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INTRODUCTION 
 

Colorectal cancer is one of the most common  

digestive malignancies worldwide [1]. The tumor 

microenvironment (TME) plays critical roles in 

tumorigenesis, development, metastasis and therapeutic 

responses [2, 3]. For instance, PPM1H (Protein 

Phosphatase 1H) can inhibit the activation of SMAD 

signaling pathway and promote mesenchymal differen-

tiation [4]. Knockdown the expression of PPM1H in 

pancreatic cancer cells can lead to increased expression of 

vimentin and changes of other epithelial or mesenchymal 

markers [4–6]. Recently, it is reported that PPM1H 

knockdown in colorectal cancer cells can induce vimentin 

expression and activate cancer-associated fibroblasts 

(CAFs), which in turn can promote the proliferation and 

migration of colorectal cancer cell with low PPM1H 

expression [7]. Overexpression and autocrine of WNT2 
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tumor microenvironment related genes. Kaplan-Meier survival analysis was used for evaluating the prognostic 
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(Wnt Family Member 2) in CAFs can promote colon 

cancer proliferation, invasion and metastasis in vitro and 

in vivo [8, 9]. Exosomes released by CAFs can promote 

colorectal cancer metastasis and therapeutic resistance by 

inducing Epithelial-mesenchymal transition (EMT) and 

tumor cell stemness [10]. 

 

Nevertheless, the molecular mechanisms underlying 

TME associated colorectal cancer progression have 

never been well elucidated. Hence, screening for novel 

prognostic biomarkers and potential therapeutic targets 

for colorectal cancer from TME is of crucial 

importance. This study takes advantage of publicly 

available datasets and powerful bioinformatics tools to 

screen for genes with significant prognostic value and 

explore potential mechanistic insights. 

 

RESULTS 
 

Screening and function annotation of TME related 

DEGs in colorectal cancer 
 

Immune score and stromal score of each sample were 

computed using ESTIMATE algorithm. TME related 

DEGs were computed based on immune and stromal 

scores using Agilent microarray expression data and 

RNAseq data of colon cancer from TCGA. The heat maps 

of DEGs based on different grouping strategies were 

presented in Supplementary Figure 1. Supplementary 

Figure 1A, 1B showed immune and stromal related DEGs 

computed using Agilent microarray data, while 

Supplementary Figure 1C, 1D showed DEGs computed 

using RNAseq data, respectively. Venn diagram analysis 

indicated that 372 genes were commonly upregulated in 

immune high and stromal high groups using either 

Agilent data or RNAseq data (Figure 1A). Details of these 

372 genes were presented in Supplementary Table 1. 
 

Gene ontology (GO: biological process, molecular 

function and cellular component) and KEGG analyses 

of these 372 genes were performed using network 

analyst (Figure 1B–1E). Protein-protein interaction 

(PPI) network was also constructed using network 

analyst (Figure 1F). As is shown in these figures, 

immune response, cytokine receptor activity and Toll-

like receptor signaling pathway were significantly 

enriched. Detailed GO, KEGG and PPI results were 

shown in Supplementary Tables 2–6. 
 

Five genes were associated with poor survival and 

EMT 
 

Prognostic power of 372 commonly upregulated genes 

in TME were evaluated through Kaplan-Meier survival 

analysis using colorectal cancer data from TCGA. Five 

genes with most significant prognostic power were 

selected for further analyses. The expression levels of 

SMARCD3, CRIP2, PRAM1, HSPB2 and CERCAM in 

Agilent stromal/immune high/low groups and RNAseq 

stromal/immune high/low groups were demonstrated in 

Figure 2A. These five genes were all associated with 

poor OS of patients with colorectal cancer (Figure 2B–

2F). Specifically, colorectal cancer patients with 

SMARCD3 high expression had poorer OS in 

comparison with patients with SMARCD3 low 

expression (Hazard ratio: 2.4, logrank p = 0.00031). 

Similarly, colorectal cancer patients with high 

expression of CRIP2, PRAM1, HSPB2 or CERCAM 

had poorer OS comparing with low expressed groups 

(logrank = 0.0073, 0.0053, 0.0036 and 0.0023, 

respectively). Moreover, we also built a prognostic 

model using these five genes. The risk score of each 

sample was computed based on expression value of the 5 

genes using cox proportional hazard model. High risk 

and low risk groups were divided by the best cutoff point 

of risk score (Supplementary Figure 2A, upper graph: 

the distribution of risk scores; lower graph: cutoff point 

selection based on log rank statistics). Survival analysis 

results showed that colorectal cancer patients with high 

risk score had poorer OS comparing with low risk 

groups (Supplementary Figure 2B, logrank p = 0.0016). 

 

To explore the association among these five genes  

and different cell types in the tumor microenvironment, 

cellular heterogeneity analyses of tumor micro-

environment were performed using xCell using ssGSEA 

method. The correlation map of the expression value of 

five genes and enrichment score of different cell 

components in TME were shown in Figure 3. As we can 

see, CRIP2 and PRAM1 are correlated with macrophages 

while SMARCD3, HSPB2 and CERCAM are associated 

with fibroblasts (blue represents positive correlation 

while red represents negative correlation, correlations 

with p value < 0.05 were presented in the map). 

 

Pathway enrichment analyses of the five genes were 

performed using GSCAlite. As mentioned in the methods 

section, pathway activity scores (PAS) of 10 cancer 

related pathways (such as EMT, apoptosis and cell cycle 

etc.) in 32 cancer types were computed based on RPPA 

protein data from TCGA. PAS (gene Xhigh) > PAS (gene 

Xlow) indicates gene X has an activation effect, otherwise 

an inhibition effect. Analyses results indicated that 

SMARCD3, CRIP2, PRAM1, HSPB2 and CERCAM 

were associated with epithelial-mesenchymal transition 

(EMT) pathway activation (upper panel of Figure 4) and 

cell cycle inhibition (lower panel of Figure 4). Percentage 

represents ratios of activation or inhibition related cancer 

types versus 32 cancer types. For instance, SMARCD3 

has an activation effect in 6 over 32 cancer types 

(approximately 19%). Figure 5 shows the gene-pathway 

interaction map of these five genes in colon cancer. As 
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Figure 1. GO and KEGG pathway enrichment network analysis of TME related genes. (A) Venn diagram analysis of DEGs based on 
immune or stromal scores. (B–E) GO (biological process, molecular function and cellular component) and KEGG pathway enrichment network 
analysis of 372 commonly upregulated genes in TME. (F) Protein-protein interaction network of 372 TME related genes. 

 

 
 

Figure 2. Expression of SMARCD3, CRIP2, PRAM1, HSPB2 and CERCAM in groups with different immune or stromal scores (A). Kaplan-Meier 
survival analysis based on expression value of these genes using TCGA COAD data (B–F). 
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Figure 3. Correlation map of five genes with different cell types in colon cancer microenvironment (Different colors 
represent spearman r values). 
 

 
 

Figure 4. SMARCD3, CRIP2, PRAM1, HSPB2 and CERCAM could activate EMT in multiple cancer types (upper panel), while 
SMARCD3, CRIP2, PRAM1 and HSPB2 are associated with cell cycle inhibition (lower panel). 



 

www.aging-us.com 20839 AGING 

we can see, SMARCD3 is associated with cell cycle 

inhibition and EMT activation, which are in accordance 

with Figure 4. Moreover, PPI network of these five 

genes was presented in Supplementary Figure 3. 

 

SMARCD3 expression and function analyses 

 

Based on expression value and literature reports, 

SMARCD3 were selected for further analysis. Gene 

expression data analyses based on colon cancer data from 

TCGA indicated that SMARCD3 is under expressed in 

cancer tissues comparing with normal control 

(Supplementary Figure 4A). SMARCD3 expression is 

higher in stage 3 in comparison with stage 1 

(Supplementary Figure 4B). There is no statistical 

difference of SMARCD3 expression among different 

gender, body weight, sample type, age groups and TP53 

mutation status (Supplementary Figure 4C–4G). Its 

expression in N2 (positive lymph node between 4 and 9) 

is higher than in N0 (data not shown). Interestingly, 

SMARCD3 expression in primary colon tumor is higher 

than in polyps. Its expression in both polyps and primary 

tumor is significantly lower than in normal control, 

which may due to different methylation levels at its 

promoter region (Supplementary Figure 5). Correlation 

analyses using SMARCD3 expression data and clinical 

features of colon cancer patients from TCGA indicated 

that SMARCD3 expression is associated with lymphatic 

invasion, OS and copy number etc. (Supplementary 

Figure 6). The prognostic value of SMARCD3 was 

further validated using a larger set of TCGA colorectal 

cancer RNAseq data. As was shown in Supplementary 

Figure 7, SMARCD3 expression was negatively 

correlated OS (logrank p = 0.0005, Hazard ratio = 1.867, 

N = 597), which was consistent with Figure 2B. The 

prognostic power of SMARCD3 is inferior to the five 

gene prognostic model presented in Supplementary 

Figure 2B. IHC data from the protein atlas showed that 

SMARCD3 were mainly expressed in fibroblasts (Figure 

6A). Correlation analysis indicated that SMARCD3 

expression was most correlated with fibroblasts (Figure 

6B), which was in accordance with Figure 6A. 

 

 
 

Figure 5. Gene-Pathway interaction network of SMARCD3, CRIP2, PRAM1, HSPB2 and CERCAM in colorectal cancer. 
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GSEA results showed that SMARCD3 expression was 

associated with cancer metastasis, TGF-β pathway 

activation and epithelial-mesenchymal transition (EMT) 

(Figure 7, p < 0.0001, TCGA colorectal cancer RNAseq 

data, N = 592). Protein level analyses indicated that 

SMARCD3 expression was negatively correlated with 

E-Cadherin while positively correlated with N-

Cadherin, Fibronectin and SMAD3 (Figure 8, upper 

graph), which further proved its association with EMT. 

We also showed that SMARCD3 expression was 

positively correlated with cell cycle inhibition markers 

such as p21 an p27, while negatively correlated with 

cell cycle activation markers such as Cyclin B1 and 

Cyclin E1 (Figure 8, lower graph). PPI network analysis 

demonstrated that SMARCD3 could physically 

interacted with MAPK14 (p38α), MYOD1 and SMAD4 

etc. (Supplementary Figure 8), which indicated 

mechanistic insights underlying SMARCD3 related 

colorectal cancer metastasis. 

 

Potential molecular mechanisms underlying 

SMARCD3 associated cancer metastasis 
 

As we mentioned in the above section, SMARCD3 was 

associated with cancer metastasis and EMT related gene 

signatures. Further PPI analysis indicated that 

SMARCD3 might promote colorectal cancer metastasis 

through MAPK14, MYOD1 or SMAD4 related 

pathways. Previously, it was reported that SMARCD3 

could stimulate EMT of breast cancer cells through 

 

 
 

Figure 6. (A) IHC staining indicated that SMARCD3 was mainly expressed colon cancer associated fibroblasts. (B) SMARCD3 expression was 
most associated with fibroblasts by ssGSEA analysis. 
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upregulating WNT5A expression [11]. While Wnt5a 

and Wnt11 could regulate EMT by inducing p38 

(Mapk14) phosphorylation in mouse early development 

[12]. Hence, we can speculate that SMARCD3 could 

potentially promote EMT through WNT5A-MAPK14 

pathway. Moreover, it was reported that MAPK14 

could induce SMARCD3 phosphorylation and promote 

the incorporation of MYOD1-SMARCD3 into a Brg1-

based SWI/SNF complex. This complex could activate 

the transcription activity of MYOD1 [13] and led to 

upregulation of EMT related genes such as Vimentin 

and SNAIL [14]. These reports indicated that MAPK14 

could regulate EMT by phosphorylating SMARCD3. 

So, we can conclude that there is a positive feedback 

loop among SMARCD3, WNT5A and MAPK14. 

Moreover, it was reported that TGF-β could also 

promote EMT through MAPK14 phosphorylation [15], 

which indicated its involvement in the process of 

SMARCD3 promoted EMT. 

 

Using TCGA colorectal cancer RNAseq and protein 

expression data, we demonstrated that WNT5A 

(Supplementary Figure 9A) and TGFB1 (Supplementary 

Figure 9C) were positively correlated with SMARCD3; 

WNT5A (Supplementary Figure 9B) and TGFB1 

(Supplementary Figure 9D) were overexpressed in 

SMARCD3 high group. We also showed that 

SMARCD3 was associated with MAPK14 

phosphorylation level (Supplementary Figure 10). The 

above results were consistent with the above literature 

reports and our speculations. Based on the above results, 

we could summarize two potential positive feedback 

loops: SMARCD3-WNT5A-MAPK14-SMARCD3 and 

SMARCD3-TGF-β-MAPK14-SMARCD3 (Figure 9). 

Besides, data mining using multiple gene-drug datasets 

such as CTDbase and GSCAlite were performed in this 

study. We proposed several drugs that could target 

SMARCD3, which were presented in Figure 9. 

 

DISCUSSION 
 

In this study, we found 372 genes that overexpressed in 

TME based on immune score and stromal score using 

TCGA COAD data from two platforms (Agilent and 

RNAseq). GO and KEGG pathway enrichment analyses 

showed that these 372 genes were enriched in immune 

response, cytokine production and toll-like receptor 

signaling pathway etc. SMARCD3, CRIP2, PRAM1, 

HSPB2 and CERCAM were selected for further analyses 

due to their most significant prognostic powers. Cellular 

heterogeneity analysis indicated that PRAM1 was 

associated with macrophages while SMARCD3, CRIP2, 

 

 
 

Figure 7. SMARCD3 expression is positively correlated with metastasis, TGF-β pathway activation and Mesenchymal 
signatures. 
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Figure 8. (Upper graph) SMARCD3 expression is negatively correlated with E-Cadherin, while positively correlated with N-
Cadherin, Fibronectin and SMAD3. (Lower graph) SMARCD3 expression is positively correlated with cell cycle inhibitor p21 
and p27, while negatively correlated with cell cycle activator Cyclin B1 and Cyclin E1. 
 

 
 

Figure 9. Summary of SMARCD3 interaction network. 
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HSPB2 and CERCAM were correlated with fibroblasts. 

Pathway analyses showed that the five genes were 

involved in EMT activation and cell cycle inhibition. 

Since EMT was an important factor for CAFs activation, 

the above results implicated a potential role of these 

genes in inducing CAFs activation. 

 

CAFs plays critical roles in tumor proliferation, 

invasion, angiogenesis and regulation of tumor 

immune microenvironment. For instance, CAFs could 

release exosomes, VEGF (vascular endothelial  

growth factor), HGF (hepatocyte growth factor) and 

GAS6 (growth arrest-specific gene 6) to promote 

cancer proliferation and invasion, and affect the 

function of epithelial cell and macrophages [16]; 

regulate cancer metastasis, therapeutic responses  

and T cell function through matrix remodeling 

including matrix production, proteolysis and matrix 

crosslinking [17, 18]; promote cancer cell growth 

through metabolic effects such as lactate shuttling, 

amino acid depletion and alanine aspartate  

shuttling [19, 20]; and regulate cancer immune 

microenvironment through TGF-β, IL-6, CXCL12 

(CXC- chemokine ligand 12) and CCL2 (CC-

chemokine ligand 2) [21–23]. 

 

SMARCD3 (SWI/SNF Related, Matrix Associated, 

Actin Dependent Regulator of Chromatin, Subfamily D, 

Member 3) encoded protein belongs to SWI/SNF family 

which display helicase and ATPase activities and could 

regulate gene transcription by altering the chromatin. It 

was reported that knock down SMARCD3 expression 

could induce mesenchymal-epithelial transition (EMT) 

of breast cancer cells [24]. Here, we showed that 

SMARCD3 was mainly expressed in fibroblasts and 

was associated with EMT and tumor metastasis. Its 

expression was positively correlated with mesenchymal 

biomarkers such as N-Cadherin and Fibronectin while 

negatively correlated with epithelial biomarkers like E-

Cadherin. Literature mining indicated that SMARCD3 

could upregulate WNT5A and TGF-β expression, which 

could induce MAPK14 phosphorylation. Then the 

phosphorylated MAPK14 could further induce 

SMARCD3 phosphorylation and promote the 

incorporation of MYOD1-SMARCD3 into a Brg1-

based SWI/SNF complex and finally led to EMT. Using 

colorectal cancer data, we showed that SMARCD3 

expression was positively correlated with WNT5A, 

TGF-β and p-MAPK14, which were consistent with 

previous reports. 

 

Based on the above findings, we speculated  

that SMARCD3-WNT5A/TGF-β-MAPK14-SMARCD3 

positive feedback loop might be activated in fibroblasts 

and play critical roles in promoting CAFs activation and 

cancer metastasis (as detailed in Figure 9). 

In summary, we reported 372 colorectal cancer TME 

related genes, five of them that have the most prognostic 

powers were enriched in EMT and cell cycle pathways. 

For the first time, we demonstrated that SMARCD3 was 

a novel prognostic marker that mainly expressed in 

CAFs and might promote CAFs activation and colorectal 

cancer metastasis through SMARCD3-WNT5A/TGF-β-

MAPK14-SMARCD3 positive feedback loop. Hence, 

screening for drugs or chemicals targeting SMARCD3 

may exert important clinical impact on colorectal cancer 

management. 

 

MATERIALS AND METHODS 
 

Ethics statement 
 

All the data used in this study were downloaded from 

publicly available sources. The Research Ethics 

Committee of Zhejiang Provincial people’s Hospital 

waived the requirement for ethical approval. 

 

Data source 

 

Agilent microarray and RNAseq expression data were 

downloaded from The Cancer Genome Atlas (TCGA: 

http://cancergenome.nih.gov/). Expression profiles of 

colon, polyp and primary colon cancer were obtained 

from Gene Expression Omnibus (GEO, accession 

no.GSE41258) [25, 26]. IHC staining results of 

SMARCD3 (https://images.proteinatlas.org/63955/ 

147563_A_2_8.jpg), Protein expression and 

phosphorylation data were obtained from Protein  

atlas [27] (https://www.proteinatlas.org) and TCGA. 

Chemical-gene interaction and protein-protein 

interaction data was downloaded from The Comparative 

Toxicogenomics Database (CTD base) [28] and 

GSCAlite [29]. 

 

Bioinformatics and statistical analyses 
 

The immune score and stromal score of each colon 

cancer samples were computed based on ESTIMATE 

algorithm using RNAseq data from TCGA [30]. Heat 

map and clustering analyses were performed using MeV 

software (http://mev.tm4.org). Gene Set Enrichment 

analysis (GSEA) was performed to show the functional 

enrichment of SMARCD3 in breast cancer using GSEA 

v4.0.3 (https://www.gsea-msigdb.org/gsea/downloads.jsp). 

Protein-protein interaction network was visualized 

through GeneMANIA plugin [31] in the Cytoscape 

environment [32]. Venn diagram was drawn using  

an online tool (http://bioinformatics.psb.ugent.be/ 

webtools/Venn/). GO and KEGG pathway enrichment 

analyses and visualization were performed using 

NetworkAnalyst [33]. Survival analysis module of 

GEPIA2 web tool and Graphpad Prism 8 (2365 

http://cancergenome.nih.gov/
https://images.proteinatlas.org/63955/147563_A_2_8.jpg
https://images.proteinatlas.org/63955/147563_A_2_8.jpg
https://www.proteinatlas.org/
http://mev.tm4.org/
https://www.gsea-msigdb.org/gsea/downloads.jsp
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Northside Dr., Suite 560, San Diego, CA 92108, USA) 

was used for Kaplan-Meier analyses [34]. 

 

Gene-pathway interaction network analysis was 

performed using GSCAlite [29]. Briefly, pathway 

activity groups (activation and inhibition) is defined by 

pathway scores computed based on RPPA protein data 

from TCGA, 10 pathways and 32 cancer types are 

included. Gene expression positively correlated with 

pathway activity score are considered to have an 

activate effect to a pathway, otherwise have an inhibit 

effect to a pathway. Cellular heterogeneity analyses of 

tumor microenvironment were performed using xCell 

using ssGSEA method [35]. Correlation map was drew 

using corrPlot package [36] in R 3.6.3 (R Foundation 

for Statistical Computing [http://www.r-project.org/]). 

Expression of SMARCD3 in different clinical groups 

and its correlation with methylation were plotted using 

UALCAN based on data from TCGA [37]. The heat 

map of SMARCD3 expression and clinical features 

such as tumor stage, lymphatic invasion and overall 

survival was plotted using MEXPRESS online tool [38]. 

 

Risk score of each sample was computed based on 

expression value of the 5 genes using cox proportional 

hazard model. The best cutoff value of 5 gene risk  

score was computed using survminer package 

(https://rpkgs.datanovia.com/survminer/index.html) and 

Kaplan-Meier analyses were performed through 

survival package [39] in R. All other statistical analyses 

were perform using R or GraphPad Prism 8. Standard 

statistical tests including paired t-test, fisher exact test 

and independent samples t-test were employed in the 

data analyses. Adjust P value was corrected for multiple 

comparisons using the Benjamini and Hochberg's false 

discovery rate [40]. Significance was defined as a P 

value < 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Heat map of TME related genes. DEGs computed based on immune (A) or stromal score (B) using HNSC 
Agilent microarray data. DEGs computed based on immune (C) or stromal score (D) using HNSC RNAseq data. 



 

www.aging-us.com 20848 AGING 

 
 

Supplementary Figure 2. (A) Upper graph: the distribution of risk scores; lower graph: cutoff point selection based on log rank statistics. 
(B) Kaplan-Meier survival analysis of high risk and low risk groups. 
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Supplementary Figure 3. Protein-Protein interaction network of SMARCD3, CRIP2, PRAM1, HSPB2 and CERCAM. 
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Supplementary Figure 4. SMARCD3 expression in different clinical subgroups. (A) SMARCD3 expression in colon cancer and normal 
controls. SMARCD3 expression in different cancer stage (B), gender (C), body weight (D), sample type (E), age (F), TP53 mutation status (G) 
and nodal metastasis status (H). 
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Supplementary Figure 5. (A) SMARCD3 expression in normal control, polyps and primary tumor. (B) the methylation level of SMARCD3 in 
primary tumor is significantly higher than normal control. 
 

 
 

Supplementary Figure 6. Association between SMARCD3 expression levels and clinical features. 
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Supplementary Figure 7. Kaplan-Meier survival analysis based on SMARCD3 expression values using TCGA COAD RNAseq 
data (N = 592). 
 

 
 

Supplementary Figure 8. Protein-Protein interaction network of SMARCD3 based on data from CTDbase. 
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Supplementary Figure 9. SMARCD3 expression is positively correlated with WNT5A and TGF-β. (A) Correlation plot of WNT5A 
and SMARCD3. (B) WNT5A mRNA expression in SMARCD3 high and low groups. (C) Correlation plot of TGFB1 and SMARCD3. (D) TGFB1 
mRNA expression in SMARCD3 high and low groups. 
 



 

www.aging-us.com 20854 AGING 

 
 

Supplementary Figure 10. SMARCD3 expression is positively correlated with MAPK14 phosphorylation levels. MAPK14 mRNA 
(A), MAPK14 protein (B) and p-MAPK14 protein (C) expression levels in SMARCD3 high and low groups. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 6. 

 

Supplementary Table 1. List of 372 commonly upregulated genes in TME. 

 

Supplementary Table 2. GO analysis of 372 genes (Biological Process). 

 

Supplementary Table 3. GO analysis of 372 genes (Cellular Component). 

Pathway Total Expected Hits P.Value FDR 

Integral to plasma membrane 1270 26.3 79 2.82E-19 3.32E-17 

External side of plasma membrane 204 4.22 32 2.95E-19 3.32E-17 

Intrinsic to plasma membrane 1320 27.4 80 8.66E-19 6.49E-17 

Plasma membrane part 2320 47.9 109 1.30E-17 7.30E-16 

Cell surface 518 10.7 45 2.80E-16 1.26E-14 

Plasma membrane 5500 114 185 1.28E-15 4.78E-14 

Extracellular space 901 18.6 57 3.16E-14 1.02E-12 

Extracellular region part 1320 27.3 71 5.00E-14 1.40E-12 

Intrinsic to membrane 5760 119 182 2.11E-12 5.26E-11 

Integral to membrane 5590 116 178 2.34E-12 5.26E-11 

Lytic vacuole 401 8.3 29 5.34E-09 1.00E-07 

Lysosome 401 8.3 29 5.34E-09 1.00E-07 

Extracellular matrix 570 11.8 32 3.27E-07 5.53E-06 

Vacuole 486 10.1 29 3.44E-07 5.53E-06 

Extracellular region 2860 59.1 96 4.05E-07 6.08E-06 

Membrane part 7520 156 201 5.16E-07 7.25E-06 

Proteinaceous extracellular matrix 398 8.24 23 9.83E-06 0.00013 

Collagen 93 1.92 10 2.23E-05 0.000279 

Receptor complex 189 3.91 14 4.04E-05 0.000479 

Vacuolar part 279 5.77 17 7.50E-05 0.000844 

Extracellular matrix part 204 4.22 12 0.00115 0.012 

Immunological synapse 23 0.476 4 0.00117 0.012 

Lysosomal membrane 153 3.17 10 0.00133 0.013 

Membrane raft 189 3.91 11 0.00198 0.0173 

Ruffle 135 2.79 9 0.002 0.0173 

Extrinsic to membrane 135 2.79 9 0.002 0.0173 

Extrinsic to plasma membrane 87 1.8 7 0.00217 0.0181 

Anchored to membrane 147 3.04 9 0.00355 0.0285 

Actin filament 51 1.06 5 0.00397 0.0308 

Integrin complex 32 0.662 4 0.0041 0.0308 

Anchored to plasma membrane 33 0.683 4 0.00459 0.0333 

Endocytic vesicle 187 3.87 10 0.00567 0.0398 

Vacuolar membrane 206 4.26 10 0.0109 0.074 

Vesicle 1210 25 34 0.0422 0.279 

Membrane_bounded vesicle 1100 22.7 31 0.0493 0.317 
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Supplementary Table 4. GO analysis of 372 genes (Molecular Function). 

Pathway Total Expected Hits P.Value FDR 

Receptor activity 1920 38.1 79 8.32E-11 3.23E-08 

Carbohydrate binding 227 4.5 21 4.83E-09 6.25E-07 

Carbohydrate binding 227 4.5 21 4.83E-09 6.25E-07 

Cytokine activity 220 4.36 18 4.00E-07 3.88E-05 

Glycosaminoglycan binding 178 3.53 15 2.61E-06 0.000203 

Pattern recognition receptor activity 17 0.337 5 1.50E-05 0.000972 

Cytokine receptor binding 266 5.27 17 2.32E-05 0.00124 

Transmembrane signaling receptor activity 1510 30 53 2.56E-05 0.00124 

Cytokine receptor activity 106 2.1 10 4.76E-05 0.00185 

Cytokine receptor activity 106 2.1 10 4.76E-05 0.00185 

Chemokine activity 50 0.991 7 5.38E-05 0.0019 

Chemokine receptor binding 75 1.49 8 0.000115 0.00373 

Cytokine binding 66 1.31 7 0.00032 0.00887 

Cytokine binding 66 1.31 7 0.00032 0.00887 

Protein complex binding 339 6.72 17 0.000441 0.0114 

Receptor binding 1590 31.6 49 0.00118 0.0286 

Lipoprotein particle binding 26 0.515 4 0.0016 0.0365 

Antigen binding 66 1.31 6 0.00193 0.0412 

Lipid binding 788 15.6 28 0.00202 0.0412 

Collagen binding 47 0.931 5 0.00229 0.0445 

Enzyme activator activity 436 8.64 18 0.00275 0.0508 

Low_density lipoprotein particle binding 15 0.297 3 0.00294 0.0518 

Phospholipid binding 514 10.2 19 0.00694 0.117 

Metalloexopeptidase activity 42 0.832 4 0.00936 0.151 

Peptide receptor activity 150 2.97 8 0.0101 0.157 

Non_membrane spanning protein tyrosine kinase activity 46 0.912 4 0.0128 0.192 

Identical protein binding 910 18 28 0.0138 0.198 

Heparin binding 130 2.58 7 0.0149 0.207 

GTP binding 371 7.35 14 0.0163 0.214 

Antioxidant activity 75 1.49 5 0.0165 0.214 

G_protein coupled receptor binding 232 4.6 10 0.0175 0.219 

Protein homodimerization activity 573 11.4 19 0.02 0.243 

Extracellular matrix structural constituent 80 1.59 5 0.0213 0.25 

Kinase regulator activity 144 2.85 7 0.0247 0.282 

Guanyl nucleotide binding 402 7.97 14 0.0298 0.33 

Growth factor binding 125 2.48 6 0.0382 0.407 

Protein dimerization activity 996 19.7 28 0.0388 0.407 

Phosphatidylinositol binding 160 3.17 7 0.0403 0.411 

Rho GTPase activator activity 39 0.773 3 0.0417 0.415 

Phospholipase C activity 41 0.813 3 0.0473 0.458 
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Supplementary Table 5. KEGG pathway analysis of 372 genes. 

Pathway Total Expected Hits P.Value FDR 

Osteoclast differentiation 128 3.23 31 1.52E-22 4.85E-20 

Staphylococcus aureus infection 68 1.71 18 3.24E-14 5.16E-12 

Tuberculosis 179 4.51 22 5.63E-10 5.97E-08 

Leishmaniasis 74 1.87 14 3.17E-09 2.52E-07 

Toll-like receptor signaling pathway 104 2.62 16 5.43E-09 3.32E-07 

Rheumatoid arthritis 91 2.29 15 6.27E-09 3.32E-07 

Hematopoietic cell lineage 97 2.44 15 1.55E-08 7.03E-07 

Cytokine-cytokine receptor interaction 294 7.41 25 7.67E-08 3.05E-06 

Chemokine signaling pathway 190 4.79 19 2.61E-07 9.21E-06 

Pertussis 76 1.92 12 3.54E-07 1.13E-05 

Chagas disease (American trypanosomiasis) 103 2.6 13 1.63E-06 4.70E-05 

Malaria 49 1.23 9 2.93E-06 7.77E-05 

Complement and coagulation cascades 79 1.99 11 3.98E-06 9.73E-05 

Phagosome 152 3.83 15 5.92E-06 0.000135 

Leukocyte transendothelial migration 112 2.82 12 2.28E-05 0.000483 

Lysosome 123 3.1 12 5.82E-05 0.00116 

Cell adhesion molecules (CAMs) 146 3.68 13 7.45E-05 0.00139 

Intestinal immune network for IgA production 49 1.23 7 0.000203 0.00359 

B cell receptor signaling pathway 71 1.79 8 0.000385 0.00645 

Legionellosis 55 1.39 7 0.000422 0.00672 

NOD-like receptor signaling pathway 178 4.49 13 0.000536 0.00811 

NF-kappa B signaling pathway 100 2.52 9 0.000897 0.013 

Influenza A 167 4.21 12 0.00101 0.014 

Inflammatory bowel disease (IBD) 65 1.64 7 0.00117 0.0155 

Natural killer cell mediated cytotoxicity 131 3.3 10 0.00168 0.0214 

TNF signaling pathway 110 2.77 9 0.00176 0.0216 

Systemic lupus erythematosus 133 3.35 10 0.00188 0.0222 

Fc gamma R-mediated phagocytosis 91 2.29 8 0.002 0.0228 

Toxoplasmosis 113 2.85 9 0.00213 0.0233 

Measles 138 3.48 10 0.00248 0.0251 

Kaposi's sarcoma-associated herpesvirus infection 186 4.69 12 0.00253 0.0251 

Transcriptional misregulation in cancer 186 4.69 12 0.00253 0.0251 

T cell receptor signaling pathway 101 2.55 8 0.00385 0.0371 

Proteoglycans in cancer 201 5.07 12 0.00475 0.0445 

Th17 cell differentiation 107 2.7 8 0.00547 0.0497 

Acute myeloid leukemia 66 1.66 6 0.00615 0.0543 

Th1 and Th2 cell differentiation 92 2.32 7 0.00835 0.0699 

Fluid shear stress and atherosclerosis 139 3.5 9 0.00835 0.0699 

Amoebiasis 96 2.42 7 0.0105 0.0852 

Prion diseases 35 0.882 4 0.0111 0.0884 

Antigen processing and presentation 77 1.94 6 0.0128 0.0978 

AGE-RAGE signaling pathway in diabetic 

complications 100 2.52 7 0.0129 0.0978 

Allograft rejection 38 0.958 4 0.0148 0.109 

Graft-versus-host disease 41 1.03 4 0.0191 0.138 
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Jak-STAT signaling pathway 162 4.08 9 0.0211 0.149 

Fc epsilon RI signaling pathway 68 1.71 5 0.028 0.194 

IL-17 signaling pathway 93 2.34 6 0.0296 0.198 

Sphingolipid signaling pathway 119 3 7 0.0304 0.198 

Epstein-Barr virus infection 201 5.07 10 0.0305 0.198 

RIG-I-like receptor signaling pathway 70 1.76 5 0.0312 0.199 

PI3K-Akt signaling pathway 354 8.92 15 0.0335 0.209 

Platelet activation 124 3.13 7 0.0369 0.225 

Asthma 31 0.781 3 0.0422 0.253 

Pathogenic Escherichia coli infection 55 1.39 4 0.0493 0.289 

HTLV-I infection 219 5.52 10 0.0499 0.289 

 

Supplementary Table 6. COAD specific Protein-Protein network analysis of 372 genes. 
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Supplementary Table 7. Pearson correlation of SMARCD3 expression with different cell types in TME. 

Cell type Spearman r 
95% confidence 

interval 

P (two-

tailed) 

P value 

summary 

Exact or approximate 

P value? 

Significant?  

(alpha = 0.05) 

Fibroblasts 0.6773 0.6158 to 0.7306 <0.0001 **** Approximate Yes 

Chondrocytes 0.6335 0.5658 to 0.6927 <0.0001 **** Approximate Yes 

Astrocytes 0.6248 0.5559 to 0.6851 <0.0001 **** Approximate Yes 

HSC 0.52 0.4385 to 0.5930 <0.0001 **** Approximate Yes 

Mesangial cells 0.4945 0.4104 to 0.5702 <0.0001 **** Approximate Yes 

Endothelial cells 0.472 0.3857 to 0.5501 <0.0001 **** Approximate Yes 

Pericytes 0.4678 0.3811 to 0.5463 <0.0001 **** Approximate Yes 

ly Endothelial cells 0.4661 0.3793 to 0.5448 <0.0001 **** Approximate Yes 

Macrophages M1 0.4653 0.3783 to 0.5441 <0.0001 **** Approximate Yes 

mv Endothelial cells 0.4469 0.3583 to 0.5275 <0.0001 **** Approximate Yes 

Adipocytes 0.4385 0.3492 to 0.5200 <0.0001 **** Approximate Yes 

Macrophages 0.4171 0.3259 to 0.5006 <0.0001 **** Approximate Yes 

aDC 0.4127 0.3211 to 0.4966 <0.0001 **** Approximate Yes 

DC 0.3992 0.3066 to 0.4843 <0.0001 **** Approximate Yes 

MSC 0.3889 0.2956 to 0.4750 <0.0001 **** Approximate Yes 

CD4+ naive T-cells 0.331 0.2336 to 0.4218 <0.0001 **** Approximate Yes 

Melanocytes 0.2645 0.1635 to 0.3600 <0.0001 **** Approximate Yes 

Monocytes 0.2571 0.1558 to 0.3531 <0.0001 **** Approximate Yes 

Megakaryocytes 0.2538 0.1524 to 0.3499 <0.0001 **** Approximate Yes 

iDC 0.23 0.1276 to 0.3276 <0.0001 **** Approximate Yes 

Neurons 0.2055 0.1022 to 0.3044 <0.0001 **** Approximate Yes 

cDC 0.1788 0.07472 to 0.2791 0.0006 *** Approximate Yes 

Eosinophils 0.1776 0.07346 to 0.2779 0.0006 *** Approximate Yes 

Myocytes 0.162 0.05742 to 0.2630 0.0019 ** Approximate Yes 

GMP 0.1603 0.05569 to 0.2614 0.0021 ** Approximate Yes 

Neutrophils 0.1258 0.02056 to 0.2283 0.016 * Approximate Yes 

CD8+ Tem 0.1173 0.01194 to 0.2201 0.0248 * Approximate Yes 

Hepatocytes 0.07119 -0.03459 to 0.1754 0.1741 ns Approximate No 

Skeletal muscle 0.06895 -0.03684 to 0.1732 0.1881 ns Approximate No 

CMP 0.06416 -0.04164 to 0.1685 0.2208 ns Approximate No 

CD4+ Tcm 0.052 -0.05381 to 0.1567 0.3212 ns Approximate No 

CD8+ Tcm 0.04653 -0.05928 to 0.1513 0.3748 ns Approximate No 

CD8+ T-cells 0.0126 -0.09304 to 0.1180 0.8102 ns Approximate No 

Tregs 0.00172 -0.1038 to 0.1072 0.9738 ns Approximate No 

CD4+ T-cells -0.008136 -0.1136 to 0.09747 0.8767 ns Approximate No 

Mast cells -0.01023 -0.1156 to 0.09539 0.8454 ns Approximate No 

Class-switched memory B-cells -0.04365 -0.1485 to 0.06215 0.405 ns Approximate No 

Tgd cells -0.05474 -0.1593 to 0.05107 0.2963 ns Approximate No 

MPP -0.06603 -0.1704 to 0.03976 0.2075 ns Approximate No 

B-cells -0.0714 -0.1756 to 0.03438 0.1729 ns Approximate No 

NK cells -0.07455 -0.1787 to 0.03121 0.1546 ns Approximate No 

Platelets -0.09096 -0.1946 to 0.01469 0.0822 ns Approximate No 

Sebocytes -0.09207 -0.1957 to 0.01358 0.0786 ns Approximate No 
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CD8+ naive T-cells -0.09239 -0.1960 to 0.01326 0.0775 ns Approximate No 

Erythrocytes -0.123 -0.2256 to -0.01773 0.0185 * Approximate Yes 

Macrophages M2 -0.1236 -0.2262 to -0.01834 0.018 * Approximate Yes 

pDC -0.1642 -0.2652 to -0.05975 0.0016 ** Approximate Yes 

CD4+ Tem -0.1811 -0.2812 to -0.07703 0.0005 *** Approximate Yes 

Preadipocytes -0.1983 -0.2976 to -0.09473 0.0001 *** Approximate Yes 

CD4+ memory T-cells -0.2133 -0.3118 to -0.1103 <0.0001 **** Approximate Yes 

Epithelial cells -0.2158 -0.3142 to -0.1129 <0.0001 **** Approximate Yes 

Basophils -0.2161 -0.3145 to -0.1132 <0.0001 **** Approximate Yes 

Memory B-cells -0.2192 -0.3173 to -0.1163 <0.0001 **** Approximate Yes 

naive B-cells -0.2487 -0.3452 to -0.1471 <0.0001 **** Approximate Yes 

Smooth muscle -0.253 -0.3492 to -0.1515 <0.0001 **** Approximate Yes 

Keratinocytes -0.2623 -0.3579 to -0.1612 <0.0001 **** Approximate Yes 

Th2 cells -0.2733 -0.3682 to -0.1727 <0.0001 **** Approximate Yes 

CLP -0.2904 -0.3842 to -0.1907 <0.0001 **** Approximate Yes 

pro B-cells -0.3101 -0.4025 to -0.2115 <0.0001 **** Approximate Yes 

MEP -0.3131 -0.4052 to -0.2146 <0.0001 **** Approximate Yes 

NKT -0.3256 -0.4168 to -0.2279 <0.0001 **** Approximate Yes 

Osteoblast -0.3262 -0.4174 to -0.2286 <0.0001 **** Approximate Yes 

Plasma cells -0.3272 -0.4183 to -0.2296 <0.0001 **** Approximate Yes 

Th1 cells -0.3425 -0.4324 to -0.2459 <0.0001 **** Approximate Yes 
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Supplementary Table 8. KEGG pathway analysis of SMARCD3 Protein-Protein network. 

Pathway Total Expected Hits P.Value FDR 

Transcriptional misregulation in cancer 186 0.769 8 6.16E-07 0.000196 

Th17 cell differentiation 107 0.443 6 4.11E-06 0.000654 

Wnt signaling pathway 158 0.653 5 0.00043 0.0415 

Th1 and Th2 cell differentiation 92 0.381 4 0.000522 0.0415 

Endocrine resistance 98 0.405 4 0.000663 0.0422 

Pathways in cancer 530 2.19 8 0.00111 0.0567 

Thyroid hormone signaling pathway 116 0.48 4 0.00125 0.0567 

Osteoclast differentiation 128 0.529 4 0.0018 0.0662 

HTLV-I infection 219 0.906 5 0.00187 0.0662 

Non-alcoholic fatty liver disease (NAFLD) 149 0.616 4 0.00312 0.0993 

AGE-RAGE signaling pathway in diabetic complications 100 0.414 3 0.00792 0.229 

Epstein-Barr virus infection 201 0.831 4 0.00899 0.238 

Thyroid cancer 37 0.153 2 0.0101 0.247 

Notch signaling pathway 48 0.199 2 0.0166 0.377 

Estrogen signaling pathway 138 0.571 3 0.0189 0.382 

Signaling pathways regulating pluripotency of stem cells 139 0.575 3 0.0192 0.382 

Breast cancer 147 0.608 3 0.0223 0.417 

Hepatitis B 163 0.674 3 0.0291 0.455 

Inflammatory bowel disease (IBD) 65 0.269 2 0.0293 0.455 

Non-small cell lung cancer 66 0.273 2 0.0302 0.455 

Epithelial cell signaling in Helicobacter pylori infection 68 0.281 2 0.0319 0.455 

MAPK signaling pathway 295 1.22 4 0.0321 0.455 

Prolactin signaling pathway 70 0.29 2 0.0336 0.455 

Bile secretion 72 0.298 2 0.0354 0.455 

PPAR signaling pathway 74 0.306 2 0.0372 0.455 

Leishmaniasis 74 0.306 2 0.0372 0.455 

Pertussis 76 0.314 2 0.0391 0.46 

Salmonella infection 86 0.356 2 0.0488 0.525 

Colorectal cancer 86 0.356 2 0.0488 0.525 

 


