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INTRODUCTION 
 

Parkinson’s disease (PD) is a clinically heterogenous 

neurodegenerative disorder associated with motor 

deficits and a spectrum of non-motor symptoms (NMS), 

including autonomic dysfunction, constipation, 

hyposmia, neuropsychiatric symptoms (cognitive 

impairment, depression and anxiety), and rapid eye 

movement (REM) sleep disorders. NMS can occur 

years before motor symptom onset, and are common 

throughout the disease [1], significantly impairing 

quality of life even at the earliest stages of PD [2]. To 

allow for risk stratification and early intervention, there 

remains a crucial need to identify patients at a higher 

risk of developing non-motor symptoms. 

 

Pathologically, non-motor symptoms in PD have been 

linked to widespread alpha-synuclein (α-Syn) pathology 

beyond the dopaminergic nigrostriatal system [3], with 

α-Syn aggregates in Lewy bodies present in multiple 

areas of the central, autonomic and peripheral nervous 

systems as well as visceral organs [4]. This systemic 

distribution of α-Syn, along with dysfunction of 

extranigral neuronal populations, is suggested to be the 

neuropathological basis of most non-motor symptoms 

[5]. Furthermore, increased α-Syn pathological burden 
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ABSTRACT 
 

Long alpha-synuclein gene (SNCA) promoter (Rep1) allele-carriers are linked to higher risk for Parkinson’s 
disease (PD) and faster motor progression. Non-motor symptoms including autonomic, neuropsychiatric, and 
sleep disorders are common in PD. However, the relationship between SNCA Rep1 microsatellite lengths and 
non-motor symptoms in early PD remains to be elucidated. 171 consecutive early PD patients were recruited 
from tertiary clinics and genotyped for Rep1. Multivariable regression analyses were performed to examine 
associations between Rep1 alleles and non-motor outcome scores. Longer Rep1 alleles significantly associated 
with higher total Non-Motor Symptom Scale (NMSS) scores (p=.006) and Hospital Anxiety and Depression Scale 
(HADS) depression subscale scores (p=.002), after adjusting for covariates and Bonferroni correction. We 
demonstrated that SNCA Rep1 allele length influences overall non-motor symptom burden and depression in 
early PD patients. Further functional studies to evaluate the role of Rep1 in non-dopaminergic systems may 
unravel new therapeutic targets for non-motor symptoms in PD. 
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has been found in familial PD patients possessing 

multiplications of the α-Syn gene (SNCA) [6]; these 

patients have early disease onset and rapidly progress to 

develop significant non-motor complications including 

dementia and psychiatric disturbances [7]. 

 

SNCA expression is regulated by non-amyloid 

component (NACP) Rep1 (GenBank DS3481), a 

polymorphic dinucleotide repeat sequence located ~10 

kilobases upstream of the SNCA transcription start site. 

Rep1 functions as a negative modulator of SNCA 
transcription, with variation in allele length resulting in 

differences in the transcriptional regulation of SNCA 

and consequently, altered α-Syn expression [8]. 

Pathologically, PD carriers of the shorter genotype 

(259/259 base pairs [bp]) display lower levels of α-Syn 

in blood and post-mortem brain tissue compared to 

those carrying longer genotypes [9]. Expanded Rep1 

alleles have also been reported in multiple cohorts to 

confer a higher risk for sporadic PD through increased 

transcription of SNCA [10–12], potentially mimicking 

SNCA locus multiplication [13]. A large global study 

found that the longer 263bp allele was associated with 

greater risk for PD, while the shorter 259bp allele was 

associated with a reduced risk for the disease [14]. 

Additionally, 263bp carriers have shown a four-fold 

increased risk of faster motor decline [15]. The strong 

biological link is further supported by studies that 

demonstrated that longer Rep1 allele carriers were more 

cognitively impaired [16] and at greater risk for 

dementia [17] than carriers of the shorter allele. No 

study, however, has yet investigated the relationship 

between Rep1 length and non-motor symptoms in PD. 

As non-motor symptoms usually do not occur in 

isolation and are not mutually exclusive, determining 

the association between the overall non-motor symptom 

burden and Rep1 may unravel new insights into the role 

of α-Syn in NMS pathophysiology. 

 
To address this gap in knowledge, we investigated the 

relationship between Rep1 allele length and NMS in a 

cohort of early PD patients. We hypothesised that 

longer Rep1 carriers will have a greater burden of non-

motor symptoms compared to short allele carriers. 

 

RESULTS 

 
One hundred and seventy-one early PD patients 

completed baseline assessments and were included in 

this cross-sectional study. They were stratified into 

short (n = 76) and long (n = 95) Rep1 carriers. 

Demographic and clinical features are summarized in 

Table 1. Mean age of the short Rep1 carrier group (63.6 

9.9 years) was not significantly different from the 

long Rep1 carrier group (64.6 7.9 years) (p = .927). 

Disease duration and motor symptom severity also did 

not differ significantly between groups (disease duration 

– Rep1-Short:1.07 0.8 years, Rep1-Long:1.09 0.6 

years, p = .334) (MDS-UPDRS Part III – Rep1-Short: 

20.8 7.9, Rep1-Long: 21.7 10.7, p = .960). APOE4 
status was available for 154 out of 171 patients. There 

were 31 APOE4 carriers (20.1%) and 123 non-carriers 

overall (Rep1-Short: 54 non-carriers (77.1%) and 16 

carriers (22.9%); Rep1-Long: 69 non-carriers (82.1%) 

and 15 carriers (17.9%)). No significant differences 

were found in non-motor assessment scores in both the 

overall sample and within each Rep1 group between 

APOE4 carriers and non-carriers. 

 

Multivariable linear regression analyses adjusted for age, 

sex, disease duration, MoCA score and LEDD revealed 

that longer Rep1 alleles were significantly associated 

with higher total NMSS scores (Rep1-Short: 14.3 ± 10.6, 

Rep1-Long: 21.0 ± 17.7,= 6.4, p = .006), as well as 

with higher scores on the HADS depression subscale 

(Rep1-Short: 2.1 ± 1.6, Rep1-Long: 3.1 ± 2.6, = 1.1,  

p = .002), and the FSS (Rep1-Short: 25.6 ± 12.6,  

Rep1-Long: 29.7 ± 14.1, = 4.4, p = .032) (Table 2). 

After adjusting for multiple tests using Bonferroni 

correction, positive correlations between Rep1 allele 

length and total NMSS as well as HADS depression 

subscale scores remained significant. No patient carried 

pathogenic mutations in SNCA, LRRK2 (Leucine-rich 

repeat kinase 2), PRKN (Parkin RBR E3 Ubiquitin 

Protein Ligase) and PINK1 (PTEN-induced kinase 1), 

but there were three GBA (Glucocerebrosidase) L444P 

carriers. These results remained after excluding all 3 

GBA L444P carriers from the analyses. 

 

DISCUSSION 
 

We demonstrated for the first time that SNCA Rep1 

polymorphism is associated with non-motor burden in a 

cohort of patients at the early stages of PD as assessed 

by the NMSS - which includes autonomic symptoms 

(cardiovascular, gastrointestinal, urinary and sexual 

function), sleep dysfunction, fatigue, apathy, mood 

disorders, psychosis, sensory symptoms, and cognition. 

Multivariable regression analyses adjusted for age, sex, 

disease duration, MoCA score, LEDD, and corrected for 

multiple testing showed significant associations 

between longer Rep1 alleles and greater overall non-

motor symptom burden as well as depressive symptoms, 

as assessed by total NMSS and HADS depression 

subscale scores respectively. We previously reported in 

a separate PD cohort with more advanced disease (mean 

disease duration of 5.2 years) that longer Rep1 allele PD 

carriers showed more cognitive and motor impairment 

than carriers of the shorter allele [16]. 

 

Interestingly, α-Syn has been implicated in psychiatric 

disorders, particularly the links between Rep1 
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Table 1. Demographic and clinical characteristics of PD patients. 

 Rep1-Short (n = 76) Rep1-Long (n = 95) P valueb 

Age, years 63.6 (9.9)a 64.6 (7.9) .927 

Sex, male 43 (56.5%) 55 (57.9%) .863 

Age at onset, years 62.5 (10.1) 63.6 (8.0) .968 

Disease duration, years 1.07 (0.8) 1.09 (0.6) .334 

MDS-UPDRS Part III: Motor 20.8 (7.9) 21.7 (10.7) .960 

H&Y stage 1.78 (0.5) 1.90 (0.5) .030 

MoCA 25.0 (3.3) 25.3 (3.8) .225 

LEDD 177.8 (114.7) 166.7 (156.5) .223 

APOE4 carriersc 16 (22.9%) 15 (17.9%) .546 

Non-Motor Assessments    

Total NMSS Score 14.3 (10.6) 21.0 (17.7) .020 

HADS Anxiety 2.2 (2.1) 2.2 (2.8) .397 

HADS Depression 2.1 (1.6) 3.1 (2.6) .020 

Apathy Scale 8.2 (5.5) 8.8 (6.6) .767 

Fatigue Severity Scale 25.6 (12.6) 29.7 (14.1) .067 

Epworth Sleepiness Scale 5.8 (3.9) 6.2 (3.4) .563 

Pittsburgh Sleep Quality Index 4.0 (3.0) 4.8 (3.3) .108 

Abbreviation: MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale; H&Y stage, Hoehn & Yahr 
stage; MoCA, Montreal Cognitive Assessment; LEDD, Levodopa Equivalent Daily Dose; NMSS, Non-Motor Symptoms Scale; 
HADS, Hospital Anxiety and Depression Scale. 
aContinuous variables reported as mean (standard deviation); categorical variables reported as n (%) 
bComparisons of variables between Rep1-Short and Rep1-Long carriers using Mann-Whitney U test for continuous variables, 
chi-squared test for categorical variables 
cAPOE4 status was available for 154 out of 171 patients (Rep1-Short: n = 70, Rep1-Long: n = 84) 
 

Table 2. Multivariable analysis on Rep1 status and non-motor symptoms in PD patients. 

 SNCA Rep1 status, long vs shorta 

B (SE) 95% CI P value 

Total NMSS Score 6.4 (2.3) 1.84 – 11.04 .006* 

HADS Anxiety 0.1 (0.4) -0.64 – 0.87 .766 

HADS Depression 1.1 (0.3) 0.40 – 1.72 .002* 

Apathy Scale 0.6 (0.9) -1.29 – 2.43 .544 

Fatigue Severity Scale 4.4 (2.0) 0.39 – 8.48 .032 

Epworth Sleepiness Scale 0.3 (0.6) -0.92 – 1.47 .654 

Pittsburgh Sleep Quality Index 0.8 (0.5) -0.12 – 1.76 .087 

Abbreviation: NMSS, Non-Motor Symptoms Scale; HADS, Hospital Anxiety and Depression Scale. 
bMultiple linear regressions with non-motor assessment scores as outcome variables and Rep1 status as independent 
variable, adjusted for age, sex, disease duration, MoCA score and LEDD, B is the unstandardized beta coefficient, and SE 
standard error. Bolded figures indicate p < 0.05. 
*Significant against Bonferroni corrected  value of p = 0.05/7 = 0.007. 
 

polymorphism and psychiatric symptoms. Longer Rep1 

alleles were more frequent in alcohol-dependent patients 

compared to healthy controls [18], and correlated with 

greater depressive symptoms in both patients with major 

depressive disorder (MDD) [19] and healthy individuals 

[20]. Depressive symptom severity in patients with MDD 

also correlated with increased SNCA mRNA levels [19]. 

Pathological evidence of the potential role of SNCA 

Rep1 and/or α-Syn specifically to PD non-motor 

symptoms have recently been elucidated in animal 

models. Using a transgenic mouse model with point 

mutation A53T, two single nucleotide polymorphisms 

(SNPs) (rs11931074 (G to T) and rs3857059 (A to G)) 

and a Rep1 polymorphism in SNCA, Taguchi et al [21] 
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observed that transgenic mice exhibited hyposmia at 9 

months of age, and REM sleep behaviour disorder 

(RBD) as early as 5 months of age. Importantly, 

phosphorylated α-Syn was found in brain regions seen 

in PD and dementia with Lewy bodies (DLB), relevant 

to these non-motor symptoms, such as the sublateral 

dorsal tegmental nucleus and olfactory bulb, consistent 

with the clinical findings. Additionally, mice 

transgenic for SNCA A53T and overexpressing α-Syn 

were also found to exhibit olfactory dysfunction, as 

well as significantly lower cholinergic neurons and 

decreased acetylcholinesterase activity in the olfactory 

bulb [22]. 

 

Evidence from neuroimaging studies also suggest 

involvement of neurotransmitter systems in the 

pathophysiology of depression in PD. Using [11C]RTI-32 

as a PET marker for dopamine and noradrenaline 

transporter binding, reduced binding was found in  

the locus coeruleus and limbic regions such as the 

anterior cingulate cortex, thalamus, amygdala and 

ventral striatum amongst depressed PD patients 

compared to non-depressed patients [23]; the loss  

of dopamine and noradrenaline innervation in these  

brain regions also associated specifically with PD 

depression. Higher levels of depressive symptoms 

amongst PD patients also correlated with greater 

serotonin transporter (5-HTT) binding in the median 

raphe nuclei and limbic regions [24], highlighting the 

link between reduced serotonergic neurotransmission 

and PD depression. 

 

These findings suggest the dysregulation of monoamine 

neurotransmitter systems in the development of 

depression in PD, and α-Syn has been shown to regulate 

dopamine, serotonin and norepinephrine transporter 

synaptic availability through subcellular binding, 

reducing the frequency of intracellular trafficking and 

resulting in reduced neurotransmitter levels at the cell 

surface [25]. Increased α-Syn levels, therefore, may lead 

to the dysregulation of dopaminergic, serotonergic and 

norepinephrine pathways [26] which mediate symptoms 

of mood disorders including depression [27, 28]. This is 

in keeping with the pathological hypothesis of 

depression as a result of neural system dysfunction in 

brain regions of the amygdala, hippocampus and 

prefrontal cortex, which are modulated by monoamine 

neurotransmitter systems [29]. Our findings that PD 

carriers of longer Rep1 alleles display more depressive 

symptoms might be explained by the modulating effect 

of increased SNCA expression resulting in greater 

dysregulation of neurotransmitter systems. 

 

Fatigue in PD has been linked to serotonergic 

dysfunction within the basal ganglia and associated 

brain regions; PD patients with fatigue had significantly 

reduced serotonin transporter availability (as measured 

by PET ligand 11C-DASB) in striatal and limbic  

regions compared to patients without fatigue, 

suggesting that PD fatigue is associated with reduced 

serotonergic function in these areas [30], providing a 

pathophysiological basis for the trend towards an 

association between Rep1 allele length and FSS scores 

seen in our study. However, given the fundamental 

difficulty in defining PD fatigue [31], elucidating its 

pathological basis is challenging and evidence for a 

serotonergic basis of PD fatigue remains limited and 

inconclusive. 

 

A limitation of our study remains that individual in-depth 

assessments for psychosis, autonomic and sensory 

symptoms, were not included in the present study. These 

assessments will be included in future longitudinal 

studies. 

 

In conclusion, our study highlights that polymorphic 

variation in Rep1 is associated with non-motor 

symptom burden, in PD patients at early stages of the 

disease. Further longitudinal studies to assess in more 

detail the effects of Rep1 on psychosis, autonomic and 

sensory symptoms as well as functional studies to 

evaluate the role of Rep1 in non-dopaminergic systems 

may unravel new therapeutic targets for non-motor 

symptoms in PD. Identifying genetic contributions to 

PD non-motor symptoms will aid in early identification 

and stratification of patients at higher risk for non-motor 

symptoms, which will facilitate therapeutic monitoring 

and understanding of PD pathophysiology. 

 

MATERIALS AND METHODS 
 

Clinical recruitment and assessments 
 

Subjects were recruited under the Early Parkinson’s 

Disease Longitudinal Singapore Study (PALS) between 

2014 and 2019. All subjects fulfilled the National 

Institute of Neurological Disorders and Stroke (NINDS) 

criteria for a diagnosis of PD [32]. PD diagnosis had to 

be made less than a year before recruitment, with motor 

symptom onset less than two years prior to diagnosis. 

Patients with a history of significant neurological or 

psychiatric conditions were excluded. No familial PD 

patients were included; however, there were 9 patients 

who reported a history of PD in a first-degree relative, 

and 2 patients who reported a history of PD in a second-

degree relative. Ethics approval was obtained from the 

relevant institutional review committee, and all subjects 

provided informed consent. 

 

Functional status was determined using the Hoehn & 

Yahr (H&Y) rating scale [33] and motor symptom 

severity using the Movement Disorder Society Unified 
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Parkinson’s Disease Rating Scale (MDS-UPDRS) Part 

III motor component [34]. Cognitive function was 

assessed using the Montreal Cognitive Assessment 

(MoCA) [35]. Where dopaminergic therapy had begun, 

the dosage was calculated and reported as cumulative 

levodopa equivalent daily dose (LEDD). 

 

Overall non-motor symptom burden was screened for 

using the total score for the Non-Motor Symptoms 

Scale (NMSS) [36], which comprises nine domains 

each assessing a non-motor feature. Additionally, 

anxiety and depression were assessed specifically using 

the Hospital Anxiety and Depression Scale (HADS) 

[37], while levels of apathy and fatigue were evaluated 

via the Apathy Scale [38] and Fatigue Severity Scale 

(FSS) [39]. Sleep dysfunction was assessed using both 

the Epworth Sleepiness Scale (ESS) [40] and Pittsburgh 

Sleep Quality Index (PSQI) [41]. Higher scores indicate 

greater non-motor symptom severity and burden. 

 

SNCA Rep1 Polymorphism Genotyping 
 

Fragment length analysis of SNCA Rep1 was performed 

using polymerase chain reaction (PCR) according to 

previous methods [16]. Rep1 allele lengths were coded 

as described by Farrer and colleagues [10]. Subjects 

carrying allele lengths coded as 1 or 2 were classified as 

“short” carriers, while those carrying allele lengths 

coded as 3 were classified as “long” carriers. 

 

Statistical analysis 

 

Demographic and clinical characteristics were compared 

between long and short Rep1 groups using the Mann-

Whitney U test for continuous variables, and chi-squared 

test for categorical variables. Multivariable linear 

regressions were performed to investigate the association 

between Rep1 allele length and non-motor outcomes, 

adjusting for statistical and clinical confounders (age, 

sex, disease duration, MoCA score and LEDD). 

Significance level was set at p < 0.05, with adjustments 

made using Bonferroni correction for multiple testing. 

Statistical analysis was performed using IBM SPSS 

Statistics, version 21.0. 
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