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ABSTRACT 
 

Sarcopenia is a serious public health problem associated with the loss of muscle mass and function. The 
purpose of this study was to identify molecular markers and construct a ceRNA pathway as a significant 
predictor of sarcopenia. We designed a prediction model to select important differentially expressed 
mRNAs (DEMs), and constructed a sarcopenia associated ceRNA network. After correlation analysis of 
each element in the ceRNA network based on clinical samples and GTEX database, C2C12 mouse 
myoblasts were used as a model to verify the identified ceRNA pathways. A new model for predicting 
sarcopenia based on four molecular markers SEPP1, SV2A, GOT1, and GFOD1 was developed. The model 
was used to construct a ceRNA network and showed high accuracy. Correlation analysis showed that the 
expression levels of lncDLEU2, SEPP1, and miR-181a were closely associated with a high risk of 
sarcopenia. lncDLEU2 inhibits muscle differentiation and regeneration by acting as a miR-181a sponge 
regulating SEPP1 expression. In this study, a highly accurate prediction tool was developed to improve 
the prediction outcomes of sarcopenia. These findings suggest that the lncDLEU2-miR-181a-SEPP1 
pathway inhibits muscle differentiation and regeneration. This pathway may be a new therapeutic 
target for the treatment of sarcopenia. 



 

www.aging-us.com 24034 AGING 

INTRODUCTION 
 

Sarcopenia has been reported to be associated with an 

elevated risk of physical disability and diabetes 

mellitus. It is characterized by generalized and 

gradual loss of skeletal muscle mass and strength  

[1–6]. The prevalence of Sarcopenia increases with 

age and has become an important factor in the 

physical health of older people [2, 7, 8]. Skeletal 

muscle differentiation is controlled by multiple 

signaling pathways. Myogenic regulation factor 

(MyoD, MyoG) is the core component of the 

myogenic pathway. [9] Following the development of 

sequencing technology, the role of lncRNA as a 

microRNA sponge to regulate miRNA's ceRNA 

networks in biological processes has become more 

widely recognized [10–13]. Several studies have 

demonstrated that many long non-coding RNAs 

(lncRNAs), including MAR1, [14] H19, [15, 16] 

MUMA, [17] Yam-1, [18] IRS1, [19] Malat1, [20] 

lncR-125b (TCONS_00006810), [21] and lnc-mg, 

[22] are involved in muscle differentiation and 

regeneration. 

 

However, previous studies have mainly focused on  

the pathological role of ceRNA network in sarcopenia, 

and there are currently no effective methods for 

assessing the risk of sarcopenia. Therefore, there is a 

need to develop reliable prediction tools based on 

identified molecular markers to reduce the risk of 

sarcopenia. 

 

The purpose of this study was to develop an effective 

tool for early prediction of the risk of sarcopenia based 

on several identified molecular markers. In vitro 

experiments revealed that lncRNA DLEU2 as a miR-

181a sponge regulates SEPP1 expression and inhibits 

muscle differentiation and regeneration. This study 

provides a new therapeutic target for the treatment of 

age-related sarcopenia. 

 

RESULTS 
 

DEMs from GEO datasets 

 

The data obtained after normalization revealed that a 

total of 11 differentially expressed mRNAs were 

obtained from skeletal muscle samples (GSE8479, 

GSE1428, and GSE52699) (Figure 1A). Multiple 

volcano plots of differential expression are presented 

in Figure 1B. SEPP1 mRNAs were upregulated  

and GFOD1, GOT1, and SV2A mRNAs were 

downregulated in the sarcopenia group. The 

expression levels of mRNAs obtained from the 

GSE8479, GSE1428 and GSE52699 datasets are 

shown in Figure 1C.  

DEMs predictors of sarcopenia risk 

 

LASSO regression model was used to select 4 key 

differentially expressed (SEPP1, GFOD1, GOT1, and 

SV2A) mRNAs (DEMs) predictors of sarcopenia risk 

and the lasso parameter (lambda.min) was 0.01038519 

(Figure 1D, 1E). The main purpose of using LASSO 

regression in this study is to prevent the overfitting 

problem. At the same time, the LASSO regression 

directly reduces some unnecessary parameters to zero 

during parameter reduction, further simplifying our 

model. Thus, this method provides more scientific 

results. Interestingly, the results of LASSO regression 

in this study reveals that the four characteristic factors 

(SEPP1, GOT1, GOFD1, and SV2A) have an important 

role in the prediction of sarcopenia. Accordingly, these 

four characteristic factors have not been screened out.  

 

After that, a nomogram model containing the 

independent predictors is shown in Figure 2A, 2C as 

well as Supplementary Table 1. In the training cohort, 

the area under the ROC curve (AUC) was high at 0.915 

(Figure 2E, 2F). We also added our clinical data to 

corroborate our results in Figure 2F and the clinical 

cohort had an AUC of 0.770. These findings suggested 

that the nomogram can be used to predict the 

occurrence of sarcopenia. The C index of the proposed 

Nomogram was 0.915 (95% CI, 0.840-0.989) which 

was lower than the validation set 0.945 (95% CI, 0.869-

1.000) and higher than the clinical cohort 0.770 (95% 

CI,0.642-0.897) (Table 1). Besides, we also described 

accuracy, F-value, precision and recall of each dataset 

and proposed nomogram in Table 2. These findings 

suggested a strong discriminatory power and accurate 

predictive performance. The decision curve analysis of 

the nomogram is shown in Figure 2G. Therefore, the 

nomogram is a predictive model in clinical practice that 

can be used to predict the occurrence of sarcopenia for 

early and timely intervention. The heat map and risk 

plot generated for the DEMs and predicted risk score 

for sarcopenia from the two groups are presented in 

Figure 2B, 2D. 

 

Established ceRNA network  

 

Differentially expressed lncRNAs (DE-lncRNAs) and 

miRNAs (DE-miRNAs) were obtained by differential 

expression analysis as previously described. Volcano 

plots of differential expression are presented in Figure 

3A–3C. Construction of a ceRNA network was based on 

miRcode, miRWalk3.0 and miRTarBase databases as 

shown in Figure 3D, 3E. Two DE-lncRNAs (TTTY9B 

and BCYRN1) and five DE-miRNAs (miR-222, miR-

181a, miR-141, miR-137, and miR-101) were found to 

be down-regulated, while two DE-lncRNAs (DLEU2 and 

HULC) and seven DE-miRNAs (miR-98, miR-7, miR-
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218, miR-215, miR-206, miR-203, and miR-195) were 

found to be up-regulated in the sarcopenia group. 

Combined with the nomogram prediction model results, 

SEPP1, GFOD1, GOT1, and SV2A may be key 

modulators of sarcopenia.  

 

Besides, we also describe the correlation between 

DLEU2, BCYRN1, SEPP1, SV2A, GOT1, and GFOD1 

with miR-137 according to the GTEX database in 

Supplementary Figure 1. The GTEX database is the only 

skeletal muscle microarray data set that can be collected, 

while others such as skeletal muscle microarray data sets 

GSE8479, GSE1428, and GSE52699 do not have a 

complete information on microRNA transcription or 

mRNA. Nevertheless, we did not obtain the 

transcriptome data of lincRNA HULC and lincRNA 

TTTY98 from the GTEX database, and the expression of 

most microRNAs (miR-222, -141, -101, -98, -7, -218, - 

 

 
 

Figure 1. A Veen diagram showing intersection of mRNAs expression profiles in GSE8479, GSE1428, and GSE52699 
datasets. (A) Multi-volcano plot of DEMs in GSE8479, GSE1428, and GSE52699 datasets. (B, C) Association between the expression of 
DEMs (SEPP1, SV2A, GOT1 and GFOD1) in the indicated datasets. * P < 0.05. (D) DE-miRNAs selection using LASSO regression model. The 
selection of the optimal parameters (lambda) in the LASSO model uses the minimum criterion of 5-fold cross-validation. The dashed line 
was drawn at the best value using the minimum criterion and 1se (standard error) of the minimum criterion. (E) LASSO coefficient profiles 
of the 4 features. Generation of coefficient outline based on the log (lambda) sequence, where the optimal lambda acquires th e 
characteristics of the 4 non-zero coefficients. 
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215, -206, -203 and - 195) in skeletal muscle have not 

been well identified. Therefore, the new correlation 

analysis can only show the correlation between 

SEPP1, SV2A, GOT1 and GFOD1, and other 

lincRNAs (DLEU2, BCYRN1). We previously 

described the correlation between SEPP1, lncDLEU2, 

and miR-181a by using clinical data which yielded 

clear results. Therefore, we should further expand the 

detection range of our clinical samples (including 

DLEU2, BCYRN1, HULC, TTTY98, SEPP1, SV2A, 

GOT1 and GFOD1 and other microRNAs, such as 

miR-222, -141, -137, -101, -98, -7, -218, -215, -206, -

203 and -195) to complete further correlation studies 

in the future. 

 

 
 

Figure 2. (A) prediction nomogram of sarcopenia. Note: expression level of 4 DE-miRNAs, SEPP1, SV2A, GOT1 and GFOD1 are included. 
(B) Heatmap plots of DEMs (SEPP1, SV2A, GOT1 and GFOD1) in clinical samples and GSE8479, GSE1428, and GSE52699 datasets. (C) A forest 
chart showing the prediction factors of sarcopenia. (D) Analysis risk scores of sarcopenia based on DEMs in clinical samples and GSE8479, 
GSE1428, and GSE52699 datasets. (E) A calibration curve for the predictive model of sarcopenia. Note: The x-axis is the risk of skeletal muscle 
reduction whereas the y-axis represents the actual incidence of sarcopenia. Diagonal dashed lines represent perfect predictions for an ideal 
model. The solid line indicates the prediction ability of the proposed prediction model. The closer the solid line matches the dotted line, the 
higher the prediction ability. (F) The AUC of the nomogram for sarcopenia is equal to the accuracy of randomly selected samples. (G) Decision 
curve showing the benefit probability of the intervention. The figure shows the decision curve for the training set, validation set, the entire 
cohort and the clinic cohort. 
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Table 1. C-index of the prediction model. 

Dataset group 
C-index of the prediction model 

C-index The C-index (95% CI) 

Training set 0.915 0.840-0.989 

Validation set 0.945 0.869-1.000 

Entire Cohort 0.923 0.866-0.980 

Clinic cohort 0.77 0.642-0.897 

 

Table 2. Accuracy, F-value, precision and recall of each dataset. 

 
Dataset group 

Entire cohort Training set Validation set Clinic cohort 

Accuracy 0.8602 0.8676 0.84 0.68 

F-value(α=1) 0.8571 0.8696 0.8181 0.6667 

Precision 0.8478 0.8571 0.8181 0.64 

Recall 0.8667 0.8824 0.8181 0.6957 

Note: The proposed nomogram of accuracy, F-value, precision and recall show in Supplementary Table 2. 
 

Expression and correlation analysis of DEMs, miR-

181a, and DLEU2 
 

A total of 25 patients with sarcopenia and 25 patients 

without sarcopenia were included in the study. DE- 

miRNAs (SEPP1, GFOD1, GOT1, and SV2A), miR-

181a and DLEU2 expression levels from the patient's 

muscles were examined using quantitative real-time 

PCR (Figure 4A). SEPP1 and DLEU2 expression 

levels were higher in patients with sarcopenia than in 

patients without sarcopenia, while the expression 

levels of GFOD1, GOT1, SV2A, and miR-181a were 

significantly lower in patients with sarcopenia than in 

patients without sarcopenia.  

 

Correlation and ceRNA network (Figure 3D, 3E) 

analysis revealed that lncRNA DLEU2 acts as a 

sponge of miR-181a and up-regulates the expression 

of SEPP1. Further, in the clinic cohort, correlation 

analysis showed a significant negative correlation 

between miR-181a with SEPP1 and DLEU2 (Figure 

4D). Besides, there was a significant positive 

correlation between SEPP1 with DLEU2 both in the 

GTEX database and clinic cohort (Figure 4E, 4F). To 

further understand the expression of SEPP1 and 

DLEU2, human tissue–enriched protein expression 

maps were constructed. SEPP1 and DLEU2 were 

found to be lowly enriched in the muscle (Figure 4B, 

4C). Therefore, this study revealed that miR-181a 

could be a protective factor, whereas DLEU2 and 

SEPP1 could be detrimental to skeletal muscle 

development. 

DLEU2 inhibited myogenic proliferation and 

differentiation of C2C12 myoblasts  
 

In this study, a lentiviral vector encoding with DLEU2 

or DLEU2 shRNA was constructed and used to prepare 

a lentivirus system for C2C12 cells infection. This 

system was used to demonstrate the functions of 

DLEU2. The results showed high DLEU2 expression in 

transduced C2C12 cells (Figure 5A).  shDLEU2-

1(shRNA-1) showed the highest level of had the highest 

knockout efficiency in C2C12 cells (Figure 5C). 

Besides, quantitative RT-PCR analysis revealed a 

negative correlation between the levels of DLEU2 and 

differentiation markers of myofibrils (MyoD and 

MyoG) (P < 0.05, Figure 5A, 5C). CCK-8 and EDU 

assays demonstrated that treatment with DLEU2 

reduced cell proliferation and the level of EDU-positive 

C2C12 cells (Figure 5B, 5D, 5E). Overexpression of 

DLEU2 in C2C12 cells significantly reduces the protein 

and mRNA levels of muscle-derived markers (MyoG 

and MyoD) and inhibits the proliferation of C2C12 

cells; however, overexpression of DLEU2 promoted the 

protein and mRNA levels of SEPP1, and the shDLEU2 

(shRNA-1&2) reduced SEPP1 expression levels in 

C2C12 cells. (P < 0.05, Figure 5B, 5C, 5F–5H). 

 

Validation of miR-181a as a DLEU2 target in C2C12 

cells 
 

microRNA181a (miR-181a) was predicted to be one of 

the target miRNAs of DLEU2 to provide an under-

standing of the biological mechanism of DLEU2 in 
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regulating muscle differentiation. This statement is 

based on our previous bioinformatics analysis of the 

ceRNA network (Figure 3D and Figure 6A). The 

correlations between DLEU2 and miR-181a were 

assessed using the miRcode database. [23] Besides, a 

binding site between miR-181a and DLEU2 was also 

predicted using RNA hybrid 2.12 (https://bibiserv. 

cebitec.uni-bielefeld.de/rnahybrid/) (Figure 6A). The 

miRcode database was used to predict the interactions 

between DLEU2 and miR-181a [23]. This study 

revealed that biotinylated DLEU2 pulled down some 

miR-181a in C2C12 cells (Figure 6B). The double 

luciferase reporting experiment showed that DLEU2 

transfection reduced the luciferase activity of miR-181a, 

but did not affect the luciferase activity of miR-181a 

inhibitor. similarly, overexpression of DLEU2 containing 

 

 
 

Figure 3. (A–C) A volcano plot of GSE23527 with 886 miRNAs, of which 100 were either up- or down-regulated. (B) A volcano plot of 

GSE1428 with 12427 RNAs; 1232 RNAs and lncRNAs were identified either up- or down-regulated. (C) A volcano plot of GSE52699 with 34663 
RNAs; 637 RNAs were identified either up- or down-regulated. Note: the red dots represent the upregulated genes, the green dots represent 
the downregulated genes, and the black dots represent the genes that are not significantly differentially expressed in old muscle samples.  
(D, E) A ceRNA network for sarcopenia. 

https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/


 

www.aging-us.com 24039 AGING 

the mutant binding site (DLEU2-Mut) did not reduce the 

luciferase activity of miR-NC and microRNA181a 

(Figure 6C). Co-transfection with microRNA181a mimic 

showed increased protein and mRNA levels of muscle-

derived markers and decreased levels of SEPP1 in 

DLEU2 transfected C2C12 cells (Figure 6D, 6E). 

Besides, EDU and CCK-8 assays examined the 

proliferation of C2C12 cells after overexpression of 

DLEU2 and co-transfection with a microRNA181a 

mimic or microRNA181a inhibitor. Cells transfected 

with DLEU2 and treated with the miR-181a inhibitor 

showed a significant decrease in the level of 

proliferation, whereas cells treated with the miR-181a 

mimic showed increased proliferation (Figure 6F, 6G).  

 

 
 

Figure 4. (A) Relative expression of DLEU2, miR-181a, SEPP1, SV2A, GOT1 and GFOD1 as detected by qPCR in samples from clinical cohorts. 

(B) SEPP1 is downregulated in muscle tissues (GTEX cohort; n =7858). An expression map showing SEPP1 protein expression in human tissues. 
(C) DLEU2 is downregulated in muscle tissues (GTEX cohort; n =7858). An expression map showing DLEU2 protein expression in human 
tissues. (D) Correlations among DLEU2, miR-181a, SEPP1, SV2A, GOT1 and GFOD1 in muscle tissues (clinic cohort; n = 50). (E–F) Comparison 
of expression scores of DLEU2 with those of SEPP1 or miR-181a in muscle tissues. The correlations shown are for muscle tissues from clinical 
cohorts (n=50) and normal muscle tissues from GTEX cohorts (n=396). 
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Therefore, SEPP1 protein expression can be increased 

by transfecting C2C12 cells with DLEU2. miR-181a 

mimic decreased SEPP1 protein expression and 

promoted muscle differentiation in C2C12 cells. 

 

Functional characterization of the SEPP1 subtypes  

 

GO function analysis of GSEA revealed SEPP1-related 

signaling functions, such as the regulation of skeletal 

muscle tissue development, skeletal muscle organ 

development, skeletal muscle fiber development, 

skeletal muscle cell differentiation, and skeletal muscle 

tissue regeneration (Figure 7A). KEGG pathways 

analysis of SEPP1-related pathways revealed the 

Endocrine resistance pathway, Glycolysis/ 

Gluconeogenesis pathway, Inositol phosphate meta-

bolism pathway, Oxidative phosphorylation pathway, 

Purine metabolism pathways, and RNA degradation 

pathways (Figure 7B). These results suggest that SEPP1 

plays a vital role in the regeneration and development of 

muscles and pathways of endocrine resistance and 

cellular metabolism. 

 

DLEU2 promotes the expression of SEPP1 protein 
 

MiRWalk and miRcode databases predicted that miR-

181a regulated SEPP1 expression (Figure 8A). 

Luciferase reporter assays revealed that C2C12 cells co-

transfected with SEPP1-WT and miR-181a showed 

lower luciferase activity compared to those co-

transfected with SEPP1-WT and microRNA-negative 

control (NC; p < 0.05) (Figure 8D). Besides, forced 

expression of miR-181a in C2C12 cells down-regulates 

SPEE1 protein expression, while miR-181a inhibitor

 

 
 

Figure 5. (A) mRNA expression levels of SEPP1 and myogenic markers (MyoD and MyoG) in C2C12 cells transfected with DLEU2 as detected 
by RT-PCR assay. (B) Proliferation of C2C12 cells following DLEU2 overexpression. (C) mRNA expression levels of SEPP1, MyoD and MyoG in 
C2C12 cells transfected with DLEU2 shRNA as detected by RT-PCR assay. (D) Proliferation of C2C12 cells following transfection with DLEU2 
shRNA. (E) C2C12 myoblasts were treated with DLEU2 or shRNA-1/2. EDU assays demonstrated that treatment with DLEU2 reduced cell 
proliferation and the level of EDU-positive C2C12 cells. Quantification of relative ratio of Edu+ C2C12 cells. Data are presented as the mean ± 
SD (n = 3). Versus control or NC, ** p < 0.01, ***p <0.005. (F–H) Protein expression levels of SEPP1, MyoD and MyoG in C2C12 cells 
transfected with DLEU2 or DLEU2 shRNA as detected by western blot assay. 
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up-regulates SPEE1 expression (Figure 8B, 8C, 8E). 

Cells treated with the miR-181a mimic exhibited 

significantly higher proliferation compared with the 

others (Figure 8F). These results indicated that miR-181a 

is a key regulator of SEPP1 expression in muscle. In 

conclusion, lncRNA DLEU2 acts as a miR-181a sponge 

to regulate the expression of SEPP1, thereby promoting 

muscle proliferation and differentiation. (Figure 8H). 

 

 
 

Figure 6. (A) Bioinformatics prediction of miR-181a as the target miRNA of DLEU2 using RNAhybrid 2.12. MFE: Minimum free energy. 
(B) C2C12 cells were transfected with different doses of biotin-labeled DLEU2. Results of pull-down experiments for miR-181a and real-
time PCR assay results are shown. And biotinylated DLEU2 pulled down some miR-181a in C2C12 cells. * P < 0.05 vs 0.5 mM. (C) 
Determination of miR-181a regulation by DLEU2 by Luciferase reporter assays.  * P < 0.05 vs miR-NC. (D, E) Real-time PCR and Western 
blot results showing mRNA and protein expression of SEPP1, MyoD and MyoG in C2C12 cells co -transfected with mir-181a mimic or mir-
181a inhibitor following DLEU2 overexpression. Data are presented as mean ± SD. U6 small nuclear RNA served as the internal control 
for lncRNA and miRNA. GAPDH mRNA was used as the control mRNA. (F) Effect of DLEU2 overexpression on the proliferation of C2C12 
cells. Impact of miR-181a inhibitor and miR-181a mimic of cell proliferation. (G) Cells transfected with DLEU2 and treated with the miR-
181a inhibitor showed a significant decrease in the level of proliferation, whereas cells treated with the miR -181a mimic showed 
increased proliferation. Quantification of relative ratio of Edu+ C2C12 cells. Data are shown as the mean ± S.D. (n = 3). *** p < 0.005, 
**** p < 0.0005. 
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DISCUSSION 
 

In this study, lncRNA DLEU2 was found to act as a 

miR-181a sponge and inhibited skeletal muscle 

regeneration and differentiation. The lncDLEU2-miR-

181a-SEPP1 pathway inhibits muscle differentiation 

and regeneration and can be used as a novel therapeutic 

target for the treatment of age-associated sarcopenia. 

Besides, this study is the first to predict the occurrence 

of sarcopenia based on four molecular markers (SEPP1, 

SV2A, GOT1, and GFOD1). The prediction model 

showed high accuracy based on the detection of clinical 

samples, hence it can be used to evaluate clinical 

effectiveness and prognosis [24]. 

 

Several studies have demonstrated the important role of 

the ceRNA network in sarcopenia and emphasized the 

need to systematically identify altered mRNAs, 

miRNAs, and lncRNAs in skeletal muscle development 

[10, 14–16, 18–22]. In this study, a sarcopenia ceRNA 

network was constructed by combining bioinformatics 

analysis and sarcopenia prediction models. The 

prediction model was based on four molecular markers 

and gave a high C index and AUC value after validation 

of clinical data. This indicated that the prediction model 

can accurately assess the risk of sarcopenia. Analysis of 

clinical sample data and correlation analysis of GTEX 

database selected the lncDLEU2-miR-181a-SEPP1 

pathway as a potential target for further research. In 

vitro cell experiments confirmed that DLEU2 is a miR-

181a sponge that up-regulated SEPP1 expression and 

inhibited muscle proliferation and differentiation in 

C2C12 cells. 

 

DLEU2 gene is conserved in humans and mice [25]. It is 

reported to act as a microRNA sponge (miR-455, miR-

496, miR-30c-5p, etc.) and can block cell proliferation in 

several ways [19, 26–29]. DLEU2 is highly expressed in 

patients with osteoporosis [30]. Healthy skeletal muscles 

are required for the prevention of osteoporosis [31]. In 

this study, high expression of DLEU2 was considered to 

be one of the risk factors for sarcopenia in older people. 

In vitro cell experiments showed that lncDLEU2 

silencing promoted the differentiation and proliferation of 

C2C12 cells, while forced lncDLEU2 expression 

inhibited the proliferation and differentiation of C2C12 

cells. These results show that DLEU2 is a negative 

regulator of skeletal muscle development.  

 

In this study, through bioinformatics analysis, we 

predicted that miR-181a contains a DLEU2 binding site. 

The luciferase reporter assay and pull-down assay 

confirmed the direct binding of miR-181a's response 

elements to the DLEU2 transcription. Current research 

 

 
 

Figure 7. Gene set enrichment analysis (GSEA) showing the biological pathways and processes associated with SEPP1. 
Significant correlations between the high and low SEPP1 expression groups. (A) GO enrichment analysis; (B) KEGG enrichment analysis. 
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shows that miR-181a is important in the establishment 

of muscle phenotype and is significantly expressed 

during skeletal muscle cell differentiation [32]. MiR-

181 inhibits the occurrence of sarcopenia mainly 

through 2 ways: (1) miR-181 increases the expression 

of MyoD and MyoG and promotes myogenic 

differentiation and expression of muscle markers  

[33, 34]; (2) It increase the proportion of type II muscle 

 

 
 

Figure 8. (A) Bioinformatic prediction of binding site of miR-181a on DLEU2. (B, C) Protein expression of SEPP1 in C2C12 cells transfected 
with miR-181a inhibitor or miR-181a mimic as determined by Western blot assay. * P < 0.05 vs control, each test was performed in triplicate. 
(D) Gene expression of SEPP1, MyoD and MyoG in C2C12 cells transfected with miR-181a inhibitor or miR-181a mimic as determined by RT-
PCR assay. *P < 0.05 vs control, each test was performed in triplicate. (E) Analysis of miR-181a regulation by SEPP1 using Luciferase reporter 
assays. *P < 0.05 vs miR-NC. (F) Effect of DLEU2 overexpression, miR-181a inhibitor and miR-181a mimic on the proliferation of C2C12 cells. 
(G) C2C12 myoblasts were treated with miR-181mimic or miR-181inhibitor. Cells were stained with Edu. Quantification of relative ratio of 
Edu+ C2C12 cells. Data are presented as the mean ± S.D. (n = 3). ***p<0.005, ****p<0.0005. (H) A model showing the inhibitory effect of 
lncDLEU2-miR-181a-SEPP1 pathway in muscle differentiation and proliferation. LncRNA DLEU2 as a miR-181a sponge regulates SEPP1 
expression and inhibits muscle differentiation and regeneration. 
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fibers in skeletal muscle, thereby increasing skeletal 

muscle strength [35]. This study also found that 

lncDLEU2 interacts with miR-181a to reduce MyoD 

and MyoG after transcription. 

 

The above findings show that microRNA181a plays a 

protective role in the differentiation and proliferation 

of skeletal muscle. In this study, the luciferase assay 

confirmed the binding of microRNA181a as well as 

SEPP1 in C2C12 cells. Further, in vitro studies 

revealed that miR-181a may promote muscle cell 

proliferation and differentiation through targeted 

down-regulation of SEPP1 protein. SEPP1 may inhibit 

muscle cell proliferation and differentiation through 

multiple pathways. First, SEPP1 inhibits oxidative 

phosphorylation (activation) of key mediators in 

energy metabolism [36], this may be associated  

with the pathogenesis of sarcopenia.  SEPP1 may be 

detrimental to the growth and development of muscle 

cells since studies have reported that the expression of 

SEPP1 in muscle is relatively low compared to other 

tissues, such as the brain and testes, and these findings 

are consistent with those reported in this study  

[37]. Second, researchers have suggested that the  

high expression of SEPP1 may lead to selenium 

deficiency [38]. Selenium deficiency induces muscular 

dystrophy [38] Numerous studies have highlighted a 

bidirectional relationship between sarcopenia and 

diabetes mellitus [39–41]. Interestingly, abnormal 

glucose metabolism in diabetic patients also leads to 

upregulated Sepp1 expression [36], and high 

expression of SEPP1 may be one of the mechanisms 

through which diabetes causes sarcopenia. 

 

SEPP1 has been reported to be positively correlated with 

TNF-α levels, and high expression of TNF-α is 

characteristic of primary muscle disease and high glucose 

microenvironment [42, 43]. In summary, DLEU2 

knockout or over-expression in C2C12 cells results in 

upregulation or downregulation of the expression level of 

miR-181a, respectively. These results in a decrease or 

increase in the level of SEPP1 protein, and ultimately in 

up or down-regulation of muscle proliferation and 

differentiation, respectively. These data suggest that 

DLEU2 may interact with miR-181a to up-regulate the 

level of SEPP1 protein after transcription. 

 

The muscle mass and strength tend to decrease with 

increased age. The prevalence of sarcopenia in older 

adults aged 60-70 is 13%, and it increases to 50% for 

those aged 80 and above [2, 8, 44]. Accurate risk 

assessment allows health care providers to assess the 

risk or likelihood of future occurrence of illness and 

timely interventions. Therefore, in this study, we 

developed an effective prediction model for sarcopenia, 

which can be used to guide the treatment of sarcopenia. 

This was achieved by first establishing a ceRNA 

network based on the clinical prediction model and 

verification by in vitro experiments. 

 

However, this study also had some limitations. First, 

due to the limitations of the data sources, future studies 

will require that the prediction model includes more 

factors and increase the sample size. Second, this study 

only included the most significantly DE-lncRNAs, DE-

miRNAs and DEMs in the analysis and ceRNA network 

construction. Third, the verification of the ceRNA 

network requires further animal experiments. 

 

In summary, this study found that lncRNA lncDLEU2 

acts as a miR-181a sponge to regulate the SEPP1 

protein expression, thereby inhibiting muscle 

proliferation and differentiation. This may be a new 

therapeutic target for reversing aging skeletal muscle 

atrophy. A new prediction model with high accuracy 

can be developed based on four identified molecular 

markers (SEPP1, SV2A, GOT1, and GFOD1) and used 

by clinicians to predict the risk of sarcopenia. 

 

MATERIALS AND METHODS 
 

Study participants 

 

Patients who underwent patellar surgery at the Shanghai 

First People’s Hospital between January 2013 and 

October 2018 were identified and recruited to 

participate in this study. Patients data were collected 

through telephone interviews, outpatient services, and 

community follow-up. Our objective was to develop a 

novel model to predict the risk of sarcopenia. According 

to our previous research, many patients suffer from 

sarcopenia between the ages of 55 and 60 years, so 

patients aged 55 or older was included in this study. 

[45] Therefore, fracture patients aged ≥55 years were 

included. The laboratory muscle tissue test results 

considered were those obtained from fine-needle 

aspiration biopsy of the quadriceps femoris muscle. 

Written informed consent was sought from all the 

enrolled subjects. The study was conducted strictly 

under the guidelines as well as regulations of the 

Declaration of Helsinki and was approved by the 

Institutional Ethics Review Board of Shanghai General 

Hospital (no. 2019SQ059). 

 

The inclusion criteria were as follows: (1) availability of 

complete data for baseline clinical characteristics (age, 

body mass index, etc.) and follow-ups, (2) the patient can 

understand and make correct and right feedback to the 

doctor's questions, thus the doctor collects the correct 
basic information of the patient, (3) age ≥55 years, (4) 

diagnosis of sarcopenia according to AWGS criteria, (5) 

patients managed with self-care before surgery.  
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A total of Seventy-five patients were screened, out of 

which fifty patients met the inclusion criteria, 

completed the questionnaire and the laboratory muscle 

tissue test. The patients included 24 males (age: 55–88 

years, mean age: 70.3 ± 9.1years) and 26 females (age: 

59–86 years, average age: 68.3 ± 7.3 years) (Table 3). 

 

Methods of assessment 

 

Similarly to our previous researches [45], the diagnostic 

criteria for sarcopenia established by the 2014 Asian 

Working Group for Sarcopenia (AWGS) and 

EWGSOP2 were used to define sarcopenia [46–49]. 

And Bioelectrical impedance analysis (BIA) was used 

to assess muscle mass (Bioimpedance meter, TANITA 

RD-953, Japan) The BIA results were very similar to 

those of double-energy X-ray absorptiometry and 

magnetic resonance imaging. BIA also offers the 

advantages of safety, technical simplicity, low cost, and 

high patient compliance [50, 51]. All the results of BIA 

were standardized using cross-validated Sergi. 

 

Methods of patellar surgery  
 

All patients with patella fractures included were treated 

with hollow lag screws and tension band wire internal 

fixation, a commonly used method of patella fracture 

surgical reduction in our clinical work. We have added 

the surgical method and the specific operation as 

follows: Under general anesthesia, a straight or S-

shaped incision was made in the front of the knee. Next, 

the patella was fully exposed and accurately reset under 

direct vision, then fixed with a two point-shaped 

reduction forceps to ensure a flat joint surface. 

Afterward, a special guide needle was used to insert the 

needle from the edge of the patella slightly behind the 

central axis of the patella to the opposite edge. Notably, 

the two needles must be perpendicular to the fracture 

line, and the needle distance is about 1.5 to 2.0 cm. The 

X-ray fluoroscopy showed that the articular surface is 

flat and the position of the guide pin was correct and a 

hollow drill was used to drill the hole. A Φ3.mm hollow 

tension nail of appropriate length was selected and 

screwed it into the patella along the guide pin. 

Afterward, the two nails were pressurized 

simultaneously to be firm. The point-shaped reduction 

forceps were removed and the guide needle was 

withdrawn. Thereafter, the hollow nail with a Φ0.8mm 

steel wire was passed and fixed in a "U" shape in front 

of the patella according to the tension band method.  

 

Data retrieval 

 

The dataset used in this study was retrieved from the GEO 

database (http://www.ncbi.nlm.nih.gov/geo/). mRNA or 

miRNA expression datasets of muscle from humans with 

sarcopenia were included. The GSE23527 miRNA 

expression array dataset with relatively high data quality 

and large sample size, based on the GPL10358 platform 

(LC_MRA-1001_miRHuman_11.0_080411 (miRNA ID 

version)), was selected. Datasets containing microarray 

data from human muscle samples exhibiting sarcopenia 

and normal were also selected based on three datasets 

(GSE8479-GPL2700, Sentrix HumanRef-8 Expression 

BeadChip; GSE1428-GPL96, [HG-U133A] Affymetrix 

Human Genome U133A Array; and GSE52699-

GPL10558, Illumina HumanHT-12 V4.0 expression 

beadchip). All the original platform files were saved. 

 

Identification of differentially expressed genes 

 

All data were normalized using the “normalize between 

array” function of the “LIMMA” R package from the 

Bioconductor project [52]. This package was also used 

to identify differentially expressed lncRNAs (DE-

lncRNAs), mRNAs (DEMs), and miRNAs (DE-

miRNAs) between sarcopenia and normal samples from 

the GSE23527, GSE8479, GSE1428 and GSE52699 

datasets [53]. Threshold for statistical significance was 

set at P < 0.05 and |logFC| > 1.  

 

Logistic regression model of risk of sarcopenia 

 

The series matrix files from the GEO datasets 

(GSE8479, GSE1428, and GSE52699) were 

downloaded. Skeletal muscle data in the sarcopenia (N 

= 47) and normal (N = 46) groups were analyzed using 

R software (version 3.5.3). The samples were randomly 

selected into the training and validation (7: 3) groups by 

using the "caret" package. In our research, the "caret" 

package was only used to divide the samples into the 

training and validation (7: 3) groups which seed 

(hyperparameter) was set as 2000. [54] Analyses were 

performed to identify and evaluate the models. The 

resulting model was verified using clinical data (25 

sarcopenia, 25 normal). All results were saved in text 

format for subsequent hierarchical clustering analysis 

using the Complex Heatmap package. 

 

LASSO regression model, which is used widely to 

reduce high-dimensional data, was used to identify 

relevant risk factors in sarcopenia [55–57]. The LASSO 

regression is similar to ridge regression. The reason 

why we use LASSO regression is that LASSO 

regression can be understood by adding an L1 regular 

term based on linear regression. And the LASSO has a 

certain feature selection function since it uses the L1 

regular term. This is because the L1 regular can 

compress to 0 the coefficients corresponding to some 

"useless for tags", and subsequently highlight the 

features that have a better impact on the result. The L2 

regular term in the ridge regression does not have this 

http://www.ncbi.nlm.nih.gov/geo/
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Table 3. Differences between demographic and clinical characteristics of sarcopenia and normal groups. 

Characteristics Sarcopenia (n=25) Normal (n=25) Total (n=50) P value 

Gender P>0.05 

Female 12(48%) 14(56%) 26(52%)  

Male 13(52%) 11(44%) 24(48%)  

Age P<0.01 

Mean (SD) 72.0(9.1) 66.5(6.3) 69.3(8.2)  

Median [MIN, MAX] 71[55,] 66[58,80] 68.5[55,88]  

Education_level P>0.05 

Primary (0–6 years) 8(32%) 5(20%) 13(26%)  

Secondary (7–12 years) 13(52%) 14(56%) 27(54%)  

Higher (>12 years) 4(16%) 6(24%) 10(20%)  

Weight P<0.01 

Mean (SD) 57.6(6.3) 63.6(7.7) 60.6(7.6)  

Median [MIN, MAX] 58[43,] 66[48,78] 60[43,67]  

Height P>0.05 

Mean (SD) 163.1(11.7) 163.8(8.4) 163.4(10.1)  

Median [MIN, MAX] 161[140,] 164[151,182] 162.5[140,185]  

BMI P<0.05 

Mean (SD) 21.7(2.5) 23.8(3.2) 15(30%)  

Median [MIN, MAX] 21.4[17.5,] 24.3[17.4,30.2] 35(70%)  

Drinking P>0.05 

Yes 5(20%) 10(40%) 15(30%)  

No 20(80%) 15(60%) 35(70%)  

Smoking P>0.05 

Yes 10(40%) 5(20%) 15(30%)  

No 15(60%) 20(80%) 35(70%)  

Exercise P>0.05 

>2h/week 13(52%) 20(80%) 33(66%)  

≤2h/week 12(48%) 5(20%) 17(34%)  

Surgical technique P>0.05 

Cannulated screws+Standard 

tension band 

25(100%) 25(100%) 50(100%)  

Rehabilitation training P>0.05 

Yes 18(72%) 18(72%) 36(72%)  

No 7(28%) 7(28%) 14(28%)  

Internal fixation removal P>0.05 

Yes 7(28%) 7(28%) 14(28%)  

No 18(72%) 18(72%) 36(72%)  

Heart disease P>0.05 

Yes 4(16%) 1(4%) 5(10%)  

No 21(84%) 24(96%) 45(90%)  

Diabetes P>0.05 

Yes 15(60%) 8(32%) 15(30%)  

No 10(40%) 17(68%) 35(70%)  

High blood pressure P>0.05 
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Yes 10(40%) 5(20%) 15(30%)  

No 15(60%) 20(80%) 35(70%)  

Hyperlipidemia P>0.05 

Yes 5(20%) 6(24%) 11(22%)  

No 20(80%) 19(76%) 39(78%)  

Blood type P>0.05 

A 9(36%) 12(48%) 21(42%)  

B 2(8%) 1(4%) 3(6%)  

AB 6(24%) 6(24%) 12(24%)  

O 8(32%) 6(24%) 0(0%)  

Perioperative blood transfusion P>0.05 

Yes 0(0%) 0(0%) 0(0%)  

No 25(100%) 25(100%) 50(100%)  

Follow-up time(year) P>0.05 

Mean (SD) 3.4(1.5) 3.6(1.5) 3.5(1.5)  

Median [MIN, MAX] 3.25[0.8,] 3.3[0.8,6.3] 3.3[0.8,6.25]  

Length of hospital stay P>0.05 

Mean (SD) 10(3.4) 9.4(4.3) 9.7(3.9)  

Median [MIN, MAX] 10[3,] 9[4,25] 9[3,18]  

Treatment group P>0.05 

Group A 11(44%) 16(64%) 27(54%)  

Group B 14(56%) 9(36%) 23(46%)  

Classification of fracture P>0.05 

Upper or lower pole 10(40%) 8(32%) 18(36%)  

Comminuted fracture 6(24%) 3(12%) 9(18%)  

Transverse 9(36%) 13(52%) 22(44%)  

Vertical fracture 0(0%) 1(4%) 0(0%)  

 

 

function. It will only state that the coefficients of some 

irrelevant features are reduced to a smaller value but 

not reduced to 0. In summary, compared with ridge 

regression, LASSO regression has more advantages in 

variable selection and has been extensively used in 

variable selection. Considering the actual value of 

predictive models in clinical applications, we consider 

using as few feature factors as possible to build a  

more accurate predictive model. Our main purpose in 

this step is to filter the core variables. [44, 58] 

Therefore, we selected LASSO regression to filter 

variables instead of ridge regression. Multivariate 

logistic regression analysis was then used to establish 

a predictive model which included the selected 

features (two-sided P < 0.05) [59]. Odds ratios  

and 95% confidence intervals (CIs) were calculated 

after that. 

 

A predictive model was established for predicting 

sarcopenia risk based on all potential predictors of 

sarcopenia [60, 61]. A nomogram was established to 

predict the risk of sarcopenia. Calibration accuracy 

was statistically assessed using the “rms” package, and 

high significance indicated that the model could 

provide accurate calibration [62]. The C-index was 

calculated to assess the model performance and the 

biased performance of the sarcopenia nomogram was 

corrected by bootstrapping (1,000,000 bootstrap 

resampling) [62]. Besides, we also described accuracy, 

F-value, precision and recall of each dataset and 

proposed nomogram as methods show in 

Supplementary Table 2. The decision curve analysis 

was also used to assess the clinical usefulness of the 

nomogram [63]. After that, the net benefit was 

calculated as the previous study [58]. 

 

Constructing the ceRNA network 
 

A visual co-expression ceRNA network of DE-lncRNAs, 

DE-miRNAs, and DEMs was constructed using the 

ggalluvial R software package (version:0.9.1) [64]. The 

miRcode database was used to confirm the interactions 

between DE-lncRNAs and DE-miRNAs [23]. The 

correlations between DEMs and DE-miRNAs were 
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assessed using the miRWalk3.0 database (http://mirwalk 

.umm.uni-heidelberg.de/), which includes 10 databases 

(Targetscan, RNA22, PITA, PICTAR5, PICTAR4, 

RNAhybrid, miRWalk, miRDB, miRanda, and 

DIANAmT), and the miRTarBase (Version 7.0), which 

comprises validated miRNA target interactions from 

experiments [65]. 

 

Data analysis from the GTEX databases 

 

To clarify the correlation between the expression of DE-

lncRNAs and DEMs in ceRNA, R software 

(https://www.r-project.org/) was used to statistically 

analyze data from the GTEX databases. A human tissue–

enriched protein expression map and a boxplot of genes 

were generated using the “gganatogram” and “ggpubr” 

models, respectively. Fisher’s exact test or χ² test (two-

sided) was used for genotypic correlation analysis. 

 

Quantitative real-time PCR (qPCR)  
 

Total mRNA and lncRNA was isolated from the cell 

cultures using the Mini-BEST Universal RNA 

Extraction kit (TaKaRa, Kyoto, Japan), followed by 

cDNA synthesis using the Prime-Script RT Master Mix 

(TaKaRa). qPCR assays were detected using the SYBR 

Green Master Mix (TaKaRa) with PCR LightCycler480 

(Roche Diagnostics, Basel, Switzerland).  

 

Total miRNA was isolated from the cell cultures using 

TRIzol® reagent (Gibco/Life 270 Technologies, Thermo 

Fisher Scientific). miRNA quantity and quality were 

detected by the stem-loop quantitative RT-PCR (TaqMan 

probe method). Purified miRNA was used for first-strand 

cDNA synthesis using M-MLV reverse transcriptase and 

primers according to the manufacturer’s instructions 

(Promega, Fitchberg, MA, USA). The primer sequences 

were designed by Primer Premier and the sequences were 

as follows: microRNA 181a forward 5'-TGAACATTCA 

ACGCTGTCG-3' and reverse 5'-GCAGGGTCCGAGGT 

ATTC-3'. 

 

Western blot analysis 

 

To determine protein expression, cells were harvested in 

RIPA buffer containing a protease inhibitor cocktail, and 

total protein was quantified using a bicinchoninic acid kit 

(Pierce, Rockford, IL, USA). Aliquots containing 8 µg 

total protein were separated by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis and then electro-

blotted onto a 0.45-µm PV membrane (Immobilon™; 

Merck Millipore, Darmstadt, Germany). The membranes 

were blocked and probed overnight with the primary 

antibodies anti-SEPP1 (1:1000, #ab193193; Abcam, 

USA), anti-MyoD (1: 1500; Invitrogen, Carlsbad, CA, 

USA), anti-MyoG (1: 1500; Invitrogen, Carlsbad, CA, 

USA), anti–β-catenin (1:5000, #ab32572; Abcam, USA), 

and anti–active β-catenin (1:500, #05-665; Merck 

Millipore). 

 

Differentiation in cell cultures 

 

C2C12 cells were obtained from American Type Culture 

Collection (ATCC, CRL-1772™, Manassas, VA, USA). 

The cells were cultured in growth medium consisting of 

Dulbecco's modified eagle medium (DME-M), 10% heat-

inactivated fetal calf serum (Biowest, St. Louis, MO), 

and 1% penicillin-streptomycin. C2C12 cells were 

successfully differentiated into myocytes or myotubes in 

a differentiation medium consisting of DMEM, 2% heat-

inactivated horse serum (Invitrogen, Carlsbad, CA, USA) 

and 1% penicillin-streptomycin. All these cells were 

maintained at 37° C in a humidified atmosphere 

containing 5% CO2 [66]. 

 

Cell transfection 
 

This study followed our previously reported protocol 

with slight modifications. [67] C2C12 cells were 

cultured to 60% confluence, the culture medium was 

removed and 1.5×10
8
 IU virus particles added with 8 

g/mL hexadimethyl bromide (Sigma-Aldrich, St. Louis, 

MO, USA). DMEM plus virus particles were changed 

to DMEM with 10% fiber channel standard and the 

cells cultured for 1-7 days. 

 

Construction of lentiviral vectors  

 

To construct the lncDLEU2 overexpression lentiviral 

vector, we subcloned DLEU2 and the full-length 

lncDLEU2 into the lentiviral GV112 vector according to 

the manufacturer's instructions [68]. The vector was 

provided by Shanghai Genechem (Shanghai, China). For 

the lncDLEU2-KD lentiviral vector, the shRNA sub-clone 

of the lncDLEU2 or negative control scramble sequence 

was used in the GV112 carrier. Shanghai Genechem 

designed the two shRNA sequences (shDLEU2-1: 5’-AG 

CTCAGATTCTCTCCTTT-3’, shDLEU2-2: 5’- TGAAA 

GGTGTACTGCAAGGAA-3’). The lentivirus expression 

vector was co-transfected into C2C12 cells using TransIT-

LT1 (Mirus Bio). The supernatants were collected at  

48h and 72h after transfection, concentrated by 

ultracentrifugation at 25,000 rpm for 90 minutes, and 

recovered in an appropriate volume of OptiMEM (Gibco, 

Waltham, MA, USA). Real-time qPCR was used to 

determine the rapid titer (IU / mL) of infectious virus 

particles [69]. 

 

Transfection of miRNAs 

 

The transfection of miRNAs was performed as 

previously described [70]. miR-181a was enhanced and 

http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://www.r-project.org/
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inhibited using chemically synthesized miRNAs mimics 

and inhibitors (Gene Pharma (Shanghai, China). Cells 

were seeded and transfection performed using a 

riboFECT™ CP transfection kit for 24 hours according to 

the manufacturer's protocol (Ribobio, Guangzhou, 

China). Real-time quantitative PCR was used to measure 

the transfection efficiency 48 hours after transfection. 

 

Pulldown of the biotin-labeled lncDLEU2  

 

Biotin-labeled lncDLEU2 was synthesized by Sangon 

Biotech (Shanghai, China). Different doses of biotin-

labeled DLEU2 (0.5 mM, 5 mM, and 50 mM) were 

incubated with the cytoplasmic lysate of C2C12 cells 

transfected with miR-181a at room temperature for 30 

minutes. The complexes were isolated using 

streptavidin-coated magnetic bloodworm (Dynal, 

Waltham, MA, USA). The captured RNA was purified, 

washed and subjected to real-time PCR analysis [71]. 

 

Dual-luciferase reporter assay 

 

The putative sequence of the miR-181a binding site and 

the mutant sequence was cloned into the pmirGlO dual-

luciferase miRNA target expression vector (Promega, 

Madison, WI, USA) to form a reporter vector. Co-

transfecting the reporter vector with lncDLEU2- Mut or 

lncDLEU2-WT into C2C12 cells was performed using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) and 

similar steps were followed when co-transfecting the 

reporter vector with SEPP1-WT or SEPP1-Mut. The dual-

luciferase reporter assay system (Promega, Madison, WI, 

USA) was used to detect renilla luciferase activity after 

48h, according to the manufacturer’s instructions.  

 

EDU proliferation and Cell Counting Kit-8 (CCK-8) 

assay 

 

The C2C12 cells treated under different treatment 

conditions were seeded in 24-well plates at a rate of 1 × 

10
5
 cells / well and incubated for 24h. The 5-erhynyl-20-

deoxyuridine (EDU) incorporation assay was performed 

using an EDU assay kit (#COO75S, Beyotime 

Biotechnology) according to the manufacturer’s 

instructions. The proportion of EDU-positive cells was 

counted using a laser scanning confocal microscope 

(Olympus) [72–74]. Similar to our previous research, 

Cell proliferation was detected with TransDect CCK 

(TransGen Biotech, Beijing, China) according to the 

manufacturer’s protocol after transfection. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA is a "molecular signature database" used to 

investigate potential mechanisms using the project of 

JAVA (http://software.broadinstitute.org/gsea/index.jsp) 

[75]. The number of random samples was set to 1000,  

and the threshold for statistical significance was set at  

P < 0.05. 

 

Statistical analysis 

 

Statistical analysis was performed using GraphPad 

Prism (version 7.0) software. Results are expressed as 

the mean ± standard deviation of three or six 

independent experiments. Statistical significance 

between groups was determined using one-way analysis 

of variance or two-tailed t-test. Correlation analysis was 

performed using Pearson’s correlation. *P <0.05 was 

considered to be statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Correlations among BCYRN1, DLEU2, SV2A, GOT1, GFOD1, SELENOP (SEPP1) and miR-137. The 
correlations shown are for muscle tissues from GTEX cohorts (n=396). 
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Supplementary Tables 
 

Supplementary Table 1. Prediction factors for nomogram. 

Variable 
Prediction model 

Coef The regression coefficient (95% CI) P−value 

Intercept 2.08 0.79 to 3.56 0.0031 

SEPP1 1.74  0.39 to 3.35 0.0174 

CFOD1 -2.62 −4.23 to −1.30 0.0003 

GOT1 -1.78 −3.12 to −0.52 0.0072 

SV2A -1.54 −2.92 to −0.30 0.0189 

Note: Coef is the regression coefficient; Total n=92; Null Deviance:128.9; Residual Deviance:65.27; AIC: 75.27 
 

Supplementary Table 2. The proposed nomogram of accuracy, F-value, precision and recall. 

 
Predicted class  

Positive Negative Total  

Concrete class 

TURE TP FN P  

FALSE FP TN N  

Total P' N' P+N  

 

The calculation formulas: 

Accuracy ACC=(TP+TN)/(TP+TN+FP+FN) 
F-value(α=1) F1=2TP/(2TP+FP+FN) 
Precision P=TP/(TP+FP) 
Recall Recall=TP/(TP+FN) 

 


