].  
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ABSTRACT 
 

Epigenetic clocks are based on age-associated changes in DNA methylation of CpG-sites, which can accurately 
measure chronological age in different species. Recently, several studies have indicated that the difference between 
chronological and epigenetic age, defined as the age acceleration, could reflect biological age indicating functional 
decline and age-associated diseases. In humans, an epigenetic clock associated Alzheimer’s disease (AD) pathology 
with an acceleration of the epigenetic age. In this study, we developed and validated two mouse brain region-
specific epigenetic clocks from the C57BL/6J hippocampus and cerebral cortex. Both clocks, which could successfully 
estimate chronological age, were further validated in a widely used mouse model for AD, the triple transgenic AD 
(3xTg-AD) mouse. We observed an epigenetic age acceleration indicating an increased biological age for the 3xTg-AD 
mice compared to non-pathological C57BL/6J mice, which was more pronounced in the cortex as compared to the 
hippocampus. Genomic region enrichment analysis revealed that age-dependent CpGs were enriched in genes 
related to developmental, aging-related, neuronal and neurodegenerative functions. Due to the limited access of 
human brain tissues, these epigenetic clocks specific for mouse cortex and hippocampus might be important in 
further unravelling the role of epigenetic mechanisms underlying AD pathology or brain aging in general. 
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Recently, the epigenetic changes associated with aging 

have gained much attention in the aging biomarker 

research field [6]. In addition to a general loss of histones 

and modifications of histone marks including H3K4me3, 

H4K16ac and H3K56ac [7], age-related changes of the 

epigenome include alterations in DNA methylation 

patterns which typically consist of 5-methylcytosine 

occurring at CpG dinucleotides [8]. Overall, aging 

induces a genome-wide loss of DNA methylation, 

although it can encompass hypermethylation at specific 

loci [9, 10]. Age-related DNA methylation changes that 

are highly reproducible have led to the development of 

so-called “epigenetic clocks”, by selecting specific CpG-

sites that display age-dependent methylation states [11]. 

Horvath (2013) was the first to describe a human multi-

tissue age-predictor based on the methylation states of 

353 age-related CpGs [12]. A few years after the 

development of Horvath’s human epigenetic clock, a 

multi-tissue epigenetic age predictor in mice was 

published containing 329 age-associated CpG-sites [13] 

different from the ones selected by Horvath. These first 

epigenetic clocks were developed to accurately measure 

chronological age. Later, these and other epigenetic 

clocks were used to anticipate aging-related health 

outcomes both in humans [14–16] and in mice [17–19]. 

The difference between epigenetic age and chronological 

age, defined as the age acceleration, is already associated 

with mortality [20] and age-related diseases [14, 21]. 

Therefore, epigenetic clocks are currently considered the 

most promising predictor of biological age in comparison 

to other candidates [5, 22]. Furthermore, epigenetic 

clocks can be applied in developing longevity and 

rejuvenating interventions and in determining the impact 

of stress factors on biological age [23]. Although many 

research groups focused on multi-tissue epigenetic 

clocks, more accurate clocks could be established by 

using the methylation levels of tissue-specific CpG-sites 

[24], in part because differences in DNA methylation 

patterns are in general more pronounced between tissues 

than ages [25]. This may explain the sub-optimal 

performance of multi-tissue epigenetic clocks for 

biological estimation of specific tissues [26]. Therefore, 

tissue-specific clocks need to be developed which 

measure biological age in relation to age-related diseases, 

with the potential to serve as a prognostic and diagnostic 

marker of a certain age-associated disease, and to provide 

more insights in the underlying mechanisms involved 

[27–29]. Due to limited access of human tissue samples, 

mouse models will be of particular relevance to achieve 

this goal. Until now, tissue-specific clocks in mice have 

only been developed for blood [18, 30], liver [19] and 

muscle [31].  

 

One of the most prevalent neurodegenerative diseases is 

Alzheimer’s disease (AD), accounting for 60-70% of 

the 50 million dementia patients worldwide [32]. An 

epigenetic clock was tested in AD patients in which an 

acceleration of the epigenetic age in the prefrontal 

cortex was suggested to be associated with the decline 

in cognitive function [33]. Besides the cortex, the 

hippocampus is also highly affected by AD contributing 

to the associated cognitive decline [34]. Furthermore, 

several AD risk factors, e.g. body mass index, 

cholesterol levels, blood pressure and smoking, were 

demonstrated to accelerate epigenetic age [35]. Further 

research is needed to increase our knowledge on how 

epigenetic age is associated with AD, and to potentially 

give further insights in the AD pathology. For this, 

animal experiments supplementing human research are 

very useful and enable to examine how soon during the 

disease process epigenetic age is modified, to determine 

risk factors for the accelerated aging linked to AD, and 

to test the efficacy of potential interventions delaying 

the increase in epigenetic age. 
 

In this study, epigenetic clocks were developed and 

validated for mouse hippocampus and cortex. We 

measured the epigenetic age of cortex and hippocampus 

from young adult (3 months) to aged (15 months) 

female C57BL/6J and triple transgenic AD (3xTg-AD) 

mice (further referred to as B6 and AD mice, 

respectively), which are extensively used in AD 

research. The epigenetic age of AD cortex and 

hippocampus was found to be increased in comparison 

to that of B6 mice. The epigenetic age acceleration, 

which is thought to be associated with biological age, 

was elevated for the cortex in relation to the 

hippocampus in both mouse strains. Furthermore, the 

AD mice were epigenetically older when the first signs 

of AD pathology appeared, with slower rates of 

acceleration over time. Differences in DNA methylation 

of age-associated CpGs were more evident between 

brain regions than mouse strains and thirdly between 

various ages. Notably, several CpGs that showed 

opposite age-dependent DNA methylation profiles for 

both strains were related to neurodegenerative disease, 

such as AD. In addition, the most-significant age-

associated CpG-sites clustered together in genomic 

regions encoding for developmental, aging-related and 

neuronal functions. Altogether, the developed brain 

region-specific epigenetic clocks can successfully be 

implemented in future research to measure brain 

epigenetic age to further unravel the role of epigenetics 

in neurodegenerative pathology. 

 

RESULTS 
 

Epigenetic clocks specific for mouse hippocampal 

and cortical tissue 
 

In a first instance, blood DNA samples were used for 

genome-wide reduced representation bisulfite 
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sequencing using the Methyl-MidiSeq method from 

Zymo Research. This method covers ~30% of the entire 

methylome at single base resolution. From this, CpGs in 

differentially methylated regions (DMRs) were 

identified, and supplemented with age-dependent DNA 

methylation sites retrieved from the literature [13, 17, 

19, 36, 37]. This generated a list of 2,031 individual 

CpGs in the mouse genome that were further analyzed 

using targeted bisulfite sequencing and used to train the 

proprietary DNAge® algorithm (see Materials and 

Methods). DNA methylation levels of cerebral cortex 

and hippocampus, dissected from B6 mice at 12, 24 and 

64 weeks of age, served to train the algorithm. Separate 

algorithms were built specifically for cortex and 

hippocampus using respectively 1,144 and 732 CpGs 

out of the original 2,031 CpGs with 436 overlapping 

loci (see Supplementary Table 1). Both algorithms 

could very accurately predict epigenetic age as observed 

by almost perfect correlation to the chronological age of 

0.9997 for cortex and of 0.9996 for hippocampus 

(Figure 1A and 1B). Both the cortex- and hippocampus-

specific epigenetic clocks were subsequently validated 

on an independent sample set from 24-, 36-, 70-, 91- 

and 105-week old male B6 mice. Also in this validation 

phase, the cortical and hippocampal clocks performed 

very well, with coefficients of determination of 0.8614 

and 0.8798, respectively (Figure 1C, 1D). The 

distribution of clock CpG-sites across genomic features 

was very comparable between the cortex and 

hippocampus, with a majority of them found in introns 

and CpG-islands (Figure 1E, 1F), of which the latter are 

inherently enriched in CpGs [38].  

 

AD mice show an increased epigenetic age compared 

to B6 mice  

 

The validated epigenetic clocks were then used to 

estimate the epigenetic ages of cortical and 

hippocampal tissues from 3-, 6-, 12- and 15-months old 

female B6 and AD mice (the DNA methylation values 

of the 2,031 CpG-sites can be found in Supplementary 

Table 2). Only female mice were used for this 

experiment as male AD mice show a more subtle AD 

pathology compared to female mice, which was obvious 

in our colony [39] and also reported by different 

research groups [40, 41]. Based on the DNAge® 

algorithms for cortex and hippocampus, the predicted 

epigenetic age of AD mice was significantly augmented 

in both cortex and hippocampus for all ages (Figure 2A, 

2B). ΔAge which compared epigenetic age to 

chronological age was used to measure a potential 

acceleration or deceleration of aging. The ΔAge was 

higher in cortical tissue, compared to hippocampal 

tissue suggestive for a specific epigenetic aging speed 

for these distinct brain regions (Supplementary Figure 

1A, 1B). We determined that the AD cortex was 6.7 

months older (median difference) compared to their 

chronological age, while the hippocampus was 0.7 

months younger (Figure 2C, 2D). As the mean lifespan 

of female AD mice is 17 months [42], we indicated for 

the cortex a 39.4% acceleration of their lifespan and for 

the hippocampus a 4.1% deceleration. Compared to 

their chronological age, the B6 cortex was 2.4 months 

older, while the hippocampus was 2.1 months younger 

(Figure 2C, 2D). Taking into account that the mean 

lifespan of female B6 mice is 25 months [43], the 

epigenetic clock revealed a 8.4% lifespan acceleration 

for the cortex and a 9.6% lifespan deceleration for the 

hippocampus. To reveal a potential increased age 

acceleration in the pathological mouse model, the ΔAge 

of B6 mice was compared to that of AD mice. This 

disclosed that, based on the DNAge® algorithm trained 

in B6 mice, the AD cortex had a positive age 

acceleration compared to the B6 cortex with a median 

difference of 4.3 months, while the median difference of 

the hippocampus was 1.4 months (Figure 2C, 2D). In 

line with previous studies [27], we observed non-linear 

epigenetic age trajectories, with slower rates of 

epigenetic aging over time. The epigenetic age of the 

B6 cortex accelerated (positive Age) until 12 months 

of age, while for AD mice an acceleration was visible 

until 15 months of age (Figure 2E and Supplementary 

Figure 1C, 1D). For hippocampal tissue, the epigenetic 

age of B6 mice decelerated (negative Age) at all time 

points. This is in contrast to the AD mice, in which 

epigenetic age was first accelerated at 3 and 6 months of 

age and then decelerated at 12 and 15 months of age 

(Figure 2F and Supplementary Figure 1C, 1D).  

 

Because a substantial number of the 2,031 CpG loci had 

missing DNA methylation values, we decided to 

exclude those CpGs for further analyses, which resulted 

in 1,696 CpGs (see Materials and Methods). A principal 

component analysis (PCA), executed to analyze the 

variation within the methylation values of the 1,696 

CpGs, showed that samples were mostly separated by 

brain region (PC1), then by mouse strain (PC2) and 

only thirdly by age (PC3) (Figure 2G, 2H). Performing 

an unsupervised hierarchical clustering based on the 

methylation values of the 1,696 CpG-sites, similarly 

revealed a clear separation of the samples primarily 

based on brain region (Figure 2I). Thus, our analysis 

showed that despite the existence of overlapping CpG 

loci, the cortex and hippocampus display very different 

levels of DNA methylation of age-associated CpGs. 

Furthermore, based on a 3-way ANOVA analysis on the 

1,696 CpGs we identified 59 CpGs that showed 

significantly (p-value <10E-5 for the interaction 

between strain and age) different age-associated 

methylation profiles between the mouse strains. These 

CpGs were found in clusters in the proximity of certain 

genes, namely 7 CpGs in Mir-219, 6 CpGs in Ntng2, 5 
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CpGs in Dlue2 and 2 CpGs in Coa6. For Mir-219, 

Ntng2 and Dlue2 methylation levels increased with age 

for the AD mice and decreased with age for the B6 

mice. This is in contrast to Coa6, for which methylation 

levels decreased for the AD mice and increased for the 

B6 mice (Figure 3A). Finally, 157 CpGs were identified 

with different DNA methylation values (ANOVA p-

value <10E-5 for strain) between AD and B6 mice 

(Figure 3B). Several of these CpG loci clustered in or 

near genes (Tshz3, Rapgefl1, Exoc3l2, Dapk1, Apoe and 

Hpcal1) that have been linked to AD in humans and/or 

mice (Figure 3C).  

 

The most significant age-associated CpGs cluster 

together in genomic regions important for 

developmental, aging-related and neuronal functions 

 

In order to identify the CpGs that were mostly 

associated with age, we performed a 3-way ANOVA 

analysis on the 1,696 CpG-sites with brain region, 

mouse strain and age, as factors. To further investigate 

the most differentially methylated CpGs according to 

age, we selected 175 CpGs out of the 1,696 CpG-sites 

with a p-value for age <10E-4 (Figure 4A). Concerning 

the distribution of these CpGs among genomic features, 

we observed a slight shift towards more exon- and 

fewer intron-related CpGs (Figure 4B) as compared to 

the original 2,031 CpG-sites. A PCA performed on the 

175 CpGs still showed a clear distinction of brain 

region (PC1) and strain (PC3) (Figure 4C). In addition, 

samples could now also be separated based on age 

(PC2) (Figure 4D) for both strains.  

 

We used the genomic regions enrichment of annotation 

tool (GREAT) [44] to assign biological meaning to the 

175 most important age-associated CpG-sites that were 

related to 128 genes (Supplementary Table 3). Some of 

the genes were related to aging, e.g. Hsf4 and 

 

 
 

Figure 1. Training and testing of the DNAge® algorithm to predict chronological age in mouse cortical and hippocampal 
tissue. (A, B) A tissue-specific algorithm was designed for cortex (A) and hippocampus (B) to accurately predict chronological age. N = 3 – 4. 

(C, D) The DNAge® algorithm was tested on an independent sample set of male B6 mice for both cortex (C) and hippocampus (D). N = 2 – 8. 
(E, F) Circos plots indicate the genomic locations of clock CpG-sites in CpG-islands (black) and all clock CpG-sites (blue) in cortex (E) and 
hippocampus (F). Insets indicate relative distributions of clock CpG-sites across genomic features. 
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Klf14, to developmental processes, e.g. Tbx2 and 

Dmbx1, to synaptic plasticity, e.g. Srcin1, Calb2 and 

Neurl1a and to AD, e.g. Bin1. Among the biological 

processes that were enriched we found processes related 

to development (e.g. nervous system development, 

organ growth, gliogenesis), aging and age-related 

syndromes (e.g. hypoalgesia, gait disturbance, muscle 

weakness and cellular senescence), and neuronal/brain 

function (astrocyte differentiation, protein transport and 

secretion, dendrite development, glutamate receptor 

signaling, calcium ion transport) (Figure 4E). By using 

the UCSC genome brower’s LiftOver program, we 

could successfully convert 152 out of the 175 most 

significant age-associated CpG loci from the mouse 

(mm10) to human (hg19) genome assemblies [45], 

indicating high conservation of the loci. However, no 

overlap was found with the 513 CpG loci used in the 

phenoAge clock developed by Levine et al. used to 

correlate cortical epigenetic age and AD-related 

cognitive decline in humans [14]. 

 

 
 

Figure 2. Acceleration of epigenetic age in AD mice compared to B6 mice in cortical and hippocampal tissue. (A, B) The 

predicted epigenetic age for cortex (A) and hippocampus (B) of AD (blue) and B6 (green) mice. Mean ± SD. (C, D) The mean ΔAge and (E, 
F) the ΔAge per chronological time point for cortex and hippocampus of AD (blue) and B6 (green) mice. N = 6. * p < 0.05, ** p < 0.01, *** * 
p < 0.0001. (G, H) A principal component analysis (PCA) with PC1 and PC2 (G) and PC2 and PC3 (H) based on the DNA methylation value of 
1696 CpGs in AD (blue) and B6 (green) mouse cortex (triangles) and hippocampus (circles). Age is colored by month. ( I) Based on the 
same 1696 CpGs, unsupervised hierarchical clustering was performed using the AD (blue) and B6 (green) mouse cortex (b lack) and 
hippocampus (grey). 
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DISCUSSION 
 

Compared to multi-tissue epigenetic clocks, tissue-

specific clocks may be more suitable as indicators of 

disease-associated aging and may provide deeper 

insight into pathophysiological mechanisms, especially 

in cases where certain tissues are particularly affected 

[27]. One such disease is AD, an age-associated disease 

characterized by intracellular neurofibrillary tangles and 

the accumulation of amyloid-β plaques with aging as 

the major risk factor [46]. However, for obvious reasons 

it is not always possible to obtain tissue samples from 

humans. Therefore, we have generated in this study 

epigenetic clocks from cortex and hippocampus of a 

wild-type and an AD mouse model. To generate these 

clocks, we measured DNA methylation values of 2,031 

 

 
 

Figure 3. Different age-associated methylation profiles for AD mice compared to B6 mice. (A) Methylation profiles of CpGs in 

close proximity of Mir-219, Ntng2, Dlue2 and Coa6 genes for the cortex (triangles) and hippocampus (circles) were opposite for the AD (blue) 
and B6 (green) mice. N = 4. Mean ± SD. (B) Unsupervised hierarchical clustering using AD (blue) and B6 (green) mouse cortex (black) and 
hippocampus (grey) for 33 of the 157 CpG-sites that were differentially methylated for strain. (C) Methylation profiles for the cortex 
(triangles) and hippocampus (circles) of CpGs, associated with AD-related genes Tshz3, Rapgefl1, Dapk1, Exoc3l2, Apoe and Hpcal1 genes, 
show differing values between AD (blue) and B6 (green) mice.  
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CpGs using targeted bisulfite sequencing allowing 

1000x coverage, which is several orders of magnitude 

higher than that of other studies [13, 18, 19]. We should 

acknowledge that even though we reached high 

coverage, missing values are still an inherent issue. 

However, as aging-related changes are pervasive in the 

DNA methylome [24], we are confident to have 

accurately captured the age-related variations in 

methylation values at the investigated CpGs. More than 

100x coverage is required to obtain high-confidence 

differentially methylated positions [47]. 

 

The clocks we eventually developed consisted of 1,  

144 and 732 CpGs for cortex and hippocampus,

 

 
 

Figure 4. The 175 most significant age-associated CpGs cluster together in genomic regions important for developmental, 
aging-related and neuronal functions. (A) A Manhattan plot of the 1696 CpG-sites with 10E-4 as cut-off value indicating the 175 most 

significant age-associated CpGs. (B) Circos plots of genomic locations of the 175 CpGs in CpG-islands (black), and all clock CpG-sites (blue). 
Insets indicate relative distributions of clock CpG-sites across genomic features. (C, D) A principal component analysis (PCA) with (C) PC1 and 
PC2 and (D) PC2 and PC3 based on the DNA methylation value of 175 most significant age-associated CpGs in AD (blue) and B6 (green) mouse 
cortex (triangles) and hippocampus (circles). Age is colored by month. N = 6. (E) The GREAT analysis associated the 175 CpGs with a 
regulatory domain in the mouse genome. 
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respectively, of which 436 overlapped. Despite this high 

overlap, both the methylation values of several 

individual CpGs as well as the epigenetic age 

predictions were very different between cortex and 

hippocampus. These differences may at least partly be 

explained by cell type heterogeneity (neuronal and non-

neuronal) between both brain regions which are mostly 

marked by different pyramidal neuron subtypes and 

different ratios of mural, endothelial and glial cells [48, 

49]. It can furthermore be anticipated that this 

heterogeneity is also influenced by changes in cellular 

composition during aging. For instance, the rates of 

adult neurogenesis and gliogenesis are higher in the 

hippocampus compared to the cortex [50] and may 

therefore result in a relative increase of biologically 

“younger” cells. This may contribute to our finding that 

the biological age of the hippocampus was lower than 

that of the cortex. However, although cell type-specific 

differences in DNA methylation patterns have recently 

been identified in the human and mouse frontal cortex 

[51], the genome-wide methylation patterns between 

neuronal and especially non-neuronal cells in the cortex 

and hippocampus were found to be very comparable in 

human post-mortem cortex and hippocampus [52]. We 

hypothesize that the observed distinct epigenetic age 

and age acceleration predictions may reflect enhanced 

biological aging of the cortex compared to the 

hippocampus in mice. This seems to be different in 

humans, where no difference in epigenetic age 

acceleration could be observed between different 

cortical regions and the hippocampus [53]. The reason 

for this discrepancy may be the selection of CpGs used 

to train the clocks. For the human study the Horvath 

clock was used [12] which was originally designed to 

perfectly predict chronological age. 

 

The development of these epigenetic clocks specific for 

mouse cortex and hippocampus that were built from 

samples from a rather broad range of ages is important. 

Existing DNA clocks have been shown to work in 

general relatively well across different tissues, but 

underestimation of epigenetic age in older samples was 

particularly observed in brain [54]. A recently developed 

human cortical-specific DNA methylation clock 

outperformed the predictive accuracy for cortical age 

estimation in comparison with existing clocks designed 

for different tissues [55]. This indicates the need for 

tissue-specific epigenetic clocks, which may also better 

reflect tissue-specific changes in DNA methylation due 

to biological aging and therefore more accurately predict 

tissue-specific aging-related diseases. 

 

Although both our clocks are able to estimate 

chronological age, they are not perfect. This is in fact 

essential in order to allow their use in predicting 

biological age, because by definition perfect 

chronological clocks cannot contain information on 

variation in biological age [56]. Indeed, there should be 

room for variability in order to generate biological aging 

associations [57]. It was proposed that epigenetic clocks 

specific for biological aging should focus on a defined 

aspect of the aging biology, including disease-related 

factors [27]. Here, we used AD mice to compare 

epigenetic aging of the cortex and hippocampus to that 

of non-pathological B6 mice over an extended period of 

their life. We found accelerated epigenetic aging for 

both brain regions in the AD mice, especially during 

early life, when also DNA methylation changes are most 

dynamic [10, 58]. It has been proposed that early-life 

changes in DNA methylation patterns may direct gene 

expression related to aging and age-related diseases later 

in life [59]. Therefore, the difference in DNA 

methylation observed at 3 months of age in the AD 

mice, which resulted in an increased estimated 

epigenetic age, could eventually participate to the 

increased aging phenotype observed with AD. In this 

respect, it is important to note that already at the age of 3 

months, AD mice have started to develop aspects of the 

AD pathology. The presence of Aβ oligomers in the 

cortex can therefore potentially be related to the increase 

in epigenetic age. DNA methylation changes at certain 

CpG-sites were suggested to be linked to AD pathology 

[60]. As some of these epigenetic changes could be 

detected in presymptomatic subjects, it was proposed 

that they may have a role in the onset of AD [60].  

 

Another possible explanation of this apparent epigenetic 

age acceleration of AD mice may be the difference in 

genetic background between the AD and B6 mice. 

However, previous research already demonstrated no 

epigenetic age acceleration when comparing different 

mouse strains [18, 19]. Moreover, this would not 

necessarily explain the differences we observed in age-

associated DNA methylation between specific CpGs. 

Importantly, among the relatively few genes that showed 

opposite age-dependent DNA methylation profiles, 

several have shown to be related to neurodegenerative 

diseases and AD. For instance, we observed 7 CpGs in 

Mir-219 displaying an overall reduction in methylation 

with age in B6 mice, while being increased in AD mice. 

Mir-219 expression is known to be reduced in brains of 

AD patients [61], and suggested to promote 

neurodegeneration and disease progression [62]. A 

similar age-dependent methylation profile was observed 

for 5 CpGs in Dleu2. Also this gene is downregulated in 

the brain of human AD subjects [63]. CpGs near other 

AD-related genes, like Tshz3 [64], Rapgefl1 [65, 66], 

Exoc3l2 [67, 68], Dapk1 [69], Apoe [70] and Hpcal1 [71] 

were differentially methylated between B6 and AD mice. 

Furthermore, Other CpG loci contributing to our cortical 

and hippocampal clocks are proximal to the mouse 

orthologues of genes found to be differentially 
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methylated in AD patients, including Bin1, Ezh1, Irx3, 

Rufy4, Dleu2 and Ddr1 [60, 72–74], indicating the 

translational potential of some of these epigenetic marks. 

Whether the differences in DNA methylation of these 

genes underlie variations in their expression that may 

subsequently affect AD pathology or neurodegeneration 

in the AD model needs to be further investigated.  

 

Several of the CpGs we identified as being the most 

significantly differentially methylated with age were 

found to be associated with genes that either play a 

role in important neurological functions or are known 

to be related to neurodegeneration and AD. Hdgfl2, 

expressed by neurons, astrocytes and oligodendrocytes 

in adult mouse brain tissue, has a role in cell 

proliferation and cell survival [75]. Both Calb2 and 

Srcin1 function in synaptic plasticity [76–78]. Finally, 

Bin1 is identified as the second most important risk 

factor for late onset AD after ApoE, which itself 

contains 5 CpGs among the 2,031 used for the 

development of our clock. Bin1 modulates tau 

pathology and affects cellular functions like 

endocytosis, inflammation, calcium homeostasis and 

apoptosis [79, 80]. Although it is well known that 

DNA methylation in promoter regions influences gene 

expression [81], the link between age-dependent 

changes in methylation and gene expression is still 

unclear. For some genes a correlation has been 

identified, but this cannot be generalized [82]. Like 

DNA methylation, also gene expression is mostly 

regulated during the initial stages of postnatal life [83]. 

Therefore, it would be important to investigate a 

possible correlation between the transcriptome and the 

epigenome especially in young subjects. 

 

We provide here the first epigenetic clocks for two 

mouse brain regions, based on DNA methylation data 

from young to old mice, and validated them using a 

healthy and pathological mouse strain. We believe that 

these clocks will be very useful for research on different 

neurological and neurodegenerative disorders that are, 

at least partly, initiated by epigenetic mechanisms. 

 

MATERIALS AND METHODS 
 

Workflow 

 

Zymo Research designed a DNAge® mouse epigenetic 

aging clock targeting 2,031 age-associated CpG loci. 

These epigenomic loci were identified using genome-

wide reduced representation bisulfite sequencing (RRBS) 

using the Methyl-Midiseq method to select the most 

differentially methylated regions (DMRs) in blood 

samples from 12-, 24- and 64-week old male B6 mice. 

Blood has been proposed to be a good surrogate to study 

age-dependent DNA methylation profiles in the brain 

[84]. These in-house detected CpGs were furthermore 

supplemented with age-related CpG loci found after an 

extensive literature search [13, 17, 19, 36, 37]. The 

epigenetic clock was trained on two sample sets specific 

for hippocampus and cortex of the same male B6 mice 

from 12, 24 and 64 weeks of age. In the training phase, 

only male mice were used to exclude gender- and 

hormonal differences. Afterwards, the hippocampal and 

cortical epigenetic clocks were tested on a separate pool 

of hippocampal and cortical samples from male B6 mice 

of 24, 36, 70, 91 and 105 weeks of age. Finally, both 

clocks were used to determine biological age of female 

B6 and AD mice of 3, 6, 12 and 15 months of age.  

 

Animals 

 

The B6 mice were obtained from Janvier (Uden, The 

Netherlands). The AD mice contain two human 

transgenes, i.e. amyloid precursor protein (APPSwe) 

and microtubule-associated protein tau (tauP30IL), on a 

presenilin (PS1M146V) knock-in mice with a mixed 

B6;129/SvJ background, and were purchased from the 

Jackson Laboratory (California, USA). Full pathology 

of the AD mice is described by Oddo et al. [85] and 

revised by Belfiore et al. [86]. Female mice were bred 

and maintained in the animal facility of the nuclear 

research center SCK CEN under Specific pathogen Free 

(SPF) conditions and 12h light-dark cycle. Food 

(Altromin 1324, Carfill) and water were provided ad 

libitum. All animal experiments were performed in 

agreement with the Belgian laboratory animal 

legislation and the European Communities Council 

Directive (2010/63/EU) and approved by the Ethical 

Committee Animal Studies of the Medanex Clinic 

(EC_MxCl 2018-105).  

 

Sample collection and processing 

 

For the training and testing samples, cortex and 

hippocampus were collected from male B6 mice at 

different ages and stabilized for downstream processing 

using the DNA/RNA Shield™ reagent (Zymo 

Research). Genomic DNA was purified using the 

Quick-DNA™ Miniprep Plus kit (Cat. No. D4068). For 

the experimental samples, cortex and hippocampus 

were collected from female B6 and AD mice at different 

ages and immediately snap-frozen in liquid nitrogen. 

From the cortex and hippocampus of one brain 

hemisphere, genomic DNA was isolated using the 

QIAamp DNA mini kit (Qiagen). The genomic DNA 

was further processed to quantify DNAge®.  

 

DNA methylation pre-processing 

 

Sample library preparation and data analysis for mouse 

DNAge® were performed by the service provider 
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(Zymo Research). Two-hundred ng of genomic DNA 

was bisulfite converted using EZ DNA Methylation-

Lightning™ Kit (Zymo Research; Cat. No. D5030). 

Bisulfite-converted DNA libraries for targeted bisulfite 

sequencing platform, called SWARM® (Simplified 

Whole-panel Amplification Reaction Method) was 

prepared according the to the manufacturer’s 

instructions and were sequenced on a HiSeq 1500 

sequencer for >1,000X coverage. Sequence reads were 

identified using Illumina base-calling software and 

aligned to the reference genome using Bismark [87–90], 

an aligner optimized for bisulfite sequence data and 

methylation calling. The methylation level of each 

sampled cytosine (DNA methylation value) was 

estimated as the number of reads reporting a C, divided 

by the total number of reads reporting a C or T. Thus, 

DNA methylation values range from 0 (completely un-

methylated) to 1 (completely methylated).  

 

DNAge® prediction 

 
DNA methylation values of 2,031 age-related CpG loci 

were used for epigenetic age prediction using Zymo 

Research’s proprietary mouse DNAge® algorithms: A 

penalized regression model’s coefficients b0, b1, ..., bn 

related to transformed age as in equation (1): 

(1) F(chronological age) = b0 + b1CpG1+ ⋯ + bnCpGn + 

error; 

DNAge® was estimated as in equation (2): 

(2) DNAge® = inverse.F(b0 + b1CpG1+ ⋯ +bnCpGn) 

The ΔAge was calculated as in equation (3): 

(3) ΔAge = DNAge® – chronological age. 

 
Further analysis of age-associated CpGs 

 
To obtain the distribution of the clock CpG-sites across 

genomic features, the annotatr R package was used at 

https://bioconductor.org/packages/release/bioc/vignettes/

annotatr/inst/doc/annotatr-vignette.html. This package 

includes following CpG and genic annotations: CpG 

islands are the basis for all CpG annotations, and are 

given by the AnnotationHub package. CpG shores are 

defined as 2 kb upstream/downstream from the ends of 

the CpG islands, less the CpG islands, promoters defined 

as <1 kb upstream of the TSS, 5’UTR, exons, introns, 

coding sequence (CDS) of gene, 3’UTR and intergenic 

region. Enhancers were defined according to FANTOM5. 

Among the 2,031 CpG-sites some had missing values 

because of undetectable CpG loci due to failed 

enrichment of the amplicon or a lower DNA quality or 

DNA integrity. After discarding CpGs with missing 

values 1,696 CpG-sites remained for further analysis. 

From these, the 175 most significant age-associated CpG-

sites were identified via 3-way ANOVA (p-value(age) 

<10E-4). These were used to identify enriched pathways 

using GREAT analysis [44] with default settings 

(Proximal: 5.0 kb upstream, 1.0 kb downstream, plus 

Distal: up to 1000 kb) and the 2,031 CpG sites as 

background regions. CpGs with a p-value <10E-5 for the 

interaction between age and strain, were considered to 

have significantly different age-dependent DNA 

methylation profiles between B6 and AD mice.  

 

Statistical analysis  

 

The predicted epigenetic ages of the B6 and AD mice, 

estimated by the epigenetic clocks specific for 

hippocampus and cortex were analyzed with linear-

mixed models just like the resulting ΔAge. Only for the 

comparison of the mean ΔAge an unpaired student T-

test was performed. The statistical outcomes of the 

linear-mixed models for Figure 2 and Supplementary 

Figure 1 are enclosed in Supplementary Table 4. All 

statistical analyses were performed in the R statistical 

environment (Version 3.6.1). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Acceleration of epigenetic age in cortex compared to hippocampus in C57BL/6J and 3xTg-AD mice. 
(A, B) The mean ΔAge and (C, D) the ΔAge per chronological timepoint for cortex (dark) and hippocampus (light) of C57BL/6J and 3xTg-AD 
mice. N = 6. **** p < 0.0001. 

  



 

www.aging-us.com 20834 AGING 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. A list of the specific CpG-sites used for the hippocampal and cortical clock. 

Supplementary Table 2. DNA methylation levels of 2,031 CpG-sites used to train the DNAge® algorithm for 
hippocampus and cortex of 3, 6, 12 and 15 month old C57BL/6J and 3xTg-AD mice. 

Supplementary Table 3. The genomic regions enrichment of annotation tool (GREAT) analysis of the 175 most 
important age-associated CpG-sites. 

Supplementary Table 4. Statistical outcomes for linear-mixed effects model. 

 


