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INTRODUCTION 
 

Diffuse large B-cell lymphoma (DLBCL) is a major 

subtype of non-Hodgkin’s lymphoma characterized by 

remarkable clinical and biological heterogeneity [1]. 

Although most patients are cured with upfront 

chemoimmunotherapy, approximately 40% of patients 

have an adverse prognosis [2]. If high-risk patients can 

be identified prospectively, they could receive more 

effective therapy. Recent studies have highlighted that 

the occurrence of adverse events (relapse, progression, 

death, etc.) within 24 months from diagnosis is decisive 

for the survival outcome of patients with DLBCL [3–6]. 

Maturer et al. [6] and Jakobsen et al. [5] showed that 

patients who achieved event-free survival at 24 months 

and Maturer et al. [4] showed that patients who 

achieved progression-free survival at 24 months had 

similar overall survival to DLBCL-free individuals in 

the general population. Ekberg et al. [3] found that the 

remaining life expectancy of patients who survived the 

first 24 months after diagnosis was close to that of the 

general population. Together, these findings implied 

that most of the high-risk patients with DLBCL 

experienced an adverse event in the first 24 months 

after diagnosis. Therefore, accurate prediction of early 

events is critical in detecting high-risk patients with 

DLBCL. 

 

Clinical prognostic scores, including the International 
Prognostic Index (IPI), age-adjusted IPI, revised IPI, 

and National Comprehensive Cancer Network IPI [7], 

have been used to estimate the survival chance of 
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IPI model. Functional enrichment analysis showed that the MGRS correlated with cell cycle, DNA replication 
and repair. The results were validated using an independent external dataset. In conclusion, we successfully 
developed an integrated mRNA–lncRNA signature to refine the IPI model for predicting long-term survival of 
patients with DLBCL. 
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patients with DLBCL beyond a certain time point. In 

2018, treatment decisions still relied mainly on clinical 

factors outlined in the IPI [8]. However, these clinical 

prognostic models fail to reliably predict the clinical 

course of lymphoma and patients with identical 

prognostic scores often have variable outcomes [2]. 

This finding highlights the need for more precise, 

patient-specific, and biologically-based biomarkers to 

predict outcomes of DLBCL. Specific genetic 

alterations and abnormal protein abundance were found 

to partially explain the diverse outcome of DLBCL [9, 

10]. For example, DLBCLs with MYC rearrangements 

and BCL2 and/or BCL6 translocations (double/triple 

hit) have a poor prognosis [9, 11, 12]. The combination 

of MYC rearrangements and inactive TP53 mutations 

adversely affected the patients’ overall survival [8, 12, 

13]. DLBCLs with overabundance of both the MYC 

and BCL2 proteins also have been associated with poor 

prognosis [8, 12]. Abnormal gene expression is 

considered as another factor that can be used 

independently of the IPI to predict the outcome of 

DLBCLs [14–17]. Several mRNA-based molecular 

signatures have been developed for DLBCL prognostic 

stratification [15, 17, 18]. However, Hong et al. [19] 

evaluated the performance of some of these signatures 

and found that they provide limited added value in risk 

assessment of DLBCLs. These findings implied that 

other undiscovered RNA signatures may help to explain 

the heterogeneity of outcomes in patients with DLBCL. 

 

Long non-coding RNAs (lncRNAs) are >200-nt long 

RNAs that are involved in multiple biological processes, 

including cell differentiation and development [20–22]. 

Mutations and misregulation of lncRNAs have been 

found to promote tumorigenesis and metastasis in 

various types of cancer [23], and thousands of lncRNAs 

have been reported to be abnormally expressed in 

DLBCLs compared with their expression in normal B-

cells [24]. Cheng et al. [25] demonstrated that 

upregulation of lncRNA TUG1 had an oncogenic role in 

DLBCL by inhibiting the ubiquitination of MET. 

LncRNA MALAT1 was found to promote tumorigenesis 

and immune escape of DLBCLs by sponging the 

microRNA miR-195 [26], and high expression levels of 

lncRNA NEAT1_1 were shown to be associated with 

poor prognosis of DLBCL [27]. These findings indicated 

that lncRNAs may be promising novel biomarkers for 

DLBCL diagnosis and prognosis. 

 

Gene signatures that integrate mRNAs and lncRNAs 

have been suggested to have good prognostic value in 

breast and colon cancers [28, 29]. We considered that 

combinations of mRNAs and lncRNAs may improve 
risk prediction for patients with DLBCL. Therefore, the 

purpose of this study was to develop and validate  

an integrated mRNA–lncRNA signature that could 

refine the IPI model for early event/long-term survival 

prediction. 

 

RESULTS 
 

Characteristics of the datasets used in this study 

 

A total of 1244 patients from five Gene Expression 

Omnibus (GEO) datasets (https://www.ncbi.nlm. 

nih.gov/geo/) were selected and comprehensively 

studied. The characteristics of the training dataset and the 

validation dataset and its components are summarized in 

Supplementary Table 1. We used GSE10846, which 

included 412 patients with DLBCL, as the training 

dataset; 163 of them had died (event) and 122 of them 

(122/163) died within the first 2 years after diagnosis. 

The validation dataset (termed ComBatData) was an 

integrated dataset that included 832 patients with 

DLBCL; 470, 69, 221, and 72 were from GSE31312, 

GSE23501, GSE87371, and GSE98588, respectively. 

Among them, 263 patients had died (event) and 184 of 

them died within the first 2 years after diagnosis. The 

four datasets were merged using the ComBat method. 

 

Identification of RNAs associated with long-term 

survival 

 

The statistical process used in this study is illustrated in 

Figure 1. We divided the patients in the training dataset 

into an early event group and long-term survival group 

according to their survival time and status (death). To 

minimize confounding by baseline characteristics and to 

derive credible differentially expressed genes, we 

balanced baseline features between the two groups by 

exact matching analysis (Figure 2A). Before matching, 

age, Eastern Cooperative Oncology Group, Ann Arbor 

stage, treatment (CHOP vs. RCHOP), subtype 

(germinal center B-cell-like, GCB vs. non-GCB), and 

lactate dehydrogenase concentration were significantly 

different between the two groups. After matching, the 

baseline characteristics were well-balanced (Figure 2A). 

The volcano plot (Figure 2B, 2C) shows that 479 RNAs 

comprising 117 lncRNAs and 362 mRNAs were 

differentially expressed between the two groups; among 

them, 38 lncRNAs and 163 mRNAs were upregulated 

in the long-term survival group compared with the early 

event group. To construct the gene risk model, we used 

the 100 times procedure of the penalized Cox 

regression+stepwise and screened 25 RNAs (Table 1 

and Figure 1; see Section 4.4 for details of the screening 

process). Stepwise elimination reduced the 25 RNAs to 

a subset of 11 RNAs (nine mRNAs and two lncRNAs), 

which was used in the final gene risk model. As shown 

in Table 1, nine of the 11 RNAs were selected 100 

times in at least one penalized regression method; the 

other two RNAs were selected less frequently but 
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exceeded 60 times in one penalized regression method. 

This result implied that the genes included in the final 

model were relatively insensitive to the regularization 

level of the penalized regression. The expression 

patterns of the 11 genes are presented in Figure 2D. The 

expression levels of five of the nine mRNAs, THOC1, 

EEF1A1, CCDC78, SLC35F4, and SLC43A2, and the 

two lncRNAs, ZNF252P-AS1 and SNHG16, were 

relatively low in the long-term survival group, whereas 

the expression levels of four of the mRNAs, CD1E, 

APBA2, PDK1, and NR3C1, were relatively high in the 

long-term survival group. 

 

 
 

Figure 1. Flow chart of the statistical process used in this study. 
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Multigene risk score 

 

The multigene risk score (MGRS) was defined as the 

prognostic index of multivariable Cox models 

constructed with the 11 selected RNAs. The MGRS can 

be represented as follows: 

 

MGRS = −0.445 × CD1E + 0.243 × ZNF252P-AS1 − 

0.346 × APBA2 + 0.258 × THOC1 + 0.346 × SNHG16 − 

0.312 × NR3C1 + 0.213 × SLC35F4 − 0.318 × PDK1 + 

0.202 × CCDC78 + 0.245 × SLC43A2 + 0.227 × 

EEF1A1. 

 

The MGRS was calculated for each patient in the 

training dataset. The mean of the MGRSs was 0, which 

was defined as the cutoff value for dividing patients into 

MGRS-high risk or MGRS-low risk groups. Figure 3A 

shows the distribution of the MGRSs and survival status

 

 
 

Figure 2. Construction of the multigene risk score (MGRS). (A) Baseline characteristics of patients in the early event and long-term 

survival groups before and after matching; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; NES, number of extra-
nodal sites; Stage, Ann Arbor stage; (B, C) Volcano plots for differentially expressed lncRNAs and mRNAs in the long-term survival group 
compared with the early event group; (D) Expression patterns of the 11 RNAs included in the MGRS. 
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Table 1. Genes screened using the penalized regression method. 

Gene name gene type 
Selected times 

LASSO ALASSO† EN‡ 

ALDOC mRNA 100 45 100 

ANOS1 mRNA 100 100 100 

APBA2 mRNA 100 100 100 

CCDC78 mRNA 100 45 100 

CD1E mRNA 100 100 100 

DMD mRNA 100 37 100 

JAML mRNA 100 37 100 

NRROS mRNA 100 45 100 

SLC22A1 mRNA 100 37 100 

SLC35F4 mRNA 100 100 100 

SLC43A2 mRNA 100 100 100 

SNHG16 lncRNA 100 100 100 

THOC1 mRNA 100 100 100 

ZNF252P-AS1 lncRNA 100 100 100 

POMZP3 mRNA 72 0 100 

TSPOAP1-AS1 lncRNA 72 63 46 

ONECUT1 mRNA 71 37 6 

CBFA2T3 mRNA 57 37 94 

EEF1A1 mRNA 57 100 94 

DDX11-AS1 lncRNA 43 0 6 

GSTA4 mRNA 29 0 94 

NR3C1 mRNA 0 63 0 

PDK1 mRNA 0 63 0 

FAM49B mRNA 0 0 54 

DCAF5 mRNA 0 0 2 

†ALASSO: adaptive LASSO 
‡EN: elastic net 

 

in the training dataset. The results indicate that patients 

with higher MGRSs had worse overall survival than 

patients with lower MGRSs. The 2-year survival rate 

for the patients with the higher MGRSs was 49.8% 

compared with 89.0% for patients with the lower 

MGRSs (hazard ratio (HR)=5.975, 95% CI 3.995–

8.938, p <0.001; Figure 3C). The time-dependent 

receiver operating characteristic (ROC) curves at 1, 2, 

3, and 5 years after diagnosis are shown in Figure 3E. 

The area under the ROC curve (AUC) at 2 years was 

0.759. 

 

The same analyses were conducted for the validation 

dataset (Figure 3B, 3D, 3F). Using the cutoff value 

determined with the training dataset, 410 (49.3%) and 

422 (50.7%) patients were assigned to the MGRS-low 
and MGRS-high risk groups, respectively. The 2-year 

survival rates were 70.9% for patients in the MGRS-

high risk group and 83.3% for patients in the MGRS-

low risk group (HR=1.882, 95% CI 1.463–2.422,  

p <0.001; Figure 3D). The 2-year AUC for the 

validation dataset was 0.601. 

 

Together, these results suggest that the MGRS has 

potential value in predicting 2-year survival of patients 

with DLBCL. 

 

Independence of the MGRS in predicting long-term 

survival 

 

Stratification analysis and multivariable Cox regression 

analysis were conducted to explore the independent role 

of the MGRS in predicting long-term survival. Patients 

in the training dataset were stratified based on the IPI 

(IPI ≥3/IPI ≤2), sex (female/male), subtype (GCB/non-

GCB), and treatment (CHOP/RCHOP). Figure 4A–4H 
shows the Kaplan-Meier survival curves for the MGRS-

high risk and MGRS-low risk groups within each 

stratum, which demonstrated that, in each subgroup, 

patients in the MGRS-high risk group had significantly  
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Figure 3. The relationship between multigene risk score (MGRS) and overall survival of patients with DLBCL. Distribution of 

MGRS and survival status in (A) the training dataset and (B) the validation dataset; (C, D) Kaplan–Meier survival curves of MGRS-high risk  
and MGRS-low risk groups in the training and validation datasets; (E, F) Time-dependent ROC curves at 1, 2, 3, and 5 years after diagnosis for 
the MGRS in the training and validation datasets. 
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worse prognosis than patients in the MGRS-low risk. 

Similar results were obtained for patients in the 

validation dataset (Figure 4I–4N). There were 

significant differences in overall survival between 

patients in the MGRS-high risk and MGRS-low risk 

groups in each subgroup, except for patients in the IPI 

≥3 subgroup (p=0.09). However, the survival curve for 

the MGRS-high risk group was lower than the survival 

curve for the MGRS-low risk group in the IPI ≥3 

subgroup, and the median survival time for patients in 

the MGRS-high risk group was 3.69 years. The median 

survival time for patients in the MGRS-low risk group 

was not reached. 

 

The hazard ratios (HRs) and corresponding model 

coefficients for the univariate and multivariable Cox 

model with stepwise procedure are summarized in 

Table 2. For the multivariable Cox regression model, 

 

 
 

Figure 4. Kaplan–Meier survival curves of multigene risk score (MGRS)-high risk and MGRS-low risk groups stratified by clinical factors in the 
(A–H) training dataset and (I–N) validation dataset. 
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Table 2. Univariate and multivariable Cox regression with the training and validation datasets. 

Variables 
Univariate analysis Multivariable analysis 

β
 

SE (β) HR (95%CI) Wald χ2 P β
 

SE (β) HR (95%CI) Wald χ2 P 

GSE10866(n=412) 

MGRS 1.000 0.080 2.718 (2.319-3.185) 152.60 4.68E-35 0.940 0.090 2.560 (2.145-3.057) 108.07 2.60E-25 

IPI (0-2 vs. 3-5) 1.067 0.178 2.907 (2.051-4.120) 35.97 2.00E-9 0.877 0.181 2.403 (1.686-3.423) 23.56 1.21E-6 

Subtype (GCB vs. 

non-GCB) 

0.854 0.172 2.349 (1.676-3.293) 24.54 7.28E-7      

Treatment (RCHOP 

vs. CHOP) 

-0.657 0.167 0.518 (0.374-0.719) 15.48 8.33E-5      

Sex (female vs. 

male) 

0.010 0.163 1.010 (0.734-1.389) 0 0.951 - - - - - 

CombatData (n=832) 

MGRS 0.340 0.057 1.405 (1.256, 1.571)  35.39 2.70E-09 0.233 0.061 1.262 (1.121, 1.422)  14.72  0.0001 

IPI (0-2 vs. 3-5) 1.094 0.131 2.985 (2.310, 3.859)  69.78 6.63E-17 0.963 0.135 2.620 (2.010, 3.415)  50.81  1.02E-12  

Subtype (GCB vs. 

non-GCB) 

0.455 0.133  1.576 (1.214, 2.045)  11.66 0.0006  - - - - - 

Sex (female vs. 

male) 

0.067 0.133 1.069 (0.825, 1.387)  0.26 0.613 - - - - - 

Notation: HR, hazard ratio; SE, standard error; CI, confidence interval; IPI, International Prognostic Index; GCB, germinal 
center B-cell-like; CHOP: cyclophosphamide, doxorubicin hydrochloride, vincristine, and prednisone; RCHOP: rituximab, 
cyclophosphamide, doxorubicin hydrochloride, vincristine, and prednisone. 

 

we found that, after adjusting for the MGRSs, the HR of 

the IPI score was moderately reduced, suggesting that 

the 11 RNAs contained prognostic information that was 

at least partially independent of the IPI. 

 

Evaluation and comparison of model performances 

 

Nomograms were constructed for the training and 

validation dataset based on the results of the 

multivariable Cox regression model (Figure 5A). A 

nomogram is a quantitative tool that can be used in a 

clinical setting to predict 2-year survival rates of 

patients with DLBCL. Calibration plots of the 

nomogram with the training and validation datasets is 

shown in Figure 5B. The calibration plots showed that 

IPI+MGRS performed well with only a slight 

overestimation of the 2-year survival rate for the 

validation cohort in one of the three groups that were 

obtained by dividing the samples according to the 

quantile of the predicted absolute risk. Figure 5C shows 

the 2-year ROC curves for the IPI, MGRS, and 

IPI+MGRS models. With the training dataset, the AUC 

value at 2 years after diagnosis increased from 0.611 for 

the IPI model to 0.773 for the IPI+MGRS model 

(ΔAUC=0.162, 95% CI 0.1295–0.1903). The results 

were similar to the validation dataset; the AUC value at 

2 years after diagnosis increased by 0.031 (95% CI 

0.025–0.036) for the IPI+MGRS model compared with 

the value for the IPI model. A decision curve was used 

to assess the clinical usefulness of the nomogram. As 

shown in Figure 5D, the IPI+MGRS and IPI models 

both derived more net-benefit than the other two 

schemes: none of the patients were at 2-year death risk 

or all of the patients were at 2-year death risk. The net 

benefit of the IPI+MGRS model was higher than that of 

the IPI model. 

 

To further investigate the added predictive value from 

the MGRS, the category-free net reclassification index 

(NRI >0) was calculated to assess how much better the 

IPI+MGRS model was at predicting the 2-year death 

risk compared with the IPI model. For the training 

dataset, the IPI+MGRS model had an NRI (>0) of 0.894 

(95% CI 0.6760–1.1211) and, for the validation dataset, 

the IPI+MGRS model had an NRI (>0) of 0.329 (95% 

CI 0.1675–0.4934). 

 

The generalizability of the MGRS was investigated by 

sensitivity analysis using three different subsets of the 

validation dataset (termed ComBatData). The selected 

GEO dataset with the largest sample size (GSE31312) 

was defined as ComBatData1 (n=470); ComBatData 

without the GSE31312 dataset was defined as 

ComBatData2 (n=362); and ComBatData without data-

sets with sample sizes less than 100 (GSE98588 and 

GSE23501) was defined as ComBatData3 (n=691). The 

increments of AUC obtained by the MGRS were 0.038 

(95% CI 0.0289–0.0468) for ComBatData1, 0.030 (95% 

CI 0.0224–0.0364) for ComBatData2, and 0.035 (95% 

CI 0.0284–0.0414) for ComBatData3. The NRIs (>0) 

for the IPI+MGRS model were 0.312 (95% CI 0.0994–

0.5340), 0.325 (95% CI 0.0623–0.5780), and 0.337 

(95% CI 0.1587–0.5101) for ComBatData1, 2, and 3, 

respectively. 
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Figure 5. Evaluation and comparison of model performances in predicting 2-year survival. (A) Nomogram based on the 

International Prognostic Index (IPI) and multigene risk score (MGRS) with the training dataset (top panel) and validation dataset (bottom 
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panel); (B) Calibration plot of the nomogram for estimation of survival rates at 2 years after diagnosis in the training dataset (top panel) and 
validation dataset (bottom panel); (C) Time-dependent ROC curves at 2 years after diagnosis for the IPI, MGRS, and IPI+MGRS models in the 
training dataset (left panel) and validation dataset (right panel); (D) Decision curves at 2 years after diagnosis for the IPI, MGRS, and 
IPI+MGRS models, in the training dataset (left panel) and validation dataset (right panel). 

 

These findings suggested that the model that combined 

IPI with MGRS had better predictive accuracy than the 

model that used only the IPI. 

 

Functional role of the MGRS 

 

To better understand the biological mechanism of the 

MGRS, we performed a weighted correlation network 

analysis to develop a co-expression network based on 

gene expression profiling. The co-expression network 

had eight modules (Figure 6A), and the module marked 

in red (Figure 6B) had the highest correlation with 

MGRS. The genes in this module were functionally 

annotated with Gene Ontology (GO) terms under the 

biological process category and KEGG pathways. The 

results indicated that the MGRSs were strong associated 

with cell cycle, DNA replication, and DNA repair 

(Figure 6C, 6D). 

 

DISCUSSION 
 

Several previous studies have identified molecular 

markers based on gene expression profiles for 

improving the predictive abilities of the IPI. For 

example, in 2004, Lossos et al. [15] constructed a 

predictive model based on the expression of six genes, 

the Lymphoma/Leukemia Molecular Profiling Project 

reported a three-component signature (about 400 genes) 

as a risk predictor [18] and, in 2011, Alizadeh et al. [17] 

further simplify the prognostic model to two genes.

 

 
 

Figure 6. Functional role of multigene risk score (MGRS). Weighted gene co-expression network analysis: (A) Clustering dendrogram 
of genes and modules; (B) Correlation between gene modules and MGRS, clinical factors. The module marked in red had the highest 
correlation with MGRS; (C, D) Gene ontology (GO) and KEGG pathway analysis of the genes in the highly-correlated module. 
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Hong et al. [19] assessed the usefulness of these gene-

expression based signatures using discrimination and 

reclassification metrics and found that the improvement 

obtained by adding a gene expression-based signature to 

the IPI model was limited. Considering the important 

role of lncRNAs in the development and prognosis of 

cancers [23–27], in 2016, Sun et al. [30] built a 

prognostic model based on six lncRNAs. However, they 

assessed the predictive significance based only on the p 

values of a multivariable Cox regression. This type of 

assessment is not sufficient to evaluate the prediction 

accuracy of a prognostic model and to quantify the 

incremental usefulness offered by their six-lncRNA 

signature. The prediction capability of such a model 

should be assessed internally and externally in terms of 

discrimination and calibration [31–33]. To assess the 

added usefulness offered by new markers, improvement 

of discriminative ability and net reclassification metric 

also need to be calculated to determine how much better 

a model with new markers is at predicting risk 

compared with the model without new markers [32–34]. 

Importantly, no previous study combined mRNAs and 

lncRNAs to construct a signature to predict early event 

and long-term survival of patients with DLBCL. 

Considering these limitations, we reanalyzed the 

transcriptome data of DLBCL and evaluated the added 

value of integrating a mRNA–lncRNA signature using 

discrimination, clinical usefulness, and reclassification 

metrics. 

 

Our robust statistical strategy produced a MGRS based 

on nine mRNAs and two lncRNAs. Stratification 

analysis and multivariable Cox regression analysis 

revealed that the MGRS provided prognostic 

information that was independent of the IPI. According 

to the results of multivariable Cox analysis, a nomo-

gram was constructed by integrating the IPI and MGRS. 

The prediction efficiency of the nomogram was 

confirmed by the calibration plot. The nomogram may 

help clinicians identify high-risk patients with DLBCL. 

To evaluate the added value from the MGRS in 2-year 

survival prediction, we compared the performances of 

the IPI+MGRS and IPI models by assessing their 

discrimination, reclassification, and clinical usefulness. 

The addition of the MGRS to the IPI improved the 

discrimination and net reclassification performance. The 

decision curve showed that the IPI+MGRS model had 

better clinical practicality than the IPI model. Together, 

these results indicated that the MGRS can be used to 

refine the IPI model. These results were validated with 

an independent external dataset. However, the added 

value offered by the MGRS for the validation dataset 

was modest compared with the added value for the 
training dataset. This may be because the development 

of the MGRS relied on the training dataset [35] and the 

sample mix in the validation dataset was different but 

related to the training samples [36]. Sensitivity analysis 

showed similar results to the validation dataset. These 

findings indicated the broad applicability of the MGRS 

in DLBCL. 

 

The functional enrichment analysis revealed a strong 

association between the MGRS and cell cycle, DNA 

replication, and DNA repair. We investigated the 

relationship between the genes included in the MGRS 

and cancer (summarized in Table 3). Six of the nine 

mRNAs included in the signature have been reported to 

be associated with cancer. PDK1 encodes pyruvate 

dehydrogenase kinase 1, which inactivates the pyruvate 

dehydrogenase (PDH) enzyme complex that converts 

pyruvate to acetyl-coenzyme A, thereby inhibiting 

pyruvate metabolism via the tricarboxylic acid (TCA) 

cycle [37]. Thomas et al. [38] showed that inhibition of 

the PDH enzyme complex caused by increased PDK1 

expression was associated with the Warburg metabolic 

and malignant phenotype of cancer, and that knockdown 

of PDK1 decreased invasiveness and inhibited tumor 

growth. The prognostic performance of PDK1 varied 

among different cancers. Overexpression of PDK1 has 

been associated with poor prognosis in non-small cell 

lung cancer [39], nasopharyngeal carcinoma [40], and 

head and neck squamous cancer [41], whereas Shinkyo 

et al. [42] found that increased expression of PDK1 

prolonged survival in colon cancer, which is consistent 

with our findings. The inconsistency in prognostic 

values for different cancers is poorly understood and 

needs further investigation. Eukaryotic translation 

elongation factor 1A1 (eEF1A1), encoded by EEF1A1, 

is an evolutionarily conserved elongation factor protein 

that triggers the initiation of protein translation 

elongation [43]. eEF1A1 is involved in multiple 

biological processes, including cytoskeletal remodeling, 

proteasome-mediated protein degradation, and control of 

cell cycle, growth, and death [44]. Aberrantly 

upregulated eEF1A1 has been detected in many tumor 

tissues and overexpression of eEF1A1 is related to 

cancer cell proliferation, invasion, and migration [45]. 

NR3C1 encodes glucocorticoid receptor (GR), which 

was shown to be involved in inflammatory responses, 

cellular proliferation, and differentiation in target tissues 

[46]. The expression of NR3C1 was found to be reduced 

in many tumor tissues owing to methylation of its 

promoter [47, 48]. For prognostic performance, high GR 

expression levels were associated with poor outcomes in 

estrogen-negative (ER−) breast and ovarian cancers, and 

with prolonged survival in ER+ breast cancer [49, 50]. 

In this study, we identified overexpression of NR3C1 as 

a predictor to predict better outcomes. NR3C1 may be a 

good prognostic factor because overexpressed GR has 
been shown to reduce glucocorticosteroid resistance in 

chemotherapy [51]. THO complex 1 (Thoc1) is a nuclear 

matrix protein that plays important roles in transcription 
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Table 3. Relationship between the genes included in the multigene risk score (MGRS) and cancers. 

Gene 

names 

Gene 

type 

Potential roles in tumorigenesis and tumor 

progression  

Relationship between overexpression/ 

overabundance with cancer prognosis 

PDK1 mRNA 1. Upregulated PDK1 was associated with Warburg 

metabolic and malignant phenotype of cancer [38]; 

2. Knockdown of PDK1 decreased invasiveness and 

inhibited tumor growth [38] 

1.shorter survival: non-small cell lung 

cancer [39], nasopharyngeal carcinoma[40], 

and head and neck squamous cancer [41] 

2. prolonged survival: Colon Cancer [42] 

EEF1A1 mRNA Overexpression of eEF1A1: related to cancer cell 

proliferation, invasion, and migration [45] 

 

NR3C1 mRNA Downregulation due to methylation: breast cancer 

[47], colorectal tumors [48] 

1. shorter survival: Estrogen-negative (ER-) 

breast cancer [49], ovarian cancer [50] 

2. prolonged survival: ER+ breast cancer 

[49] 

THOC1 mRNA 1. Upregulated in colorectal cancer [53], breast 

cancer [54], and cancer cell [54] 

2. High Thoc1 expression associated with prostate 

cancer aggressiveness and recurrence [55] 

1. shorter survival: colorectal cancer [53] 

APBA2 mRNA 1. Hypermethylated in gastric cancer [56], 

colorectal carcinoma and gastric carcinoma [57, 58] 

2. Upregulated in early Endometrial endometrioid 

carcinoma [57] 

 

SLC43A2 mRNA Associated with gastric cancer [59] 
 

SNHG16 lncRNA 1. Overexpression in non-small cell lung cancer [60] 

and oral squamous cell carcinoma [61]. 

2. Associated with cancer cell proliferation, 

migration and invasion [60, 61] 

1. shorter survival: non-small cell lung 

cancer [60] 

 

elongation and mRNA export [52], and increased 

expression of Thoc1 was found in a number of tumors 

and correlated with poor prognosis [53–55]. APBA2 

encodes a tumor suppressor and was found to be 

hypermethylated in various cancers [56–58], and 

SLC43A2 was reported to be associated with gastric 

cancer [59]; however, the prognostic value of these two 

genes is unclear. We found that high expression of 

APBA2 and low expression of SLC43A2 were associated 

with long-term survival in patients with DLBCL. The 

carcinogenic and prognostic mechanisms of APBA2 and 

SLC43A2 require further exploration. Of the two lncRNA 

included in the prognostic signatures, only SNHG16 has 

been reported to be associated with tumorigenesis and 

prognosis. SNHG16 was highly expressed in several 

cancers and silencing it inhibited cell proliferation, 

migration, and invasion, and induced apoptosis [60, 61]. 

In agreement with our results, previous survival analysis 

showed that patients with high SNHG16 expression had 

shorter survival times for various cancers [60, 61]. The 

relationships between the other three mRNAs and 

lncRNA ZNF252P-AS1 and cancer have not been 

reported until now, so further research is needed to 

clarify their potential functions in cancer. 

 

Our study has some limitations. First, all of the results 

derived in this study were based on publicly available 

datasets and lacked validation in a prospective clinical 

trial. Second, the carcinogenic and prognostic roles of 

the RNAs in the signature need to be validated in future 

studies. 

 

In conclusion, we developed an integrated mRNA–

lncRNA signature for predicting the long-term survival 

of patients with DLBCL. The addition of the MGRS 

improved the prognostic abilities of the IPI model. 

Future prospective clinical trials and basic research are 

needed to consolidate the validity of the proposed 

integrated mRNA–lncRNA signature. 

 

MATERIALS AND METHODS 
 

Selection of DLBCL datasets 

 

We systematically searched the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/) for DLBCL 

expression profiling studies (June 2020) with the search 

term “((Expression profiling by array [DataSet Type]) 

AND DLBCL) AND Homo sapiens [Organism]”. 

Studies were included if they met the following criteria: 

(i) patients were newly diagnosed with primary 

DLBCL; (ii) gene expression profiling were conducted 

in pretreatment tumor tissue using the Affymetrix 

HU133 Plus 2.0 microarray (HG-U133 Plus_2.0); and 

https://www.ncbi.nlm.nih.gov/geo/
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(iii) the IPI and overall survival information were 

available. Five datasets were selected, GSE10846 [18], 

GSE31312 [62], GSE23501 [63], GSE87371 [64], and 

GSE98588 [65]. The selection process is illustrated in 

Supplementary Figure 1. After removing patients with 

missing overall survival information, a total of 1244 

patients with DLBCL were selected and reanalyzed. 

They included 412 patients from GSE10846, 470 from 

GSE31312, 69 from GSE23501, 221 from GSE87371 

and 72 from GSE98588. GSE10846 was used as the 

training dataset. GSE31312, GSE23501, GSE87371 and 

GSE98588 were merged using the ComBat method [66] 

and used as the external validation dataset (termed 

ComBatData). ComBat is a widely used and effective 

method to remove potential batch effects across 

different studies. 

 

Preprocessing and re-annotating the gene expression 

profiles 

 

Raw CEL files of the five selected GEO studies were 

downloaded from the GEO database. Each dataset was 

background-adjusted, normalized, and summarized using 

the robust multi-array average (RMA) algorithm [67]. To 

obtain the lncRNA and mRNA expression profiles, we 

re-annotated the microarray probes as described 

previously [68, 69]. Briefly, the Affymetrix HG-U133 

Plus 2.0 probe set ID was mapped to the NetAffx 

Annotation Files (HG-U133 Plus 2.0 Annotations, CSV 

format, release 36, 07/12/16). Probe sets with an Ensembl 

gene ID in the NetAffx annotation were extracted. Using 

the Ensembl gene ID, we obtained the relationship 

between the probe set ID and the corresponding  

gene type and gene symbol using GENCODE  

(release 23; https://www.gencodegenes.org/) and HGNC 

(https://www.genenames.org/). Finally, we obtained 1612 

annotated lncRNAs and 17,368 annotated mRNAs. 

When multiple probes were annotated to a common gene, 

the mean of the multiple probes was used to estimate the 

expression of the RNA. 

 

Identification of early event associated mRNAs and 

lncRNAs 

 

In this study, the early event was defined as death in 

the first 2 years after diagnosis [3]. Patients in the 

training dataset were divided into an early event group 

and long-term survival group. The long-term survival 

group included patients who survived for more than 2 

years and survived during follow-up. To balance the 

clinical characteristics between these two groups and 

enable a robust and credible comparison of gene 

expression levels, we performed exact matching 
analysis [70]. The variables that were matched were 

age, sex, Eastern Cooperative Oncology Group 

performance status, number of extra-nodal sites, Ann 

Arbor stage, lactate dehydrogenase concentration, 

treatment (CHOP vs. R-CHOP), and subtype (germinal 

center B-cell-like, GCB vs. non-GCB). Forty patients 

in the early event group were matched to 59 patients in 

the long-term survival group. Liner models and 

empirical Bayes methods were used to identify 

differentially expressed lncRNAs and mRNAs, and the 

thresholds were p <0.05 and p <0.01 respectively  

[29, 71]. The differentially expressed RNAs were 

considered as candidate genes to construct the 

multigene risk score (MGRS). 

 

Development and assessment of MGRS 

 

Penalized regression methods, including least absolute 

shrinkage and selection operator (LASSO), ALASSO 

(adaptive LASSO), and elastic net (EN), were used to 

screen the variables (mRNAs and lncRNAs) to construct 

the MGRS. The tuning parameter λ of the penalized 

regression methods was determined by the rule of 

minimum mean cross-validated error. We performed the 

stepwise variables selection strategy in the Cox model to 

remove genes that were not significant predictors in the 

absence of the constraint imposed by the penalty [72]. 

To reduce the sensitivity of the variable selection 

procedure to the cross-validation process in the 

penalized regression, we repeated the selection strategy 

(penalized Cox regression+stepwise) 100 times with 

different cross-validation folds [72]. We used the set of 

100 times penalized Cox regression+stepwise selected 

genes to construct a multivariable Cox model and 

defined its prognostic index as the MGRS. Patients from 

the different dataset were divided into MGRS-high risk 

and MGRS-low risk groups according to whether their 

MGRS was above or below the cutoff point, which was 

defined as the mean of the MGRSs in the training 

dataset. 

 

To evaluate the independent role of the MGRS in 

prognosis, data stratification analysis and multivariable 

Cox regression analysis were performed. For the 

stratification analysis, Kaplan–Meier and log-rank tests 

were applied to compare the difference in survival 

between the MGRS-high risk and MGRS-low risk 

groups in each stratum. Then, we constructed a 

nomogram based on the results of the multivariable Cox 

analysis for clinical use [73]. The performance of the 

nomogram that integrated the IPI and MGRS in 

predicting 2-year survival was evaluated by its 

discrimination, calibration, and clinical usefulness [32]. 

Discrimination was measured by ROC curves [32, 74] 

at 2 years after diagnosis. Model calibration was 

assessed by comparing the observed 2-year survival rate 
with the mean of the predicted 2-year survival rate [32]. 

The observed 2-year survival rate was estimated using 

the Kaplan-Meier method. A model was considered 

https://www.gencodegenes.org/
https://www.genenames.org/
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well calibrated if the predicted 2-year survival rate was 

close to the observed one. The clinical usefulness of the 

model was assessed by decision curve analysis [32]. We 

also assessed the added value from the MGRS in the 2-

year survival prediction by comparing the performance 

of the models with and without MGRS. The category-

free net reclassification index (NRI>0) was used to 

quantify the ability of the IPI+MGRS model to correctly 

reclassify patients (survival or death at 2-year) 

comparing with that of the IPI model [32]. The NRI 

(>0) ranged from −2 to +2. A positive value of NRI 

(>0) indicated improved reclassification ability of the 

IPI+MGRS model. 

 

To further investigate the generalizability of the MGRS, 

we also performed sensitivity analysis on three subsets of 

the validation dataset: ComBatData1, which contained 

the biggest dataset GSE31312; ComBatData2, which 

contained validation dataset without GSE31312; and 

ComBatData3, which contained the validation dataset 

without the datasets with sample size less than 100 

(GSE98588 and GSE23501). The added value offered by 

MGRS was assessed in the sensitivity analysis. 

 

Functional enrichment analysis 

 

To explore the functional role of MGRS in patients with 

DLBCL, we constructed a co-expression network by 

weighted correlation network analysis [75]. Then, the 

correlation between the MGRS and each module in the 

co-expression network was estimated to identify highly-

correlated modules. The genes in the highly-correlated 

module were functionally annotated by GO and KEGG 

pathway enrichment analysis [76]. Pathways with 

adjusted p <0.05 and nominal p <0.01 were considered 

statistically significant. 

 

All the statistical analyses were performed using R-3.5.1 

and SAS (version 9.4). A flow chart of the statistical 

process is given in Figure 1. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 
 

Supplementary Figure 1. Flow chart of the study selection process. 
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Supplementary Table 
 

Supplementary Table 1. Baseline characteristics of the training and validation datasets. 

Variables 
Training dataset Validation dataset Components of validation dataset 

GSE10846 (n=412) ComBatData* (n=832) GSE31312 (n=470) GSE23501 (n=69) GSE87371 (n=221) GSE98588 (n=72) 

age,year       

≤60 188 (45.6%)  369(44.4%) 200 (42.6%) 28 (40.6%) 115 (52.0%) 26 (36.1%) 

>60 224 (54.4%) 463 (55.6%) 270 (57.4%) 41 (59.4%) 106 (48.0%) 46 (63.9%) 

Sex       

Female 172 (41.7%) 323 (38.8%) 199 (42.3%) 19 (27.5%) 105 (47.5%) - 

Male 222 (53.9%) 437 (52.5%) 271 (57.7%) 50 (72.5%) 116 (52.5%) - 

Unknown 18 (4.4%) 72 (8.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 72 (100%) 

Stage       

I/II 188 (45.6%) 314 (37.8%) 220 (46.8%) - 71 (32.1%) 23 (31.9%) 

III/IV 217 (52.7%) 427 (51.3%) 228 (48.5%) - 150 (67.9%) 49 (68.1%) 

Unknown 7 (1.7%) 91 (10.9%) 22 (4.7%) 69 (100%) 0 (0.0%) 0 (0.0%) 

No.of extranodal sites 

<2 351 (85.2%) 421 (50.6%) 366 (77.9%) - - 55 (76.4%) 

≥2 30 (7.3%) 121 (14.5%) 104 (22.1%) - - 17 (23.6%) 

Unknown 31 (7.5%) 290 (34.9%) 0 (0.0%) 69 (100%) 221 (100%) 0 (0.0%) 

LDH       

0 173 (42.0%) 179 (21.5%) 148 (31.5%) - - 31 (43.1%) 

1 177 (43.0%) 319 (38.3%) 278 (59.1%) - - 41 (56.9%) 

Unknown 62 (15.0%) 334 (40.2%) 44 (9.4%) 69 (100%) 221 (100%) 0 (0.0%) 

ECOG       

<2 295 (71.6%) 432 (51.9%) 374 (79.6%) - - 58 (80.6%) 

≥2 93 (22.6%) 110 (13.2%) 96 (20.4%) - - 14 (19.4%) 

Unknown 24 (5.8%) 290 (34.9%) 0 (0.0%) 69 (100%) 221 (100%) 0 (0.0%) 

IPI       

0-2 228 (55.4%) 464(55.8%) 274 (58.3%) 33 (47.8%) 119 (53.8%) 38 (52.8%) 

3-5 92 (22.3%) 318 (38.2%) 150 (31.9%) 32 (46.4%) 102 (46.2%) 34 (47.2%) 

Unknown 92 (22.3%) 50 (6.0%) 46 (9.8%) 4 (5.8%) 0 (0.0%) 0 (0.0%) 

Subtype       

GCB 182 (44.2%) 372 (44.7%) 248 (52.8%) 40 (58.0%) 84 (38.0%) - 

Non-GCB 230 (55.8%) 388 (46.6%) 222 (47.2%) 29 (42.0%) 137 (62.0%) - 

Unknown 0(0.0%) 72 (8.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 72 (100%) 

Overall survival,year 

median survival 

time 

6.94 7.61 6.86 - - - 

*ComBatData is an integrated dataset, and it combined GSE31312, GSE23501, GSE87371 and GSE98588 using ComBat 
method. 
Abbreviation: Stage, Ann Arbor stage; LDH, lactate dehydrogenase; ECOG, Eastern Cooperative Oncology Group; IPI, 
International Prognostic Index; GCB, germinal center B-cell-like. 


