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INTRODUCTION 
 

Autoimmune hepatitis (AIH) is a chronic and progressive 

inflammatory liver disease with a prevalence of 15 cases 

per 100,000 individuals worldwide [1]. Currently, 

corticosteroids and azathioprine are used as standard 

therapy of AIH patients [2]. However, 10-20% of AIH 

patients are refractory to corticosteroids or azathioprine 

and progress to cirrhosis and end-stage-liver disease [3]. 

In the absence of any treatment, nearly 50% of patients 

with severe AIH die within approximately 5 years [4]. 

Hence, there is an urgent need to identify genes that 

correlate with AIH pathogenesis for development of 

targeted therapy to improve survival outcomes.  

 
Genetic susceptibility, circulating autoantibodies, 

molecular mimicry, and immune disorders, including 

dysfunctional T-lymphocyte activation are all related to 

AIH pathogenesis [5, 6]. However, reliable experimental 

animal models are required to unravel the mechanistic 
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ABSTRACT 
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be revealed.  
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regression models, and cross-checked by weighted correlation network analysis (WGCNA). AIH murine models 
created by ConA were used to verify the in vivo effect of these genes.  
Results: We identified 115 top dynamic genes, of which most were overlapped with the hub genes determined 
by WGCNA. The expression of several top dynamic genes including Cd63, Saa3, Slc10a1, Nrxn1, Ugt2a3, were 
verified in vivo. Further, Cluster determinant 63 (Cd63) knockdown in mice treated with ConA showed 
significantly less liver pathology and inflammation as well as higher survival rates than the corresponding 
controls.  
Conclusion: We have identified the top dynamic genes related to the process of acute liver injury, and 
highlighted a targeted strategy for Cd63 might have utility for the protection of hepatocellular damage. 
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details underlying AIH and test candidate drugs to 

alleviate AIH [7, 8]. Concanavalin A (ConA) is a plant 

lectin that binds to sugar residues of extracellular 

proteins, thereby agglutinating blood erythrocytes and 

stimulating immune cells, especially T-lymphocytes [9]. 

Concanavalin A (ConA)-induced hepatitis model mice 

mimic AIH characteristics and have been used to 

evaluate the activity of AIH candidate drugs [10]. 

However, the genes that regulate ConA-induced liver 

injury have not been evaluated. 

 

High-throughput genome-wide transcriptome profiling is 

commonly to identify changes in gene expression and 

biological pathways under various physiological, 

pathological or specifically ordered conditions over time 

or space [11, 12]. Therefore, in this study, we analyzed 

the liver transcriptome data in the mouse model of  

ConA-induced hepatitis using Trendy and WGCNA  

to identify critical genes associated with liver pathology. 

 

RESULTS 
 

Identifying dynamic gene expression changes during 

concanavalin A-induced acute liver injury using 

Trendy 
 

We used the Trendy software to analyze global gene 

expression changes in liver tissues from ConA-induced 

hepatitis model mice and identify genes with 

breakpoints/segments (upregulation or downregulation) 

at 3 h and 24 h after ConA treatment. We identified 115 

top dynamic genes with an adjusted R2 >0.98 

(Supplementary Table 1). We observed breaks or 

changes in gene expression at 3 h and 24 h after ConA 

treatment in all the top dynamic genes compared to their 

corresponding gene expression at the 0 h time point 

(Figure 1A). This showed at least two time points or 

segments at which the top dynamic genes showed 

differential expression in response to ConA treatment. 

The differential expression patterns (upregulation or 

downregulation) of all the top dynamic genes by 

combining both the time points together are shown in 

Figure 1B.  

 

Next, we performed functional enrichment analysis of 

the top dynamic genes to determine the plausible 

pathogenetic mechanisms underlying ConA-induced 

acute liver injury. The most significantly enriched gene 

ontology (GO) terms related to the top dynamic genes 

were metabolic process, oxidation-reduction process, 

response to toxic substances, and positive regulation of 

apoptotic process (Figure 1C, 1D). The most 

significantly enriched KEGG pathways were metabolic 

pathways, chemical carcinogenesis and drug 

metabolism (Figure 1C). Peng et al. showed that 

exposure of hepatic cells to toxic substances induced 

chronic inflammation-related dynamic changes in 

metabolism [13]. Therefore, we postulate that the top 

dynamic genes dysregulate metabolic pathways in the 

ConA-induced hepatitis model mice. 

 

Verification of the top dynamic genes in the ConA-

induced hepatitis model mice 
 

We established the ConA hepatitis model mice as 

shown in Supplementary Figure 1. ConA-treated mice 

showed significantly enlarged liver, spleen and kidneys 

and elevated serum ALT and AST levels upon ConA 

treatment. H&E stained liver sections of ConA-treated 

mice showed significant infiltration of inflammatory 

cells, massive hepatocyte necrosis, and disordered 

hepatic sinusoid structures (Supplementary Figure 1). 

These findings demonstrated AIH-like characteristics in 

the ConA hepatitis model mice.  

 

Next, we examined the gene expression of two candidate 

genes having the extreme breakpoints identified by 

Trendy, namely, matrix metallopeptidase 3 (Mmp3) and 

arylacetamide deacetylase (Aadac) in the liver tissues of 

ConA-induced hepatitis model mice. Trendy analysis 

showed that the expression of Mmp3 significantly 

increased at 3 h and peaked at 24 h in the livers of ConA-

treated mice (Figure 2A). The mRNA expression of 

Aadac significantly decreased in the ConA-treated mice 

livers at 24 h post-ConA treatment (Figure 2A). Both 

Mmp3 and Aadac play significant roles in the liver 

functions [14]. Aadac is involved in lipolysis of cellular 

triacylglycerol stores and the assembly of very low-

density lipoprotein (VLDL) [15]. The top 5 dynamic 

genes (Cd63, Saa3, Slc10a1, Nrxn1, Ugt2a3) 

differentially expressed in the ConA-treated mice livers 

were verified by qRT-PCR analysis (Figure 2B). These 

results confirm that significant changes in the expression 

of the top dynamic genes correlate with acute hepatitis in 

the ConA-induced hepatitis model mice. 

 

WCGNA identifies two top modules with hub genes 

that overlap with top dynamic genes identified by 

Trendy  
 

Weighted gene co-expression network analysis 

(WGCNA) was widely utilized to identify the hub genes 

of diseases. To determine if the top dynamic genes 

identified by Trendy could also be reproduced by the 

hub gene analysis, we first constructed gene co-

expression networks of ConA-induced liver injury using 

global transcriptome. We identified the brown module 

with 910 genes and the turquoise module with 2992 

genes as the top 2 modules (Figure 3A).  

 

At 3 h after ConA treatment, the brown module showed 

the highest module significance (MS) value; the 
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turquoise module showed the highest MS value at 24 h 

after ConA treatment (Figure 3B–3C). Functional 

enrichment analyses showed that the brown module was 

significantly enriched in inflammatory response and 

cytokine-cytokine receptor interaction pathways, 

whereas, the turquoise module was significantly enriched 

in the oxidation-reduction process and chemical carcino-

genesis pathway (Supplementary Table 2).  

 

We identified the hub genes in the turquoise module 

using the network feature selection of WGCNA 

(Figure 3D). The genes in the turquoise module were 

ranked according to their gene significance (GS) 

values. Most of the hub genes in the turquoise module 

overlapped with the top dynamic genes identified by 

Trendy (Figure 3E). The highest ranked hub gene in 

the turquoise module was Cluster determinant 63 

(Cd63, GS = 0.996). Cd63 is an exosomal marker in 

the drug-resistant HCC-derived exosomes [16]. Cd63 

and Cd63-related genes were enriched in pathways 

related to chemical carcinogenesis and metabolic 

pathways (Figure 3F). 

 

Cd63 silencing ameliorates ConA-induced hepatic 

injury in mice  
 

We then investigated the effects of silencing Cd63 in 

the ConA-induced hepatitis model mice. The mice 

injected with lentiviruses carrying Cd63-specific 

shRNAs showed 50% reduction in the Cd63 mRNA 

 

 
 

Figure 1. Dynamics of global gene expression after ConA treatment. (A) The breakpoint distribution of 115 top dynamic genes 
identified by Trendy with R2 > 0.98 is shown. (B) Heatmap shows the expression of top dynamic genes in the liver samples harvested at 0h, 
3h, and 24h from 10 mg/Kg ConA treated mice (GSE45413). (C) The most significantly enriched GO terms and KEGG pathways for the top 
dynamic genes are shown. (D) The GO Chord plot shows the enriched biological function terms for the top dynamic genes. The genes are 
listed on the left side and their fold change values are shown according to the color scale. 
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levels in the liver tissues compared to the 

corresponding controls (Figure 4A). The survival rates 

of the Cd63-silenced ConA-induced mice were 

significantly higher than the corresponding control 

group mice (Figure 4B). We also analyzed serum ALT 

and AST levels in the control and Cd63-silenced 

groups of mice at 8 h after ConA injection. The serum 

ALT and AST levels, which were estimated at 8 h 

after ConA injection, were significantly lower in the 

Cd63-silenced group mice compared to the control 

group mice (Figure 4C).  

 

H&E stained liver sections estimated at 24h showed 

widespread tissue necrosis in ConA-treated control 

group mice, but necrosis was significantly reduced in 

the Cd63-silenced group mice treated with ConA 

(Figure 4E). TUNEL assay results showed that 

hepatocyte death was significantly reduced in the 

Cd63-silenced group mice treated with ConA 

compared to the ConA-treated control group mice 

(Figure 4F). qRT-PCR analysis showed that the 

mRNA levels of pro-inflammatory mediators such as 

IL-1β, IFN-γ, IL-2, IL-6, TNF-α were significantly 

lower in the liver tissues from the Cd63-silenced group 

mice compared to the liver tissues from the ConA-

treated control group mice (Figure 4D). Overall, our 

results suggest that Cd63 deletion significantly reduces 

liver injury in the ConA-treated mice. 

 

DISCUSSION 
 

AIH is a complex polygenic disorder that requires 

development of new effective therapeutic strategies 

including targeted therapies to reduce morbidity and 

mortality. Though evidence has showed that several 

genes including multiple major histocompatibility 

complex (MHC)-related genes, AIRE (autoimmunity 

regulator) and CYP2D6 (hepatocyte enzyme) are 

associated with AIH risk [17], but the mechanistic 

details regarding the development and pathogenesis of 

AIH are complex and remain to be fully elucidated.  

 

We analyzed dynamic changes in the ConA-induced 

hepatitis mouse model at individual gene and whole 

transcriptome levels to identify key genes involved in 

AIH pathogenesis. We used Trendy software to 

identify top dynamic genes based on the time-course 

gene expression data of liver tissue samples from the 

ConA-hepatitis model mice. We then identified several 

key gene modules and hub genes using WGCNA. 

Majority of the hub genes in the turquoise module 

were the top dynamic genes identified by Trendy. 

Cd63 was the top hub gene in the turquoise module. 

The in vivo ConA hepatitis mouse model showed AIH-

like pathology. Cd63 silencing significantly reduced 

liver pathology and increased survival outcomes in the 

ConA-treated mice. The role of Cd63 has not been 

documented in liver injury. However, several studies 

show that Cd63 plays a crucial role in tumor cell 

plasticity and metastasis [18]. Tissue inhibitor of 

metalloproteinases-1 (Timp1) signaling via Cd63 

activates hepatic stellate cells and creates a favorable 

environment in the liver for the pancreatic tumor cells 

[19]. We demonstrate that ConA treatment increases 

Timp1 expression at all time points analyzed 

(Supplementary Figure 2). We also demonstrate that 

 

 
 

Figure 2. Validation of gene expression of top dynamic genes in the ConA hepatitis model mice. (A) The expression of two genes 
with the earliest or latest breakpoint time (Mmp3 at 3 h, and Aadac at 24 h) as determined by Trendy (upper panel) were verified by qRT-PCR 
analysis (bottom panel) of the liver tissues from the in vivo ConA-treated hepatitis model mice. (B) qRT-PCR results show the mRNA levels of 
the top 5 dynamic genes (Cd63, Saa3, Slc10a1, Nrxn1, Ugt2a3) in the liver tissues of the ConA-liver injury model mice at 0h, 3h, and 24 h 
respectively. All data are shown as means ± SEM (n = 5 per group). * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Figure 3. Identification of top gene modules and hub genes related to liver injury in ConA-treated mice by WGCNA. (A) The 
cluster dendrogram of 6936 genes in the ConA-treated murine liver samples is shown. The colored bars at the bottom show the color that 
are designated for specific gene clusters (3 modules). (B) Heatmap shows the correlation between module eigengenes (ME) and the trait 
(time of liver injury). Each row corresponds to a single module eigengene and the corresponding column represents a trait. Each cell 
contains the corresponding correlation and p value. (C) Module significance (MS) of each module based on the average absolute gene 
significance values of all genes in a module are shown for the 3 h and 24 h time points. (D) Venn diagram shows the overlap between the 
top genes identified by Trendy and the module genes detected by WGCNA. The lower panel shows the significant overlap between the 
top dynamic genes and the module genes in the turquoise module. (E) Top 10 hub genes in the turquoise module and their gene 
significance values. (F) Gene co-expression network shows the relationship between Cd63 and its co-expressed genes. The node colors 
are denoted from green to red (low to high) based on the fold change of gene expression between 3-24 h after ConA administration 
relative to their expression at 0h. 
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Cd63 knockdown reduces serum AST and ALT levels 

as well as pathological lesions in the liver tissues of 

ConA-treated mice. Previous studies demonstrate that 

ConA treatment activates immune cells and mediates 

chronic inflammation resulting in the secretion of 

several pro-inflammatory mediators that aggravate 

liver injury [20]. We demonstrate that ablation of 

Cd63 significantly reduces the production of pro-

inflammatory mediators and necrosis in the liver 

tissues. 

 

Our study identified several top dynamic genes that 

might play a significant role in AIH pathology. Future 

investigations are necessary to unravel the functions of 

these genes in AIH. For instance, Saa3 is an inducible 

form of serum amyloid A (SAA) that is highly 

expressed in the adipose tissues under acute inflam-

matory stimuli and obesity, and it promotes monocyte 

chemotaxis and macrophage accumulation in the 

adipose tissues [21]. Moreover, Saa3 is required for 

normal weight and metabolic functions of the immune 

system in mice [22]. Sult2a8 (2810007J24Rik) 

catalyzes the 7α-hydroxyl sulfation of the bile acids 

[23], and acts as a novel PPARα-dependent gene [24]. 

Slc10a1 (Ntcp) functions as a bile acid transporter and 

prevents bile acid toxicity after partial hepatectomy in 

mice [25]. Further investigations are necessary to 

determine if the top dynamic genes are therapeutic 

targets for AIH. 

 

In summary, our study identifies several candidate 

genes that are differentially regulated during ConA-

mediated hepatitis using Trendy and WGCNA. 

Furthermore, we demonstrate that ablation of Cd63 

reduces ConA-induced liver pathology and improves 

survival rates in the ConA hepatitis model mice. 

 

 

 

Figure 4. Cd63 silencing protects against in vivo ConA-induced liver injury. (A) qRT-PCR analysis shows Cd63 mRNA expression in the 
liver tissues of control (sh-Ctrl) and Cd63 knockdown (sh-Cd63) group mice. (B) Survival curves show overall survival rates of sh-Ctrl and sh-
Cd63 group mice after 15mg/Kg ConA treatment. (C) Comparison of serum ALT and AST levels in the sh-Ctrl and sh-Cd63 group mice treated 
with ConA. (D) qRT-PCR analysis shows the relative mRNA levels of pro-inflammatory genes, IL-1β, IFN-γ, IL-2, IL-6, and TNF-α in the liver 
tissues of sh-Ctrl and sh-Cd63 group mice. All data are shown as means ± SEM (n = 5 per group). * p < 0.05; ** p < 0.01; *** p < 0.001. (E) 
Representative images show H&E stained liver sections of sh-Ctrl and sh-Cd63 group mice. (F) Representative images show TUNEL stained 
liver sections of sh-Ctrl and sh-Cd63 mice. 
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MATERIALS AND METHODS 
 

Transcriptome data analysis  

 

The time-course transcriptome profile of the ConA 

hepatitis murine model was retrieved from the 

GSE45413 dataset in the GEO database [26]. This 

dataset was generated with liver tissues collected at 0 h, 

3 h, and 24 h after 10mg/kg ConA injection into 8-12 

week old C57BL/6 male mice. The microarray data was 

normalized by selecting probes for genes with a mean 

expression in the top 75% and removing the lowly-

expressing genes. Then, we selected the genes with 

above average expression variance. We then collapsed 

different probes that targeted the same gene, resulting in 

6936 genes [27]. Finally, we identified differentially 

expressed genes using the limma R package.  

 

Identification of top dynamic genes using Trendy  

 

We used the Trendy R package to characterize dynamic 

gene-specific expression patterns over a time-course 

during acute liver injury [28]. In brief, Trendy fits a set 

of segmented regression models with varying numbers 

of breakpoints for each gene. Each breakpoint 

represents a dynamic change of gene expression over 

time. Genes with high R2 values were categorized as top 

dynamic genes. Then, the parameter estimates of the 

optimal model including the sign and p-value of the 

slope estimate were used to determine the direction (up, 

down, or no-change) of the changes in the expression of 

the top dynamic genes over time.  

 

Weighted gene co-expression network analysis 
 

The top dynamic genes were evaluated by weighted gene 

co-expression network analysis (WGCNA) to identify 

gene modules and hub genes [29]. In brief, the eigengene 

module was identified based on the weighted average of 

the gene expression profiles by evaluating the matrix of 

pair-wise Pearson's correlation coefficients. Then, the 

gene significance (GS) was computed for each gene 

within the eigengene module at all time points after 

ConA injection (3 h and 24 h). The geometric mean was 

then calculated for the absolute values of all the GS 

values within each module to determine the module 

significance (MS) of each module. Modules with higher 

MS values significantly correlated with the trait (time of 

liver injury). The network of the module genes was 

visualized using Cytoscape. 

 

Functional enrichment analysis  
 

We used the DAVID database (https://david-d.ncifcrf. 

gov/) [30], and GOplot [31] to determine significant 

gene ontology (GO) terms and Kyoto Encyclopedia of 

Gene and Genomes (KEGG) pathways related to the 

module genes. 

 

Establishment of Cd63 knockdown mice  
 

We obtained 8-12 week old C57BL/6 male mice 

weighing 20-25g from the Shanghai Slac Laboratory 

Animal Co. Ltd (Shanghai, China). The mice were 

housed in a specific-pathogen-free facility with a 

consistent room temperature and humidity.  We 

generated lentiviruses carrying shRNA-Cd63 

(CCAGGTGAAGTCAGAGTTTAA) or control 

scrambled shRNA (shRNA-Ctrl) vector as previously 

described [32]. Four weeks before the ConA injection, 

lentiviruses carrying the sh-Cd63 or sh-Control (sh-Ctrl) 

was injected into the tail vein of mice (n=5/group).  

 

ConA-induced hepatitis model mice 

 

We injected mice with 10 mg/kg ConA (prepared in 

saline) through the lateral tail vein. For the survival 

assay, 15 mg/kg ConA was used. At the indicated time 

points (0 h, 3 h, and 24 h), blood samples were obtained 

through retro-orbital bleeds and serum samples were 

prepared and stored at -80°C until measured by 

automatic biochemical analyzer (Hitachi Auto Analyzer 

7170, Japan) for aspartate aminotransferase (AST) and 

alanine aminotransferase (ALT). Then, the mice were 

sacrificed and liver samples were harvested and stored 

for further experiments.  

 

Quantitative real time PCR 
 

Total RNA was extracted from the murine liver tissues 

using Trizol (Invitrogen). Equal amounts of RNA were 

reverse-transcribed into cDNA using the PrimeScript 

RT reagent kit (Takara Bio). Then, gene expression was 

analyzed by qPCR with the SYBR Premix Ex Taq  

kit (Takara Bio) in the ABI 7900 Real-Time PCR 

System. The expression of various genes relative to 

GAPDH (housekeeping gene) was determined using  

the 2-ΔΔCt method.  

 

Histopathology assays 

 

The murine liver tissue samples were fixed in 4% 

paraformaldehyde for 48 h and then paraffin embedded. 

Then, 4-5 µm thick paraffin embedded liver sections 

were cut, deparaffinized with xylene, rehydrated with 

decreasing concentrations of ethanol, and stained with 

hematoxylin and eosin (H&E). Cryosections of liver 

tissues were fixed with 4% paraformaldehyde in PBS for 

15 min. Then, relative levels of apoptosis were quantified 

in all samples using the TUNEL assay with the In Situ 

Cell Death Detection Kit (Roche) according to the 

manufacturer's instructions.  

https://david-d.ncifcrf.gov/
https://david-d.ncifcrf.gov/
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Statistical analysis 
 

The data are expressed as means ± SEM. The statistical 

differences between samples were compared using 2-

tailed Student’s t tests. p<0.05 was considered 

statistically significant. 

 

Ethical standards  
 

The experiments were carried out according to the 

protocols approved by the Ethical Committee of the 

Affiliated Hospital of Hangzhou Normal University 

(Approval No. 2019(02)-HS-51). 
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AIH: Autoimmune hepatitis; ConA: Concanavalin A; 

GO: Gene Ontology; KEGG: Kyoto encyclopedia of 

genes and genomes; Cd63: Cluster determinant 63; 

AST: Aspartate aminotransferase; ALT: Alanine 

aminotransferase; HE: Hematoxylin-eosin; WGCNA: 

Weighted correlation network analysis; Mmp3: Matrix 

Metallopeptidase 3; Aadac: Arylacetamide deacetylase; 

Timp1: Tissue inhibitor of metalloproteinases-1; Saa: 

Serum amyloid A. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Evaluation of liver damage in mice after ConA treatment at 24h. (A) Representative images show liver, 
kidney and spleen of mice injected with 10 mg/Kg ConA or PBS. (B) The serum ALT and AST levels in mice treated with 10 mg/Kg ConA or PBS. 
(C) Representative images show H&E stained liver sections in mice treated with10 mg/Kg ConA or PBS. (D) qRT-PCR analysis shows relative 
mRNA levels of pro-inflammatory genes, IL-1β, IFN-γ, IL-2, IL-6, and TNF-α in liver tissues of mice treated with10 mg/Kg ConA or PBS. * p < 0.05; 
** p < 0.01; *** p < 0.001. 
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Supplementary Figure 2. Timp1 expression in mice after ConA treatment. (A) Trendy analysis results show the dynamic expression 
of Timp1 in ConA-treated mice (3 h and 24 h post-ConA treatment). (B) qRT-PCR analysis shows Timp1 expression in the liver tissues of mice 
treated with ConA at 0h, 3 h and 24 h post-treatment respectively. *** p <0.001. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 2. 

 

Supplementary Table 1. Top dynamic genes based on Trendy analysis. 

Supplementary Table 2. Summary of weighted gene co-expression network analysis in the liver tissues of ConA-
treated mice. 


