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INTRODUCTION 
 

Advances in public health and preventive medicine 

have resulted in an unprecedented and welcomed 

number of individuals reaching old age. Despite 

longevity, there has been observed an increase in older 

populations affected by chronic diseases that demand 

specialized and expensive elderly care services. The 

identification and widespread public awareness of 

unhealthy modifiable risk factors such as western diet 

consumption and obesity, sedentary lifestyle, smoking, 

stress, and insufficient sleep, followed by the adoption 

of a healthy lifestyle is a feasible, safe, and effective 

low-cost public policy program to improve the quality 

of life with aging [1, 2]. Intrauterine and early postnatal 

life experiences may permanently modulate health 

trajectories across the lifespan [3–5]. The hypothesis 

that the intrauterine period of development may 

modulate offspring postnatal health was initially 

proposed by David Barker in "Fetal Origin of Adult 
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lifelong prevention of chronic diseases. 
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Diseases" (FOAD), almost 30 years ago [6]. 

Subsequently, FOAD evolved to consolidate the 

"Developmental Origins of Health and Disease" 

(DOHaD) concept by including both pre-conception and 

early postnatal life as a new window of susceptibility. 

Recently, epigenetics has become one of the most 

relevant molecular mechanisms associated with the 

transgenerational inheritance involved with DOHaD [7]. 

 

Despite the difficulty in confirming the impact of 

maternal and early life adversity on human health, some 

tragic events in human history were crucial in 

supporting the DOHaD concept. For example, the 

"Dutch Hunger Winter" was a period of severe famine 

in the western part of the Netherlands at the end of 

World War II and has provided an opportunity to 

explore the effects of intrauterine malnutrition on 

subsequent adult health [8]. First published in 1976, the 

Dutch Hunger Winter Cohort has been explored to 

confirm the developmental origin of non-communicable 

chronic diseases, e.g., cardiovascular disease, obesity, 

type 2 diabetes, schizophrenia, and infertility in the 

progeny exposed to famine [9–11]. Importantly, 

epidemiological and experimental studies have also 

supported the DOHaD concept as a mechanistic 

framework related to early life carcinogenesis (such as 

breast and prostate cancer) [12–17]. Among the 

malignancies affecting men, prostate cancer (PCa) is the 

second most diagnosed cancer worldwide. In 2018, the 

Global Cancer Statistics (GLOBOCAN) estimated 

almost 1.3 million new cases of PCa globally, leading to 

359,000 deaths [18]. Although multifactorial etiology, 

genetic background, ethnicity, and aging are 

consistently established risk factors for PCa. However, 

evidence supporting the early origin of PCa is growing. 

William Gardner (1995) proposed, almost 30 years ago, 

the "Prenatal origin of PCa" hypothesis [19]. After that, 

some epidemiological studies have reinforced Gardner's 

hypothesis on the early life origins of PCa, as diagnosed 

in older men [14, 20, 21]. These authors proposed that 

exposure to certain environmental conditions during 

pregnancy, such as malnutrition or chemical endocrine 

disruptors, may alter maternal steroid hormone profiles, 

thereby modifying the offspring's PCa risk throughout 

life. This effect was consistently observed in African 

American men, who are at high risk for PCa, and whose 

mothers have higher levels of estrogen during 

pregnancy compared to Caucasian women [20]. 

 

In one of the few opportunities to explore how exposure 

to adverse conditions during windows of vulnerability 

interferes with human PCa, Keinan-Boker et al. [13] 

demonstrated that Jewish men exposed during early life 

to famine and stress during the Holocaust were at a 

higher risk for several types of cancer (including PCa) 

later in life. Similarly, women severely exposed to 

famine during the Dutch hunger winter were at 

increased risk for breast cancer development [22]. 

Interestingly, a higher risk for breast cancer was 

observed for women who were exposed to famine 

between the ages of 2 and 9 years. Dirx et al. [23] 

analyzing data from the Netherlands Cohort Study, 

showed a slight increase in PCa risk among men 

exposed to famine during adolescence (a critical 

window of vulnerability for reproductive organs) 

compared with those men living in northern and 

southern parts of the Netherlands, who had almost no 

exposure to famine. These data reinforce the need to 

explore, in-depth, the potential of early life malnutrition 

as an environmental risk factor for prostate 

carcinogenesis across the lifespan. 

 

Emerging experimental studies have been designed to 

explore the potential of early life exposure to 

environmental risk factors on prostate carcinogenesis. 

The intrauterine or neonatal exposure to endocrine 

disruptors, such as phthalate or bisphenol A, has been 

associated with the deregulation of critical molecular 

pathways involved in prostate carcinogenesis in rat 

offspring [17, 24, 25]. Regarding maternal malnutrition 

(MM), Santos et al. [16] demonstrated that offspring 

born from dams fed with a low protein diet (LPD) 

during gestation and lactation were at high risk of 

developing prostatic disorders with aging, including 

carcinoma in situ in the ventral prostate (VP) lobe. 

Overall, it has been proposed that early life exposure to 

endocrine disruptors or malnutrition may show early 

deregulation and persistent cellular response to estrogen 

signaling pathways, probably involving changes in 

epigenetic markers, such as DNA methylation and the 

expression of microRNAs, leading to an increased 

incidence of prostatic disorders with aging [17, 25–27]. 

 

Although MM can be identified as a potentially 

modifiable environmental risk factor for offspring 

prostate carcinogenesis, there is a lack of information 

regarding the molecular mechanisms involved in this 

process. We previously demonstrated, for the first time, 

that maternal exposure to a low protein diet promotes 

prostate carcinogenesis in older rat offspring [16]. In the 

current investigation, we used mass spectrometry to 

identify, in young and older offspring, changes in the 

proteomic profile potentially involved in the early life 

origins of prostate carcinogenesis observed with aging. 

 

RESULTS 
 

Maternal LPD reduced weight gain and imbalance 

of steroid hormones in male offspring 
 

Offspring body weight was lower in the LPD animals 

on both postnatal days (PND) 21 and 540 compared to 



 

www.aging-us.com 19956 AGING 

the respective control (CTR) groups (Figure 1A, 1B). 

The serum steroid hormones estrogen (17β-estradiol) 

and testosterone (17β-hydroxy-4-androstene-3-one) 

increased in the GLLP group on PND 21 compared to 

the CTR group (Figure 1C). However, on PND 540, 

while estrogen was higher in the GLLP group, 

testosterone levels decreased compared to the CTR 

group, leading to an increased estrogen/ 

testosterone ratio (Figure 1D). 

 

Early and late effects of maternal LPD on offspring 

VP  

 

On PND 21, the morphological analyses demonstrated 

an impairment of prostate growth in the GLLP group, 

characterized by a smaller prostatic secretory structure, 

reduced luminal compartment, and increased epithelial 

and stromal compartments, compared to the CTR group 

(Figure 2A, 2B). On PND 540, while we did not 

identify carcinoma in the CTR group (Figure 2C), the 

histopathological analysis confirmed the presence of 

carcinoma in situ in the animals from the GLLP group 

selected for a mass spectrometry analysis (Figure 2D). 

 

 

Maternal LPD changed the proteomic profile in the 

prostate offspring at both ages 
 

Figure 3 shows a total of 256 proteins identified in the 

VP by MS/MS approach on PND 21. Of these, 158 

proteins were significantly differentially expressed in 

the GLLP group compared to the CTR group, including 

138 and 20 proteins that were up- and downregulated, 

respectively. On PND 540, 366 proteins were 

significantly differentially expressed in the GLLP group 

compared to the CTR group, including 135 and 141 

proteins that were up- and downregulated, respectively. 

The complete list of proteins is described in 

Supplementary File 1. 

 

Functional enrichment identified molecular 

pathways altered by maternal LPD in the offspring 

prostate 
 

Functional enrichment was performed for the set of 

downregulated and upregulated proteins separately in 

both ages. The red and blue bars in Figure 4A 

demonstrate enriched terms for up and downregulated 

proteins on PND 21, respectively. Upregulated proteins 

enriched terms related to protein processing in the 

endoplasmic reticulum, antigen processing and 

presentation, metabolism of xenobiotics by cytochrome 

P450, endocytosis, estrogen signaling pathway, 

longevity regulating pathway - multiple species, 

apoptosis signaling pathway, chemical carcinogenesis, 

spliceosome, glutathione metabolism, arachidonic acid 

metabolism, drug metabolism - cytochrome P450, and 

MAPK (mitogen-activated protein kinase) signaling 

pathways. Downregulated proteins enriched terms 

related to cell cycle, Hippo signaling pathway, FGF 

 

 
 

Figure 1. Body weight (A, B) and hormonal levels (C, D) of male offspring on PND 21 and 540. All data are expressed as mean±SD. Asterisks 
(*) represent statistical differences between experimental groups with p<0.05. CTR = control; GLLP = gestational and lactational low protein; 
PND = postnatal day; VP = ventral prostate. 
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(fibroblast growth factor) signaling pathway, EGF 

(epidermal growth factor) receptor signaling pathway, 

cytoskeletal regulation by Rho GTPase, apoptosis, 

cadherin signaling pathway, gap junction, 

phosphatidylinositol 3' -kinase (PI3K)-AKT signaling 

pathway, regulation of actin cytoskeleton, tight 

junction, focal adhesion, RAP1 (Ras-proximate-1) 

signaling pathway, adherents junction, and p53 

 

 
 

Figure 2. Representative histological sections of the VP lobes from the CTR and GLLP groups on PND 21 and 540, stained with 
hematoxylin-eosin (HE). Glandular growth in the GLLP group on PND 21 was impaired compared to the CTR. At PND 540, the carcinoma in 
situ was highlighted by the dashed circle. S = Stroma, L = Lumen, E = Epithelium, Scale bar: 500 μm. 

 

 
 

Figure 3. Venn diagram. (A) Shared proteins between CTR and GLLP groups in PND 21 and 540. (B) Shared proteins differentially expressed 
between the CTR and GLLP groups on PND 21 and 540. CTR = Control; GLLP = Gestational and lactational low protein; PND = Postnatal day; up 
= upregulated proteins; down = downregulated proteins.  
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signaling pathway. Using a circus plot analysis, we 

identified the set of deregulated proteins (up and down) 

associated with each enriched term on PND 21 (Figure 

4B). On PND 540, the upregulated proteins enriched 

terms related to the metabolism of xenobiotics by 

cytochrome P450, chemical carcinogenesis, glutathione 

metabolism, drug metabolism - cytochrome P450, 

platinum drug resistance, and protein processing in the 

endoplasmic reticulum. Downregulated protein-

enriched terms related to cytoskeletal regulation by 

Rho-GTPase, phagosome, gap junction, glycolysis/ 

gluconeogenesis, biosynthesis of amino acids, carbon 

metabolism, fructose galactose metabolism, regulation 

of actin cytoskeleton, glycolysis, and cadherin signaling 

pathway (Figure 5A). Using a circus plot analysis,  

we identified the set of deregulated proteins (up  

and down) associated with each enriched term on  

PND 540 (Figure 5B). The list of proteins that enriched 

each molecular term is described in Supplementary File 

2. 

 

 
 

Figure 4. (A) Ontological enrichment of upregulated (red) and downregulated (blue) proteins on PND 21 by KOBAs 3.0. All data were 
expressed as -Log10 (p-value). (B) Circus plot graphic identifying the top 10 enriched terms and the DEP associated with each term. The 
numbers in front of the bars mean the number of proteins that enriched each term. 

 

 
 

Figure 5. (A) Ontological enrichment of upregulated (red) and downregulated (blue) proteins on PND 540 using the KOBAs 3.0 tool. All data 
were expressed as -Log10 (p-value). (B) The Circus plot graphic identifying the top 10 enriched terms and the DEP associated with each term.  
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The enrichment analysis from Ligand Perturbation 

UP/DOWN database showed that upregulated proteins 

(in both PND 21 and 540) are associated with hormonal 

treatment, especially testosterone and estrogen (Figure 

6A, 6B). The set of downregulated proteins for both 

ages also enriched terms related to exposure to 

testosterone and estrogen (Figure 7A, 7B). Overall, 

these results highlighted the involvement of a hormonal 

imbalance on maternal LPD-induced prostate disorders 

in offspring.  

 

Protein-Protein Interaction network  

 

Protein-Protein interaction (PPI) network analysis 

demonstrated several clusters for up and downregulated 

proteins on PND 21 and 540 (Supplementary Figures 1–

4). Based on these results, we identified five principal 

clusters commonly deregulated in both ages: (1) RAB  

(Ras-related protein) 1, RAB10, RAB15, RAB1A, 

RAB35, RAB8A, AND RAB8B; (2) H2AFJ (Histone 

H2A.J), HIST1H2AA, HIST1H2AH, HIST1H2AK, 

HIST1H2AN, HIST2H2AC, and HIST3H2A; (3) 

GSTM2 (glutathione S-transferase Mu 2), GSTM4 and 

GSTM7; (4) CALR (calreticulin), HSPA5 (heat shock 

protein family A member 5), P4HB (protein disulfide 

isomerase-4), PDIA6 (Protein Disulfide Isomerase 

Family A Member 6); (5) PRDX5 (peroxiredoxin-5) 

and TXN1 (thioredoxin 1). The cluster identified in 

commonly downregulated proteins on PND 21 and 540 

was composed of HBA1 (hemoglobin Subunit Alpha 1), 

HBA-A2, HBB, and HBE1 (Figure 8). 

 

In silico analysis confirmed the relationship between 

differentially expressed proteins (DEP) and PCa in 

both rodent model and human samples 

 

To give further insights into the role of maternal 

malnutrition on prostate carcinogenesis, we compared 

our set of DEP with data from a transgenic PCa mouse 

model and data from The Cancer Genomic Atlas

 

 
 

Figure 6. (A) Clustergram generated by Enrichr using upregulated proteins on PND 21. The red cells in the matrix indicate the genes 
associated with each term. It was demonstrated the top 10 enriched terms with p-value <0.05. (B) Clustergram generated by Enrichr using 
downregulated proteins on PND 21. The red cells in the matrix indicate the genes associated with each term. It was demonstrated the 
enriched terms with p-value <0.05 (top 10).  
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(TCGA) patients with PCa taken from Gene Expression 

Profiling Interactive Analysis (GEPIA). In the PB-

Cre/PtenloxP/loxP, we identified a set of DEP commonly 

expressed in our samples, mainly on PND 540 and in 

the prostatic tumors in all prostatic lobes. Interestingly, 

the percentage of commonly deregulated targets 

between our samples and those from the PB-Cre/Ptenl 

oxP/loxP model increased with aging (from PND 21 to 

540) and with the aggressiveness of prostatic lesions 

(PND 21: PIN 3.6%; medium 5.0%; advanced 6.8% and 

PND 540: PIN 13.1%; medium 15.9%; advanced 21.3%  

(Figure 9A). Similar results were obtained when our set 

of DEP was compared with data from patients with PCa 

(from 5.9% on PND 21 to 12.0% on PND 540) (Figure 

9B). We also identified six proteins (CALR, 

HIST2H2AC, HSPA5, P4HB, and PDIA6) in the HPA 

database that showed increased immunostaining in PCa 

tumor tissue, while low or not detected in normal 

prostate tissue (Figure 9C). These results highlight the 

involvement of maternal malnutrition in the 

deregulation of proteins involved in prostate tumors. 

 

Experimental validation of CALR as upregulated 

protein in offspring exposed to maternal 

malnutrition 
 

Based on the proteomic data (Supplementary File 1) and 

in silico analysis, we employed immunohistochemical

 

 
 

Figure 7. (A) Clustergram generated by Enrichr using upregulated proteins on PND 540. The red cells in the matrix indicate the genes 
associated with each term. It was demonstrated the enriched terms with p-value <0.05 (top 10). (B) Clustergram generated by Enrichr using 
downregulated proteins on PND 540. The red cells in the matrix indicate the genes associated with each term. It was demonstrated the 
enriched terms with p-value <0.05 (top 10). 
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and RT-qPCR analyses to validate the CALR as  

an upregulated target in the offspring VP born to  

dams fed with LPD in both PND 21 and 540. 

Immunostaining for CALR was more evident in the 

GLLP group on both PND 21 (Figure 10C and 10D) 

and PND 540 (Figure 10G, 10H) compared to the CTR 

group (Figure 10A, 10B, 10E, 10F) mainly in areas of 

carcinoma in situ. RT-qPCR confirmed the upregulation 

of CALR gene expression in the GLLP group at both 

ages (Figure 10I, 10J). 

 

DISCUSSION 
 

Although maternal exposure to adverse conditions has 

been identified as an essential window for the 

development of non-communicable diseases in the 

progeny, there is a growing body of evidence 

highlighting malnutrition during early life as a key 

environmental risk factor for the developmental origin 

of some types of diseases such as some types of cancer, 

including breast and PCa in offspring [12–16, 18, 28–

30]. However, little data is supporting the molecular 

pathways associated with early life carcinogenesis and 

understanding this aspect may be crucial to identifying 

and perhaps modulating molecular pathways involved 

in the developmental origin of diseases, especially in 

those more vulnerable populations, who have limited 

access to more expensive food components, such as 

proteins [31]. 
 

Consistent with our previous results [16, 32], the set of 

deregulated proteins identified in a mass spectrometry 

analysis was associated with the molecular mechanism 

classically recognized as a potent regulator of 

development, maintenance of tissue homeostasis, and 

disease. FGFs and EGFs act to regulate glandular 

morphogenesis, cell proliferation, and differentiation 

and have secretory functions not only during 

development but also during neoplastic transformation 

and tumor progression [33–38]. The Hippo signaling 

pathway also plays a crucial role in the control of organ 

size, branching morphogenesis, and tissue homeostasis 

by regulating cellular mechanisms such as cellular 

polarity, cell-cell contact, and cytoskeleton organization 

[39, 40]. The enrichment of molecular pathways related 

to the endoplasmic reticulum function, such as the 

metabolism of xenobiotic, chemical carcinogenesis, 

endocytosis, in addition to cell adhesion, longevity, and 

 

 
 

Figure 8. Protein-protein interaction network between commonly upregulated proteins on both PND 21 and 540. Interactions 
of the identified proteins were mapped by searching the STRING database version 9.0 with a confidence cut-off of 0.7. In the resulting protein 
association network, proteins are presented as nodes that are connected by lines whose thickness represents the confidence level (0.7-0.9). 
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apoptosis also highlights the involvement of these 

cellular and molecular mechanisms in prostatic 

carcinogenesis [41–45]. The maintenance of these 

processes is crucial for glandular homeostasis. As a 

consequence, the breakdown of these molecular 

mechanisms may also interfere with cell-cell adhesion 

and metabolism, the maintenance of barriers between 

the blood and the epithelial and stromal compartments, 

in addition to interfering within the dynamics of cellular 

differentiation, proliferation, and migration, all 

mechanisms involved in the initial stages of 

carcinogenesis [46–49]. Our data also confirmed the 

involvement of the estrogen signaling pathway in 

maternal malnutrition inducing early life prostate 

carcinogenesis in rat offspring. Previous experimental 

evidence has demonstrated that early life exposure to 

exogenous estrogenic compounds, such as BPA and 

Phthalates, may epigenetically reprogram prostate 

developmental biology, lead to prostate carcinogenesis 

with aging [16, 50]. 

 

 
 

Figure 9. (A) Heatmap showing the commonly differentially targets from our set of DEP and RNA-seq data from ventral, dorsal, lateral, and 
anterior prostate lobes in the mice model of PCa (PB-Cre/PtenloxP/loxP). The percentage of commonly deregulated targets increases as the 
prostatic disorders worsen (PIN to Medium to Advanced PCa). (B) The commonly deregulated targets between our DEP and those extracted 
from RNA-seq data by GEPIA. The percentage of commonly deregulated targets increases in the prostate of older offspring. (C) 
Immunostaining of normal and prostate tumor samples for five commonly upregulated targets in our samples and GEPIA database 
(http://gepia.cancerpku.cn/) using immunohistochemical data available at the Human Protein Atlas database (https://proteinatlas.org/). 
PND: Postnatal day; VP: Ventral prostate; LP: Lateral prostate; DP: Dorsal prostate; AP: Anterior prostate PIN: Prostate intraepithelial 
neoplasia; PCa: Prostate cancer.  

http://gepia.cancerpku.cn/
https://proteinatlas.org/
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Protein-protein interactions play a crucial role in the 

control of cellular functions, signal transduction, and 

metabolism; as such, understanding these interactions 

may help us to identify molecular mechanisms involved 

in maternal malnutrition-induced prostatic disorders. 

The RAB family of proteins, identified by a PPI 

network analysis, belongs to the RAS (rat sarcoma) 

superfamily of small GTPase. RAB comprises a family 

of 66 members (the number of RAB-GTPases is 

conserved from yeast to humans) [51, 52], which 

function as molecular regulators essential for the 

localization and function of the membrane and secretory 

proteins such as hormones, growth factors, and their 

membrane receptors. As such, RAB activates several 

signaling pathways, including the MAPK pathway 

involved in cell growth and proliferation [53] and the 

PI3K/AKT/mTOR pathway that stimulates protein 

synthesis, cell growth, and inhibits apoptosis [54]. 

Altered expression and the activity of RAB members 

have been implicated in the development of several 

disorders, ranging from neurological disorders to 

diabetes [55]. Aberrant expression of RAB proteins has 

also been described in multiple cancers, such as lung, 

brain, and breast. RAB 35, which appeared to be 

deregulated in our study, can act as an oncogene [56]. 

The GTPase-deficient RAB35 mutant (RAB35Q67L) 

activates the PI3K signaling pathway independently of 

growth factor stimulation and suppresses apoptosis in 

human embryonic kidney HEK293E cells [57]. The 

cluster formed CALR, HSPA5, P4HB and, PDIA6 is a 

potential indicator of maternal malnutrition on the 

endoplasmic reticulum dysfunction in the prostate of 

offspring since they act as the fundamental molecular 

machinery for correct protein folding and Ca2+ 

homeostasis. In a mouse model of caloric restriction 

(CR), Schafer et al. [58] compared the influence of CR 

on the hippocampus at younger-adult and older-adult 

time points and identified the upregulation of HSPA1B, 

HSPA5, PDIA4, PDIA6, and CALR. Other authors 

have also associated the deregulation of these proteins 

in several types of cancer, including breast carcinoma, 

hepatoma cells, non-small cell lung cancer, and glioma 

[59–63]. Although epigenetic modifications of histones, 

such as histone lysine methylation and demethylation, 

histone lysine acetylation and deacetylation have been 

implicated in the modulation of gene expression in the 

physiological and pathological conditions [64, 65], 

deregulation of histone expression itself has also been 

 

 
 

Figure 10. Representative immunohistochemistry reaction for Calreticulin (CALR) in the VP lobes from the CTR and GLLP groups on PND 21 
(A–D) and 540 (E–H). RT-qPCR reaction for CALR in the VP lobes from CTR and GLLP groups on PND 21 (I) and 540 (J). CTR = control; GLLP = 
gestational and lactational low protein; PND = postnatal day. Data are expressed as fold change {plus minus} SD. Asterisks (*) means the 
statistical difference between experimental groups with p < .05. Scale bar: 500 μm, and detail 50 μm.  
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described in several types of malignancies. Xie et al. 

[66] demonstrated upregulation of hub genes formed by 

HIST1H1B, HIST1H2AJ, HIST1H2AM, HIST1H2BI, 

HIST1H2BO, HIST1H3B, HIST1H3F, HIST1H3H, 

HIST1H4C, and HIST1H4D in breast cancer, indicating 

that higher expression of these histones was associated 

with poor overall survival, relapse-free survival, and 

distant metastasis-free survival. Interestingly, we also 

observed an increased expression of HIST1 gene 

members (HIST1H2AA, HIST1H2AH, HIST1H2AK, 

HIST1H2AN) in the VP of both young and older rats 

exposed to maternal LPD. This result highlights the 

potential involvement of the upregulation of histone 

proteins on prostatic disorders. 

 

Another cluster is formed by enzymes acting in 

response to oxidative stress as GST, PRDX, and TXN1. 

The superfamily of GSTs acts in several mechanisms of 

cellular detoxification, resistance to anticancer drugs, 

pollutants, and chemicals [67], and the overexpression 

of GSTs is also associated with the presence of an 

inflammatory process [68]. It has been demonstrated 

that low expression of GSTs increases reactive oxygen 

species in spermatozoids, leading to a degradation of 

the plasma membrane and a loss of sperm viability [69–

71]. In the prostate gland, GSTs are mainly expressed in 

the basal cells [72], and their overexpression is 

associated with epithelial disorders [73], DNA 

oxidation, and methylation [74, 75]. PRDX-5 is known 

to act as a redox sensor in the cytosol and several 

cellular compartments, and silencing it makes the cell 

more susceptible to DNA damage and apoptosis [76]. In 

gastric cancer, overexpression of PRDX5 alters the 

epithelial to mesenchymal transition (EMT) mechanism, 

with a poor prognosis for patients [77] being correlated. 

TXN recycles oxidized PRDXs, and this function is 

essential to balance intracellular oxidative stress [78, 

79]. The increased expression of TXN in prostate tissue 

has been positively correlated with the progression of 

Gleason score in patients with PCa [80], indicating that 

transformed cells express higher levels of Trx 1 

compared with normal cells. On the other hand, the 

treatment of prostate cancer cells with natural bioactive 

compounds reduces TXN expression, collaborating with 

the apoptosis of these cells [81]. Thus, the high 

expression of TXN in the prostate of maternal LPD 

offspring could be related to the development of 

carcinoma in situ, as observed in older rats. 

 

Considering that groups of interacting proteins are 

deregulated in both younger and older undernourished 

offspring, it is possible that histones and RAS-GTPase 

families and proteins related to oxidative stress, besides 

those involved with endoplasmic reticulum metabolism 

and function, may participate in the long-term effect of 

maternal malnutrition on the prostate of offspring. 

These results become more relevant with the 

identification of several of these proteins in patients and 

mice model of PCa by in silico analysis. 

 

CONCLUSIONS 
 

In the present study, we show that maternal exposure to 

low protein diet deregulated molecular pathways involved 

in prostate development early in life, which may act as 

risk factors for prostate carcinogenesis with aging. 

Estrogenic signaling pathways, endoplasmic reticulum 

functions related to detoxification, energy metabolism, 

and molecular sensors of protein folding and Ca2+ 

homeostasis, besides histone, and RAS-GTPase family of 

proteins appear to be involved in this process. Knowledge 

of these factors may raise discussions regarding the role of 

maternal dietary intervention as a favorable public policy 

for the lifelong prevention of chronic diseases. 

 

MATERIALS AND METHODS  
 

Animals and experimental design 
 

The detailed experimental design is described by Santos 

et al. [16]. Briefly, after the determination of pregnancy 

on gestational day 1 (GD1), pregnant rats were 

distributed into two experimental groups (n=6/group): 

Control (CTR): dams fed a normal protein diet (17% 

protein) and gestational and lactational low protein 

(GLLP): dams fed a low protein diet (LPD) during 

gestational and lactational periods. Normal and LPD 

diets were provided by PragSoluções (PragSoluções, 

SP, Brazil). All diets were isocaloric and normosodic 

(Supplementary Table 1). The male offspring were 

euthanized on a postnatal day (PND) 21 (weaning) 

(n=12/group) and PND 540 (n=12/group). The 

offspring, which were euthanized on PND 540, had free 

access to a normal protein diet after weaning until the 

end of the experiment. The animals were euthanized by 

an overdose of anesthesia (ketamine/xylazine) followed 

by decapitation, weighing, and the blood and ventral 

prostate (VP) were collected and processed by a 

different analysis as described below. The body weight, 

and VP weight, and hormonal levels were analyzed 

using a Student t-test, and statistical differences were 

considered when p < 0.05. The animal procedures were 

approved by the Biosciences Institute/UNESP Ethics 

Committee for Animal Experimentation (Protocol #573) 

following the ethical animal research principles and the 

Brazilian legislation established by the Brazilian 

Council of Control in Animal Experimentation. 

 

Hormone analysis 
 

Blood samples from offspring (n=12/group) were 

centrifuged (2400 g for 20 minutes), and sera were used 
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to determine the concentrations of estrogen (17β-

estradiol, Monobind®, 4925-300 CA, USA sensitivity: 

6.5 pg/mL) and testosterone (17β-hydroxy-4-

androstene-3-one, Monobind®, 3725-300A, CA. 

sensitivity: 0.038 ng/mL). The hormonal qualifications 

were determined in 96-well plates using the ELISA 

plate reader (Epoch™, Biotek Instruments, VT, USA) 

following the manufacturers' protocol. 

 

Selection of prostate samples for mass spectrometry 

analysis 
 

In a previous study, Santos et al. [16] demonstrated that 

maternal exposure to LPD induced a delay in prostatic 

growth on PND 21, which was associated with prostate 

carcinogenesis in older rats on PND 540. Slides of the 

left VP lobes (n=3/group) were stained with 

hematoxylin-eosin (HE) and analyzed using a Leica 

DMLB 80 microscope To exemplify the histological 

characteristics of the VP lobes from the CTR and GLLP 

groups on PND 21 and 540. Based on these results, the 

contralateral right VP lobes (n=3/group) from each 

group were submitted to mass spectrometry. 

 

Immunohistochemistry 

 

Histological sections of 5 μm (n = 6 per group) were 

processed as described by Santos et al. [16]. After the 

initial steps, the slides were boiled for 30 min in 10 mM 

sodium citrate solution (pH 6.0) for antigen retrieval. 

Prostatic sections were blocked in 5% nonfat milk 

diluted in phosphate-buffered saline (PBS) and 

incubated with anti-Calreticulin antibody (ab2908) 

specific primary antibody overnight at 4°C. Slides were 

washed in PBS and incubated for one hour at room 

temperature in horseradish peroxidase (HRP)-

conjugated secondary antibody. The slides were 

washed, and the reaction was developed using 3,3′-

Diaminobenzidine (DAB, Sigma) and counterstained 

with hematoxylin for 30 seconds. The reactions were 

analyzed using a Leica DMLB 80 microscope. 

 

RT-qPCR  
 

Prostate samples (n= 6 per group) from all experimental 

groups on PND 21 and PND 540 were used to total RNA 

extraction using TRIzol® Reagent (ThermoFisher 

aScientific) according to the manufacturer's 

recommendations. RNA integrity was evaluated by 

capillary electrophoresis using a 2100 Bioanalyzer 

(Agilent). Only samples with an RNA integrity number 

(RIN) ≥ 7.0 were used. The extracted RNA was treated 

with DNase I (Amplification Grade; ThermoFisher 

Scientific). The synthesis of cDNA was performed using a 

High Capacity cDNA Archive Kit (ThermoFisher 

Scientific) according to the manufacturer's guidelines. 

Expression levels of CALR mRNA were measured by 

RT-qPCR using the QuantStudio™ 12K Flex Real-Time 

PCR System (Thermo Fisher Scientific). All qPCRs 

performed were compliant with the Minimum Information 

for Publication of Quantitative Real-Time PCR 

experiments (MIQE) guidelines [82]. The cDNA samples 

were amplified using SYBR® Green Master Mix 

(ThermoFisher Scientific), and specific primers were 

synthesized by Invitrogen to the CALR gene, forward: 

GCCAGACACTGGTGGTACAGTTC reverse: CGCCC 

CCACAGTCGATATT. Relative quantification of 

expression was performed by the 2−∆∆Ct method [83] using 

DataAssistTM v3.01 software (Thermo Fisher Scientific). 

According to the expression stability among all samples, 

the reference gene GUSB (β-glucuronidase) and GAPDH 

(glyceraldehyde 3-phosphate dehydrogenase) were used 

to normalize mRNA expression.  

 

Mass spectrometry  
 

The mass spectrometry protocol was based on a 

previous study by Gabriel Kuniyoshi et al. [84], 

Dionizio et al. [85], and Da Silva-Gomes et al. [86], 

with modifications. Briefly, protein extraction was 

carried out by homogenizing three VPs lobes from each 

experimental group on PND 21 and 540 in extraction 

buffer containing 0.01 M Tris-HCl, 0.005 M 

phenylmethylsulfonyl fluoride, 1% protease inhibitor, 

0.065 M dithiothreitol, 8 M urea (in a proportion of 

30mg tissue/100 μg buffer). The homogenate was 

vortexed for 2-3 min and centrifuged for 15 min at 

9,690 g and 4°C. The supernatant was recovered, and 

the total protein was quantified by Bradford assay using 

the BSA standard [87]. Samples were grouped to 

constitute three pools of 50 μg proteins each in a total of 

50 μL (1 μg/μL). Next, the samples were incubated for 

60 min at 37°C with 10 μL of 50 mM ammonium 

bicarbonate and 25 μl of 0.2% surfactant solution, 

followed by incubation with 2.5 μL of 0.1 M 

dithiothreitol for 40 min at 37°C. 

Carbamidomethylation was performed with 2.5 μL of 

0.3 M iodoacetamide, incubated for 30 min at room 

temperature, and protected from light. Then, samples 

were subjected to proteolytic digestion overnight at 

37°C using 0.05 μg/μL trypsin diluted in 0.05 M 

Ammonium bicarbonate, followed by incubation with 

10 μL trifluoroacetic acid 5% for 90 min at 37°C. The 

samples were centrifuged at 14,000 RPM 4ºC for 30 

minutes. After this step, the samples were desalted 

using Sep-Pak Vac C18 (Waters Manchester, UK) 

columns, reduced in a concentrator, and maintained at -

20°C until the time of analysis by mass spectrometry. 

 

The analysis of the tryptic peptide was performed using 

the nanoACQUITY UPLC system (Waters, Manchester, 

UK) coupled to a Xevo Q-TOF G2 mass spectrometer 
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(Waters, Manchester, UK) equipped with 

nanoACQUITY HSS T3, analytical reverse-phase 

column (75μmX150 mm, 1.8μm particle size, Waters) 

previously equilibrated with 7% of mobile phase B 

(100% ACN + 0.1% formic acid). The peptides were 

separated by a linear gradient of 7-85% mobile phase B 

for 70 min at a flow rate of 0,35 μL/min, and the column 

temperature was maintained at 45°C. The MS was 

operated in positive ion mode, with a data acquisition 

time of 75 min. The data obtained were processed using 

the software Protein Lynx Global Server (PLGS) version 

3.03 (Waters Co., Manchester, UK). Protein 

identification was obtained using an ion count algorithm 

incorporated into the software. The data obtained were 

searched in the database of the species Rattus norvegicus 

downloaded from the UniProt catalog (Universal Protein 

Resource) in December 2017 (https://www.uniprot.org/). 

Differentially expressed proteins (DEP) between 

experimental groups were obtained using PLGS 

software, considering p < 0.05 for downregulated 

proteins and p > 0.95 for upregulated proteins. 

 

Functional annotation analysis 
 

KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/) was used to 

determine the enrichment pathways related to our DEP 

in the KEGG (https://www.genome.jp/kegg/) and 

PANTHER (http://pantherdb.org) databases. The cut-off 

criterion used was an adjusted p-value < 0.05. Also, we 

used the Ligand Perturbation database from the Enrichr 

tool (http://amp.pharm.mssm.edu/Enrichr) to compare 

the set of DEP from those extracted from GEO 

comparing human or mouse cells before and after 

treatment with endogenous ligands. We used the top 10 

most enriched terms with a p-value < 0.05 [88]. The 

STRING tool (http://string-db.org/) was used to 

construct the protein-protein interaction (PPI) network 

associated with our DEP by searching neighbor 

interactors with our imputed proteins. To avoid false 

positive interactions, we selected a high confidence 

score (0.7), associated with experiments and a database 

as two stringent evidence channels [89]. 

 

Relevance of deregulated proteins in human and 

mouse model of PCa: in silico validation 
 

To give further insights into the relationship between 

maternal malnutrition and PCa, we compared our set of 

DEP with RNA-seq data from a transgenic mice model 

for PCa: PB-Cre/PtenloxP/loxP. In this study, Jurmeister et 

al. [90] described data from the RNA-seq of four 

prostate lobes (ventral, anterior, dorsal, and lateral) at 

different stages of tumorigenesis: low-grade prostate 

intraepithelial neoplasia (PIN), medium-stage tumors 

(Medium) and advanced-stage tumors (Advanced). The 

dataset was downloaded from the NCBI Gene 

Expression Omnibus (https://www.ncbi.nlm.nih. 

gov/geo/), accession number GSE94574. We considered 

differentially expressed genes: < -1.3 Log2FC > 1.3, 

adjusted p-value < 0.05. We also identified 

differentially expressed genes between normal from 

Genotype-Tissue Expression (GTEx) with 221 

patients/samples and PCa human samples extracted 

from RNA-seq data using Prostate Adenocarcinoma 

(TCGA, PanCancer Atlas) with 488 patients/samples 

data analyzed using the GEPIA database (Gene 

Expression Profiling Interactive Analysis) (http:// 

gepia.cancer-pku.cn/) [91]. We considered differently 

expressed genes with < -1 Log2FC > 1 and q-value < 

0.05. This set of genes was compared with our DEP to 

identify possible molecular mechanisms shared by our 

samples and those from human PCa. Additionally, the 

commonly upregulated proteins identified in our sample 

and RNA-seq of prostatic tumor samples identified by 

GEPIA were submitted to The Human Protein Atlas 

(HPA) (https://www.proteinatlas.org/) database to 

demonstrate the distribution and localization of these 

proteins in normal and tumor samples by 

immunohistochemistry. 

 

Data representation and analyses 

 

Bar plots were constructed using GraphPad Prism 

(GraphPad Software). We used the webserver 

http://bioinformatics.psb.ugent.be/webtools/Venn/ to 

plot the Venn diagrams. Heat maps were created using 

the web tool Morpheus [92] (https://software. 

broadinstitute.org/morpheus), and circus plots were 

generated in environment R with package 'circlize' [93]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Protein-protein interaction network between upregulated proteins on PND 21. Interactions of the 
identified proteins were mapped by searching the STRING database version 9.0 with a confidence cut-off of 0.7. In the resulting protein 
association network, proteins are presented as nodes that are connected by lines, whose thickness represents the confidence level (0.7-0.9). 
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Supplementary Figure 2. Protein-protein interaction network between downregulated proteins on PND 21. Interactions of the 
identified proteins were mapped by searching the STRING database version 9.0 with a confidence cut-off of 0.7. In the resulting protein 
association network, proteins are presented as nodes that are connected by lines whose thickness represents the confidence level (0.7-0.9). 
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Supplementary Figure 3. Protein-protein interaction network between upregulated proteins on PND 540. Interactions of the 
identified proteins were mapped by searching the STRING database version 9.0 with a confidence cut-off of 0.7. In the resulting protein 
association network, proteins are presented as nodes that are connected by lines, whose thickness represents the confidence level (0.7-0.9). 
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Supplementary Figure 4. Protein-protein interaction network between downregulated proteins on PND 540. Interactions of 
the identified proteins were mapped by searching the STRING database version 9.0 with a confidence cut-off of 0.7. In the resulting protein 
association network, proteins are presented as nodes that are connected by lines, whose thickness represents the confidence level (0.7-0.9). 
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Supplementary Table 
 

 

Supplementary Table 1. Composition of the control (CTR) (AIN-76A) and low protein diet (LPD) (AIN-93). 

Ingredients 
Normal (CTR) diet  

(17% of protein) g/Kg 

Low protein diet  

(6% of protein) g/Kg 

Casein (84% protein) 202 71.5 

Starch 397 480 

Dextrin 130.5 159 

Sucrose 100 121 

L-cystine 3 1 

Fiber of pH 101 or pH 102 (microcellulose) 50 50 

Soyoil 70 70 

Mixtureofvitamins AIN93G* 10 10** 

Mixtureofsalts AIN93G* 35 35*** 

Choline hydrochloride or Choline bitartrate 2.5 2.5 

* To know the detailed composition of the salt and vitamin mix, see REEVES et al., 1993. The diet is elaborated by the 
company PragSoluções (PragSoluções, Jaú, SP, Brazil). 
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Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 1 and 2. 

 

Supplementary File 1. Total protein identified by mass spectrometry analysis and the list of DEP in the CTR and GLLP 
groups on PND 21 and 540.  

 

Supplementary File 2. Identification of up and downregulated proteins in the CTR and GLLP groups on PND 21, and 
540 that enrichment each molecular term by KOBAs 3.0. Data were presented as p-value, corrected p-value, -Log10 
of the p-value, identification, and number of proteins that enriched each molecular term.  


