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INTRODUCTION 
 

Ovarian cancer (OVC) is one of the most common 

gynecologic cancers worldwide, with increasing 

morbidity and mortality [1]. There are approximately 

239,000 new diagnosed cases, accounting for 3.6% of 

new cases by population, and 152,000 deaths, accounting 

for 4.3% of cancer-related deaths in the population each 

year [1]. Although OVC patients can be managed by a 

series of therapeutic methods, including surgical 

resection, radiation therapy, chemotherapy and 

molecular-targeted therapy, the overall 5-year survival of 

OVC remains poor [2]. Moreover, owing to the lack of 

effective screening tests and early specific warning signs, 

most OVC patients are diagnosed at advanced stages [2]. 

Therefore, there is an urgent need to deeply understand 

the molecular mechanisms underlying the initiation and 

progression of OVC to improve early diagnosis, predict 

prognosis and develop effective therapeutics.  

 

Salmena et al. first proposed the competing endogenous 

RNA (ceRNA) hypothesis in 2011 [3]. The central 

concept of the ceRNA hypothesis is that coding 

messenger RNAs (mRNAs) and noncoding RNAs 

(ncRNAs) share the same microRNA (miRNA) 

response elements (MREs) with miRNAs. ncRNAs act 

as natural miRNA "sponges" and inhibit the potential 

function of miRNAs on mRNAs through recognition 

and combining the MREs on miRNAs, which release 

miRNAs from target mRNAs and promote the 
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ABSTRACT 
 

Long noncoding RNA (lncRNA) can function as a competing endogenous RNA (ceRNA) involved in tumor initiation 
and progression. However, the prognostic roles of lncRNAs in the integrated analysis of the ceRNA network in 
ovarian cancer (OVC) are still lacking. This study aimed to identify lncRNAs associated with the prognosis of OVC. 
Differential expression analysis and WGCNA were used to screen OVC-specific RNAs. A lncRNA-miRNA-mRNA 
regulatory network consisting of 201 lncRNAs, 85 miRNA and 146 mRNAs was constructed, and functional 
enrichment and protein-protein network analyses were performed. Then, the OVC-specific RNAs were submitted 
to Cox regression analysis. Twelve differentially expressed lncRNAs and mRNAs were identified as significantly 
associated with OS of OVC patients. Meanwhile, 11 lncRNAs (including C4A-AS1, LINC02408, LINC00488) were 
established as prognostic risk formulas. The low-risk group had better OS and DFS than the high-risk group (P 
<0.01). Univariate and multivariate Cox regression analyses revealed the 11-lncRNA risk score as an independent 
prognostic factor. A prognostic nomogram was developed based on independent prognostic factors. Our data 
provide evidence that the 11-lncRNA signature could serve as an independent prognostic indicator. This study also 
suggests that these 11 lncRNAs potentially participate in the progression of OVC. 
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expression of mRNAs [3, 4]. This novel molecular 

mechanism between ncRNAs and mRNAs has been 

proven to be involved in the initiation, progression, 

invasion and metastasis of cancers [5–7]. 

 

Long noncoding RNAs (lncRNAs), a subtype of 

ncRNAs, have attracted increasing attention in recent 

years. Accumulating evidence has demonstrated that 

lncRNAs contribute to the regulation of gene expression 

at the transcriptional and post-transcriptional levels and 

chromatin modifications [8–10]. Although the complete 

mechanisms of lncRNAs remain unclear, growing 

evidence supports that lncRNAs can function as 

ceRNAs that attract miRNAs to indirectly regulate the 

expression of target mRNA, influencing tumorigenesis 

and tumor progression [11–14]. Previous studies have 

shown that abnormal expression of lncRNAs can affect 

the biological process of OVC through the ceRNA 

approach [15–23]. However, most of these studies 

focused on a single lncRNA-miRNA-mRNA axis and 

were verified in limited sample sizes [15, 17–23]. 

Currently, there is still a lack of comprehensive 

analyses of the lncRNA-miRNA-mRNA regulatory 

network in OVC with large-scale sample sizes.  

 

Here, we obtained RNA-Seq data and compared the 

differential expression profiles between 371 OVC 

samples obtained from The Cancer Genome Atlas 

(TCGA) database and 88 normal ovarian tissues 

obtained from Genotype-Tissue Expression (GTEx) 

database. The mRNAs and lncRNAs were also applied 

to weighted correlation network analysis (WGCNA) to 

enrich modules that were most related to OVC. 

Subsequently, the lncRNA-miRNA-mRNA regulatory 

network for OVC was constructed through an integrated 

analysis. Next, we performed an overall survival 

analysis of lncRNAs and mRNAs in the ceRNA 

network to identify OVC-related prognostic biomarkers, 

and a survival model with 11 target lncRNAs was 

established. Finally, a prediction nomogram based on 

the clinical features and 11 target lncRNA survival 

model was constructed to predict OVC prognosis. 

 

RESULTS 
 

Identification of significantly differentially expressed 

lncRNAs and mRNAs  
 

According to the annotation information of Ensembl and 

miRbase databases, 14,148 lncRNAs, 19,645 mRNAs 

and 2,588 miRNAs were annotated. After removing the 

low-abundance genes, 8,860 lncRNAs, 18,438 mRNAs 

and 1,104 miRNAs were retained. Based on the given 

threshold, 3,279 differentially expressed lncRNAs 

(DElncRNAs), of which 2,210 DElncRNAs were 

upregulated and 1,069 DElncRNAs downregulated, and 

4,789 differentially expressed mRNAs (DEmRNAs), of 

which 3,145 DEmRNAs were upregulated and 1,644 

DEmRNAs downregulated, were identified between 

OVC tissues and normal tissues (Figure 1A and 2A). 

 

Weighted correlation network analysis 

 

The top 5000 most variant lncRNAs, measured by the 

median absolute deviation (MAD), were selected for the 

WGCNA. To obtain a higher average connectivity degree 

in the lncRNA group, the soft threshold power was set to 

7, which was the lowest threshold to make the scale-free 

R
2
 reach 0.85 (Figure 1B). Then, the cluster dendrogram 

was clustered based on the selected threshold, and 5 color 

modules were identified in the lncRNA group (Figure 

1C). The lncRNAs that could not be included in any 

module were put into the gray module, which was 

removed in the subsequent analysis. The other four 

modules were represented in blue, yellow, turquoise and 

brown (Figure 1C). The relationship between modules 

and traits (OVC tissues and normal tissues) is shown in 

Figure 1D. Among these four modules, the turquoise 

module (R = 0.87, P < 0.01) and blue module (R = -0.84, 

P < 0.01) were significantly correlated with OVC (Figure 

1D). Intra-modular analysis found that lncRNAs in the 

blue (R = 0.95, P < 0.01) and turquoise modules (R = 

0.99, P < 0.01) were also highly correlated with OVC 

(Figure 1E, 1F). 

 

Similarly, the top 5000 most variant mRNAs were 

selected for the WGCNA. As shown in Figure 2B, the 

soft threshold power was set to 18 to ensure a scale-free 

network, and we obtained eight modules for the next 

analysis (Figure 2C). Then, mRNAs in the eight color 

modules were continuously used to analyze the 

relationship between modules and traits (OVC tissues 

and normal tissues) (Figure 2D). The blue module (R = 

0.89, P < 0.01) was positively associated with OVC, 

while the turquoise module (R = -0.84, P < 0.01) was 

negatively correlated with OVC (Figure 2D). Intra-

modular analysis showed that mRNAs in both the 

turquoise module (R = 0.96, P < 0.01) and blue module 

(R = 0.99, P < 0.01) were highly related with OVC 

(Figure 2E, 2F). 

 

Functional enrichment analysis for the overlapped 

mRNAs 

 

The blue and turquoise modules, which were closely 

related to OVC, were selected and intersected with the 

above 4,789 DEmRNAs. In total, 1,827 mRNAs were 

obtained (Figure 3A, 3B). With a threshold of FDR < 

0.01, GO enrichment analysis determined that 87 BP 

terms, 29 CC terms and 23 MF terms were significantly 

enriched in the overlapped mRNAs. KEGG pathway 

analysis revealed that 17 statistically significant 
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Figure 1. Differential expression analysis and weighted correlation network analysis for the lncRNAs. The volcano plots of 
differentially expressed lncRNAs. The green dots indicate significantly downregulated genes, the red dots indicate significantly upregulated 
genes, while the black dots indicate genes with no significant difference. (A) Identification of the soft threshold according to the standard of 
the scale-free network. The red line represents the threshold line of 0.85. (B) Clustering dendrogram of lncRNAs with dissimilarity based on 
the topological overlap together with assigned module colors. (C) Relationships between lncRNA modules and clinical traits. The correlation 
coefficient (upper number) and the corresponding P-value (lower number) in each cell resulted in the correlation between the lncRNA 
module and the clinical trait. (D) The scatterplot of gene significance vs. module membership in the lncRNA-based blue module. (E) The 
scatterplot of gene significance vs. module membership in the lncRNA-based turquoise module. (F) The scatterplot of gene significance vs. 
module membership in the lncRNA-based blue module. 
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Figure 2. Differential expression analysis and weighted correlation network analysis for the mRNAs. (A) The volcano plots of 

differentially expressed mRNAs. The green dots indicate significantly downregulated genes, the red dots indicate significantly upregulated 
genes, while the black dots indicate genes with no significant difference. (B) Identification of the soft threshold according to the standard of 
the scale-free network. The red line represents the threshold line of 0.85. (C) Clustering dendrogram of mRNAs with dissimilarity based on 
the topological overlap together with assigned module colors. (D) Relationships between mRNA modules and clinical traits. The correlation 
coefficient (upper number) and corresponding P-value (lower number) in each cell resulted in the correlation between the mRNA module and 
the clinical trait. (E) The scatterplot of gene significance vs. module membership in the mRNA-based turquoise module. (F) The scatterplot of 
gene significance vs. module membership in the mRNA-based blue module. 
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signaling pathways were concentrated on the 

overlapped mRNAs. The top 10 terms of functional 

enrichment analysis are shown in Figure 3C.  

 

Construction of the lncRNA-miRNA-mRNA 

regulatory network  

 

Overall, 1,885 lncRNAs, 1,827 mRNAs and 1,104 

miRNAs were used to build the ceRNA regulatory 

network. According to the hypothesis of ceRNA, the 

candidate ceRNA triplets should meet the following 

criteria: (1) the lncRNA-mRNA interaction shows 

significantly positive correlations; (2) the miRNA-

mRNA interaction and lncRNA-miRNA interaction 

show significantly negative correlations; (3) the 

lncRNA-miRNA-mRNA triplets show significant 

results in hypergeometric testing. Finally, the lncRNA-

miRNA-mRNA ceRNA regulatory network, including 

201 lncRNAs, 85 miRNAs and 146 mRNAs, was 

established based on the interactions of 487 lncRNA-

miRNA pairs and 248 miRNA-mRNA pairs (Figure 

4A). The expression of these 201 lncRNAs and 146 

mRNAs between 371 OVC tissues and 88 normal 

tissues is shown in Figure 4B.  

 

 
 

Figure 3. The overlapped genes and enrichment analysis. (A, B) The Venn diagram and the UpSet plots of overlapped genes between 
differential expression analysis and weighted correlation network analysis. (C) The top 10 significantly enriched Gene Ontology (GO) 
biological process (BP) terms, cellular component (CC) terms, molecular function (MF) terms and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways. 
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Figure 4. The ceRNA regulatory network and functional analysis. (A) The ceRNA network of lncRNA-miRNA-mRNA. The lncRNAs, 
miRNAs and mRNAs are indicated as blue, green and red, respectively. (B) The heatmap of the expression of 347 selected RNAs (201 lncRNAs 
and 146 mRNAs) in the ceRNA regulatory network. (C) The top 10 significantly enriched Gene Ontology (GO) biological process (BP) terms of 
mRNAs involved in the ceRNA regulatory network. (D) The top 10 significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways of mRNAs involved in the ceRNA regulatory network. (E) The protein-protein interaction network. The greater the degree of the 
node, the bigger the node. 
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Functional enrichment and PPI analyses of the 

mRNAs in the ceRNA regulatory network 
 

Based on the functional enrichment analysis, the 146 

mRNAs involved in the identified ceRNA regulatory 

network were remarkably enriched for 55 GO BP 

terms and 13 KEGG pathways (FDR < 0.05). The top 

10 enriched GO BP terms, mainly including 

"regulation of phospholipase activity", "extracellular 

structure organization", "positive regulation of 

phospholipase activity" and several system 

development-related terms, are shown in Figure 4C. 

The top 10 enriched KEGG pathways, mainly 

including the "Hippo signaling pathway", "AGE-

RAGE signaling pathway in diabetic complications", 

"PI3K-Akt signaling pathway" and several other 

cancer-related pathways, are shown in Figure 4D. 

 

With the threshold of a minimum required interaction 

score > 0.4, the STRING database was used to 

construct a PPI network based on the 146 mRNAs 

involved in the identified ceRNA regulatory network. 

After wiping out the isolated nodes in the network, 96 

nodes and 180 edges were mapped in the PPI network 

(Figure 4E). The top 3 mRNAs with the highest 

degrees were FGF2 (degree = 17), KIT (degree = 13) 

and NCAM1 (degree = 11). 

 

Prognosis values of lncRNAs and mRNAs in the 

ceRNA network 
 

To identify the mRNAs and lncRNAs with potential 

prognostic value in predicting OS, survival analyses of 

146 mRNAs and 201 lncRNAs in the ceRNA regulatory 

network were conducted using the univariate Cox 

proportional hazards regression model. The results 

showed that 24 RNAs, including 12 mRNAs and 12 

lncRNAs, were significantly associated with OS (Figure 

5A, 5B). Among these significant RNAs, six lncRNAs 

(TYMSOS, LINC01619, LINC00488, CHRM3-AS2, 

AL391069.3 and AC104667.2) and two mRNAs 

(ABCG8 and MYCN) were negatively associated with 

OS (P < 0.05). In comparison, the remaining six 

lncRNAs (PCOLCE-AS1, MEF2C-AS1, LINC01558, 

HOXB-AS2, CACNA1G-AS1 and AC026904.1) and ten 

mRNAs (ZCCHC24, NBL1, SLC22A3, GFPT2, 

LRRC17, TCF15, PTGIS, FSTL3, PRDM6 and 

ARHGAP6) were positively associated with OS (P < 

0.05). Based on their respective optimal cut-offs, 

Kaplan-Meier curves of these 12 mRNAs and 12 

lncRNAs associated with OS were drawn (Figure 5C, 

5D). The results of the Kaplan-Meier curve analysis and 

log-rank test of these 24 RNAs were proven to be 

consistent with the results of the univariate Cox 

regression analysis. Furthermore, we extracted the OS-

specific ceRNA sub-network of these 24 RNAs. As 

shown in Figure 5E, The OS-specific ceRNA sub-

network contained 4 RNA molecules, including 6 OS-

related lncRNAs, 14 interacting miRNAs and 9 OS-

related mRNAs. 

 

Construction of the OVC-specific lncRNA-based 

prognostic signature 
 

Through the univariate Cox regression analysis, we 

identified 30 potential OS-associated lncRNAs (Figure 

6A). Then, we used the LASSO regression model to 

further identify an optimal subset of the lncRNA-based 

signature reliably associated with OS. As a result, 11 

lncRNAs, including C4A-AS1, LINC02408, 

AC087521.1, LINC00488, AC010275.1, CHRM3-AS2, 

LINC00337, Z98257.1, AC104667.2, SOCS2-AS1 and 

CACNA1G-AS1, were identified for modeling (Figure 

6B, 6C). Furthermore, a lncRNA-based risk score was 

developed by integrating the expression data for these 

11 lncRNAs with corresponding coefficients weighted 

by the LASSO model as follows: Risk score = (0.147 × 

LINC02408 expression value) + (-0.066 × LINC00488 

expression value) + (-0.161 × LINC00337 expression 

value) + (0.104 × Z98257.1 expression value) + (-0.129 

× CHRM3-AS2 expression value) + (-0.14 × C4A-AS1 

expression value) + (-0.156 × AC104667.2 expression 

value) + (0.088 × AC087521.1 expression value) + (-

0.159 × SOCS2-AS1 expression value) + (0.096 × 

AC010275.1 expression value) + (0.111 × CACNA1G-

AS1 expression value).  

 

The risk score was calculated for all 371 OVC patients 

with the lncRNA-based prognostic signature. The 

accuracy of this prognostic signature in OVC long-term 

OS predictions was evaluated by ROC curves. The 

values of the area under the ROC (AUC) for the 1-year, 

3-year and 5-year OS prediction models was 0.67, 0.688 

and 0.702, respectively (Figure 6D). After estimating 

the maximally selected rank statistics, patients were 

divided into two groups based on the optimal risk score 

cut-off (0.612). Patients with risk scores higher than 

0.612 were classified into the high-risk group (283 

patients), whereas those with risk scores less than or 

equal to the cut-off value were allocated to the low-risk 

group (88 patients). Survival analysis suggested that 

high-risk patients were at a markedly increased risk of 

death in OVC and predicted a shorter OS (Figure 6F 

and 6H). The heatmap revealed that the expression of 

these 11 lncRNAs varied by risk score (Figure 6J). This 

prognostic signature also showed an excellent 

performance to predict disease-free survival (DFS) 

(Figure 6E, 6G, 6I, 6K). In the TCGA-DFS dataset  

(n = 177), the AUC for this prognostic signature for the 

1-year, 3-year and 5-year DFS prediction models were 

0.658, 0.676 and 0.728, respectively (Figure 6E). Based 

on the same cut-off (0.612), patients in the low-risk 
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Figure 5. Survival analysis for lncRNAs and mRNAs in the ceRNA network. (A, B) Forest plots of hazard ratios (HR) of survival-
associated mRNAs and lncRNAs in the ceRNA regulatory network. (C, D) Kaplan-Meier survival curves for mRNAs and lncRNAs. The horizontal 
axis indicates the overall survival time in days, and the vertical axis shows the survival rate. (E) The OS-specific ceRNA sub-network. The 
lncRNAs, miRNAs and mRNAs are indicated as blue, green and red, respectively. 
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Figure 6. Identification and performance evaluation of the 11-lncRNA signature. (A) Forest plots of hazard ratios (HR) of the 30 
potential OS-associated lncRNAs.(B) Selection of the tuning parameter (lambda) by ten-fold cross-validation based on the minimum criteria 
for OS. (C) The coefficient profiles of the 30 potential OS-associated lncRNAs at varying levels of penalty. (D, E) The time-dependent ROC 
curves of the 11-lncRNA signature in predicting OS and DFS. (F, G) Kaplan-Meier curves of patients with low or high risk in the TCGA-OS 
cohort and TCGA-DFS cohort. (H, I) Risk score distribution and survival status of patients in the TCGA-OS cohort and TCGA-DFS cohort. (J, K) 
RNA expression heat map of the 11 prognostic signature between low-risk and high-risk groups in the TCGA-OS cohort and TCGA-DFS cohort. 
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group had better survival time than those in the high-

risk group and a decreased risk of death (Figure 6G, 6I). 

 

Expression of the 11 lncRNAs was analyzed among 

normal tissues, tumor high-risk and tumor low-risk 

groups. As shown in Figure 7, all 11 lncRNAs among the 

three groups were significantly differentially expressed. 

Furthermore, the expression of Z98257.1 in the high-risk 

group was not significantly higher than that in the low-

risk group; the other ten lncRNAs were significantly 

differentially expressed between every two-group 

comparison (Figure 7H). Coexpression analysis revealed 

that these 11 lncRNAs showed a weak or moderate-

intensity of coexpression interactions as evaluated by the 

Pearson correlation coefficient (Figure 7L).  

 

To investigate whether the prognostic value of the 11-

lncRNA signature was independent of other clinical 

variables, we performed univariate and multivariate Cox 

regression analysis, which included risk score, age, race, 

TNM classification, venous invasion and lymphatic 

invasion as covariates. The results showed that either in 

the TCGA-OS dataset (HR = 1.36, P < 0.0001) or the 

TCGA-DFS dataset (HR = 1.32, P < 0.0001), the 11-

lncRNA risk score was an independent prognostic factor 

(Table 1). In addition, age (HR = 1.02, P = 0.01) and race 

(HR = 0.55, P = 0.0052) were also independent 

prognostic factors of OS (Table 1). Therefore, the 11-

lncRNA signature may offer an approach for risk 

assessment and predict the prognosis of OVC patients. 

 

The analysis of the hallmark pathway gene sets 

highlighted that the 50 key signaling pathways in OVC 

samples were quite different between the high- and low-

risk groups (Figure 8A, 8B). Of note, OVC samples in 

the high-risk group were most significantly enriched for 

TGF-, NOTCH-, WNT-, HEDGEHOG-, KRAS- and 

EMT (epithelial-mesenchymal transition) signaling 

pathways. In comparison, OVC samples in the low-risk 

group were most significantly enriched for MYC-, 

MTORC1- and some hormonal fluctuations and 

metabolism pathways. 

 

Construction of a nomogram integrating the 11-

lncRNA signature and clinical factors  

 

Considering the clinical relevance and prognostic 

value of age and race, a nomogram based on the 11-

lncRNA signature, age and race was established 

(Figure 8C and Table 1). Calibration curves for 

estimating 1-year, 3-year and 5-year survival showed 

that there were good correlations between the 

prediction made by the nomograms and the actual 

observation (Figure 8D). The results suggested that the 

nomogram could accurately predict 1-year, 3-year and 

5-year survival of OVC patients. 

DISCUSSION 
 

OVC is the most serious gynecologic cancer and one of 

the leading causes of female cancer death [24]. Despite 

rapid developments in surgical technique, radiotherapy 

and chemotherapy, the overall five-year survival rate of 

OVC remains poor [25]. Because of the variation in 

hyphology, OVC is regarded as a highly heterogeneous 

disease, and this heterogeneity is an obstacle for proper 

assessment and treatment [24]. Despite this known 

predicament, standard treatment of surgical resection 

followed by platinum- and taxane-based chemotherapy 

are still needed [26]. Frustratingly, recurrence after the 

initial surgery and first line chemotherapy may result in 

platinum-resistant diseases, leading to a poor prognosis 

[27]. Drug-resistant OVC recurrence is conceivably due 

to the ability of drug-resistant cells to escape from the 

surgery and first line chemotherapy [28]. Meanwhile, 

the role of the immune system and surrounding 

microenvironment in drug-resistant OVC recurrence is 

nonnegligible. Immunotherapy after “canonical” 

chemotherapy seems to be a future option [28]. On the 

other hand, the danger of benign diseases is often 

overlooked. For example, patients suffering from 

endometriosis bear a stronger risk of hematopoietic and 

ovarian cancer [29].  

 

The important roles of the genome and transcriptome in 

OVC cells have received increasing attention. 

Substantial evidence has suggested that the disruption 

of ceRNA interactions plays an essential role in the 

pathogenesis of OVC. For example, the lncRNA PTAR 

induces epithelial-mesenchymal transition by 

competitively binding miR-101-3p to regulate ZEB1 

expression [23]. The lncRNA SNHG6 promotes cell 

proliferation and migration through sponging miR-4465 

to modulate EZH2 expression [18]. However, previous 

studies have mainly focused on a single lncRNA-

miRNA-mRNA axis with a limited sample size. 

Understanding the landscape of the OVC-specific 

ceRNA regulatory network could lead to deep insight 

into molecular networks and provide potential 

therapeutic targets. Here, we comprehensively explored 

the interactions among lncRNA, miRNA and mRNA to 

elucidate the landscape of the ceRNA network in OVC. 

 

In the present study, we systematically analyzed OVC-

related RNA-Seq data from the TCGA and GTEx 

databases. Overall, 3,279 DElncRNAs and 4,789 

DEmRNAs were identified between the OVC tissues 

and normal tissues by differential expression analysis. 

Meanwhile, we found that 2,950 lncRNAs and 2,559 

mRNAs were most significantly associated with OVC 

tumor status by WGCNA. To improve reliability, the 

OVC-specific RNAs were defined as the intersecting 

RNAs of these two approaches. Finally, 1,885 lncRNAs 
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Figure 7. Expression of the 11 prognostic signature lncRNAs among normal ovarian tissues, SOC tumor high-risk and SOC 
tumor low-risk groups. (A–K) The expression level of the 11 prognostic signature RNAs among normal tissue, high-risk and low-risk groups. 

(L) Correlation among these 11 prognostic signature RNAs. Numbers indicate the Pearson coefficients. 
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Table 1. Univariate and multivariate Cox regression analysis of the 11-lncRNA signature and clinical factors associated 
with OS. 

 Univariate analysis Multivariate analysis 

HR (95% CI) P value HR (95% CI) P value 

OS cohort (n=371)     

Age 1.02 (1.01, 1.03) 0.00182 1.02 (1.00, 1.03) 0.01 

Race (white vs. not white) 0.58 (0.38, 0.88) 0.0114 0.55 (0.36, 0.84) 0.0052 

TNM classification (III and IV vs. I and II) 1.99 (0.88, 4.49) 0.0959   

Venous invasion 0.90 (0.49, 1.68) 0.7521   

Lymphatic invasion 1.41 (0.83, 2.38) 0.2055   

Risk score 1.38 (1.25, 1.51) <0.0001 1.36 (1.23, 1.49) <0.0001 

DFS cohort (n = 177)     

Age 1.00 (0.98, 1.02) 0.9788   

Race (white vs. not white) 0.83 (0.45, 1.56) 0.5696   

TNM classification (III and IV vs. I and II) 1.54 (0.78, 3.03) 0.2144   

Venous invasion 1.09 (0.53, 2.26) 0.8173   

Lymphatic invasion 1.17 (0.62, 2.21) 0.6348   

Risk score 1.32 (1.15, 1.51) <0.0001 1.32 (1.15, 1.51) <0.0001 

 

and 1,827 mRNAs were determined to be OVC-specific 

RNAs, which were further used to build the ceRNA 

regulatory network.  

 

According to the ceRNA theory, we constructed a 

lncRNA-miRNA-mRNA regulatory network, including 

201 lncRNAs, 85 miRNAs and 146 mRNAs. Then, we 

performed functional enrichment analysis and built the 

PPI network to explore the potential mechanism of the 

ceRNA network. As expected, the target genes were 

mainly enriched for pathways related to OVC. For 

instance, the "PI3K-Akt signaling pathway" was the 

most frequently altered intracellular pathway in OVC 

[30, 31]. "Hippo signaling pathway", "MAPK signaling 

pathway" and "Ras signaling pathway" were also 

associated with the progression of OVC, which further 

supports the accuracy and reliability of the results of our 

enrichment analysis [32–34]. Of note, we found that the 

target genes in the ceRNA regulatory network were also 

enriched for pathways associated with many other 

cancers, such as breast cancer, melanoma, gastric 

cancer, and small cell lung cancer. This indicated that 

the ceRNA regulatory network in our study was 

universal in human cancer and might play an essential 

role in the tumorigenesis and development of multiple 

cancers. From the PPI network, we found that most 

mRNAs had protein interactions with each other, and 

the top 3 hub genes in the PPI network were FGF2, KIT 

and NCAM1, all of which have been reported as OVC-

associated genes [35–37]. Finally, the relationships 

between the expression of these RNAs and OS were 

investigated. As a result, 12 mRNAs and 12 lncRNAs in 

the ceRNA regulatory network were identified to 

associate with OS in OVC patients. Interestingly, these 

24 OS-related RNAs formed 4 OS-specific ceRNA 

molecules. We believe that in-depth insight into the 

regulatory mechanisms of the 4 OS-specific ceRNA 

molecules could inform new approaches to the 

treatment of OVC. 

 

Subsequently, we identified an 11-lncRNA-based 

signature using LASSO regression, which showed 

excellent performance in the prediction of both the OS 

and DFS of OVC patients. Multivariate Cox regression 

analysis determined that this 11-lncRNA-based 

signature was an independent prognostic indicator for 

both OS and DFS. The ROC curves showed that this 

prognostic signature could effectively predict both early 

and late survival, all of which suggested that our 

prognostic signature was closely associated with the 

prognosis of OVC.  

 

Among the 11 lncRNAs, their expression was 

significantly different among normal tissues, tumor 

high-risk and tumor low-risk groups or even between 

every two groups. This indicated that all 11 lncRNAs 

might serve as critical regulatory factors in the 

tumorigenesis and development of OVC and could 

therefore act as novel biomarkers and therapeutic target 

candidates. Consistent with our results, lung 

adenocarcinoma patients with highly expressed 

AC087521.1 had a shorter survival time [38]. Highly 

expressed LINC00488 was significantly associated with 

prolonged survival for patients with colorectal cancer 
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[39, 40]. SOCS2-AS1 was highly expressed and 

correlated with a high survival rate in colorectal cancer 

patients [41]. The overexpression of CACNA1G-AS1 in 

hepatocellular carcinoma patients was linked to a low 

survival rate [42]. Of note, SOCS2-AS1 and CACNA1G-

AS1 can act as a ceRNA to participate in tumorigenesis 

and development [41, 42]. These studies verified the 

accuracy of our results, which increased the credibility 

of our study.  

Finally, a prognostic nomogram was developed based 

on independent prognostic factors associated with OS. 

This nomogram could accurately predict the 1-year, 3-

year and 5-year survival of OVC patients. A low score 

represents a prolonged OS, while a high score indicates 

a poor OS. In clinical practice, if the patients have a 

higher score, closer follow-up and adequate treatment 

are necessary. Our GSVA analysis also revealed the 

different molecular mechanisms between low-risk and 

 

 

 
 

Figure 8. Gene Set Variation Analysis (GSVA) analysis and nomogram for the prediction of prognosis. (A) The heatmap of GSVA 

scores of the 50 key pathways between high-risk and low-risk groups. (B) Differences in pathway activities scored by GSVA between high-risk 
and low-risk groups. The blue column indicates activated pathways in the high-risk group, and the green column indicates activated pathways 
in the low-risk group. (C) Nomogram prediction of 1-year, 3-year and 5-year OS. For race, 0 means white, and 1 means not white. 
(D) Calibration curves of observed and predicted probabilities for the nomogram. 
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high-risk groups, which provided the basis for 

individualized treatment plans. 

 

The novel OVC risk formula will be beneficial to the 

tailored individualized therapy and prognosis of OVC 

patients. Along with the development of a prognostic 

surveillance system, the changing state of the disease 

could be monitored by the doctor. At the same time, 

synthetic anticancer drugs are increasingly being 

developed and prepared for clinical application, such 

as solasodine acetate and N7mdG [43, 44]. To prevent 

cancer, the concept of a cancer vaccine was proposed. 

Nanoparticles and nanomaterials have been promised 

as delivery vectors for cancer vaccines [45].  

 

In conclusion, our study depicts a landscape of the 

lncRNA-miRNA-mRNA ceRNA from multiple 

dimensions and provides serval candidate biomarkers 

and therapeutic targets for OVC patients. Moreover, an 

11-lncRNA-based signature was constructed to predict 

the prognosis of OVC, which might serve as a 

therapeutic decision marker. Our findings provide novel 

insight into the lncRNA-related regulatory mechanism 

of the ceRNA network in OVC and might be the 

foundation for future basic and clinical research. 

 

MATERIALS AND METHODS 
 

Patients and samples 
 

The RNA-Seq data and clinical phenotype information 

of OVC tissues obtained from the TCGA project and 

normal tissues obtained from the GTEx project were 

downloaded from the UCSC Xena database (http:// 

www.genome.ucsc.edu) [46]. All the OVC patients 

were selected according to the following criteria: (1) 

patients had a histopathological diagnosis of OVC; (2) 

patients had no other tumors; (3) patients did not 

receive preoperative chemoradiation; (4) patients had 

complete RNA-Seq data and clinical prognosis data. 

Finally, 459 samples, including 371 OVC tissues and 88 

normal tissues, were enrolled in our study. This study 

was performed following the TCGA and GTEx 

publication guidelines. As the data were all retrieved 

from TCGA and GTEx, approval from a local Ethics 

Committee was not necessary. 

 

Data preprocessing  
 

The mRNAs and lncRNAs were identified and 

annotated from the RNA-Seq data via the Ensembl 

database (http://www.ensembl.org), and miRNAs were 

annotated based on the miRbase database 

(http://www.mirbase.org) [47, 48]. The RNA-Seq data 

that could not be annotated in the database were 

discarded. The expression of lncRNAs, mRNAs and 

miRNAs with zero counts in more than 20% of 

samples was filtered out to remove low-abundance 

genes [49, 50]. 

 

Differential expression analysis  

 

Differentially expressed lncRNAs (DElncRNAs) and 

mRNAs (DEmRNAs) between OVC tissues and normal 

tissues were analyzed using the "edgeR" R package [51, 

52]. P-values were corrected with a false discovery rate 

(FDR). Fold changes of expression levels (log2 absolute) 

≥ 2 and FDR < 0.05 were set as the thresholds.  

 

WGCNA  

 

To identify the significant lncRNAs and mRNAs 

associated with the carcinogenesis of OVC, WGCNA 

analysis was performed according to the protocol and 

recommendations of the "WGCNA" R package [53] to 

construct independent signed networks and establish 

the weighted gene coexpression modules and module-

trait relationship from the SOC samples and normal 

samples. The scale-free topology fitting index (R
2
) > 

0.85 was set as the threshold to construct the weighted 

gene coexpression network. A minimum cluster size of 

30 and a merge threshold function of 0.25 were chosen 

as the thresholds to identify coexpressed gene 

modules. A biweight mid-correlation coefficient (r) ≥ 

0.8 and P-value < 0.05 were set as the thresholds to 

determine statistically significant modules with the 

carcinogenesis of OVC. 

 

Functional enrichment analysis of the overlapped 

mRNAs  

 

Enrichment analysis was performed to understand the 

potential mechanism and function of the overlapped 

mRNAs. Gene Ontology (GO) terms, including 

molecular function (MF), biological process (BP) and 

cellular component (CC) categories, and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

enrichment analyses were performed using the 

"ClusterProfiler" R package, with FDR < 0.01 as the 

threshold [54]. 

 

Construction of the lncRNA-miRNA-mRNA 

regulatory network 

 

Based on the ceRNA hypothesis, the lncRNA-miRNA-

mRNA ceRNA network was constructed for the 

overlapped mRNAs and lncRNAs through 

"GDCRNATools" following the following three steps: 

(1) miRcode (http://www.mircode.org/) database was 

used to predict the lncRNA-miRNA interactions, and 

miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw) 

was used to predict the miRNA-mRNA interactions; (2) 

http://www.genome.ucsc.edu/
http://www.genome.ucsc.edu/
http://www.ensembl.org/
http://www.mirbase.org/
http://www.mircode.org/
http://mirtarbase.mbc.nctu.edu.tw/
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according to the common miRNA, the lncRNA-miRNA 

and miRNA-mRNA interactions were merged into the 

potential lncRNA-miRNA-mRNA ceRNA triples. 

Moreover, the hypergeometric test was used (P-value < 

0.05 for the hypergeometric tests) to determine the 

significance of the shared miRNAs by lncRNA and 

mRNA pairs; (3) according to the ceRNA hypothesis, in 

the lncRNA-miRNA-mRNA ceRNA triples, the 

expression of lncRNA and mRNA pairs should be 

positively correlated, and the expression of lncRNA-

miRNA pairs and miRNA-mRNA pairs should be 

negatively correlated. The Pearson correlation analysis 

was performed (P-value < 0.05 for the Pearson's 

correlation tests) to measure the expression correlation of 

lncRNA-miRNA, miRNA-mRNA and lncRNA-mRNA 

pairs [55–57]. Cytoscape (version 3.7.1) software was 

used to construct and visualize the lncRNA-miRNA-

mRNA regulatory network [58]. 

 

Functional enrichment and protein-protein 

interaction (PPI) analyses of the mRNAs in the 

ceRNA network 

 

To understand the underlying pathways and processes 

of the ceRNA regulatory network, the "ClusterProfiler" 

R package was used to analyze the functional profiles 

(GO BP terms and KEGG pathway) of the mRNAs in 

the ceRNA regulatory network [54]. With a threshold of 

FDR < 0.05, the results of the GO BP and KEGG 

enrichment analyses were displayed using the "GO plot" 

R package. To identify the protein-protein interactions 

between the mRNAs in the ceRNA regulatory network, 

STRING (Search Tool for the Retrieval of Interacting 

Genes) database (http://www.string-db.org/) was used 

to construct a PPI network (minimum required 

interaction score > 0.4), which was visualized by 

Cytoscape (version 3.7.1) software [58, 59]. By ranking 

the degree of connectivity between the mRNAs in the 

PPI networks, high-degree genes, the so-called "hub" 

genes, were identified using the Cytohubba plugin [60]. 

 

Survival analysis of lncRNAs and mRNAs in the 

ceRNA regulatory network 

 

Univariate Cox proportional hazards regression analysis 

was performed to estimate the expression of lncRNAs 

and mRNAs in the ceRNA regulatory network with 

overall survival (OS) through the "survival" package in 

R software. Based on the gene expression of each 

patient with optimal cut-off values, which was 

determined by the "survminer" R package, the patients 

were divided into high-expression and low-expression 

groups. Then, using the "survival" R package, Kaplan-

Meier curves and log-rank methods (Mantel-Haenszel 

test) were used to examine the statistically significant 

OS-related mRNAs and lncRNAs, which were 

determined by the univariate Cox regression analysis. 

P-value < 0.05 was considered statistically significant.  

 

Construction of lncRNA-associated prognostic 

signatures 

 

The potential OS-related lncRNAs chosen from the 

univariate Cox regression analysis (P-value < 0.1) were 

inserted into the least absolute shrinkage and selection 

operator (LASSO) analysis to calculate the coefficients. 

Ten-fold cross-validation was conducted to tune the 

optimal value of the penalty parameter λ, which gives 

the minimum partial likelihood deviance. According to 

the linear combination of the expression values 

weighted by the regression coefficient from the LASSO 

analysis, risk scores for each sample were calculated. 

All patients were classified into either the high-risk or 

low-risk group based on the optimal cut-off value of 

their risk score. The optimal cut-off value was identified 

using the "survminer" R package. The survival curve in 

the high-risk and low-risk groups was estimated and 

compared by the Kaplan-Meier method and the log-rank 

test. A P-value < 0.05 was considered statistically 

significant. The receiver operating characteristic (ROC) 

curves and areas under the ROC curves (AUC values) 

were performed to evaluate the sensitivity and 

specificity of the risk score model for survival 

prediction using the "survival ROC" R package.  

 

Multivariate Cox regression analysis was performed to 

determine whether the risk score model was 

independent of other clinical features, including age, 

race, TNM classification, venous invasion and 

lymphatic invasion. The hazard ratio and 95% 

confidence intervals for each variable were calculated. 

A P-value < 0.05 was considered statistically 

significant. 

 

Gene Set Variation Analysis (GSVA) 

 

To further explore the biological function of the 11-

lncRNA signature in the occurrence and development of 

OVC, we performed GSVA between high-risk and low-

risk groups using the "GSVA" R package [61]. Each 

gene set associated with a pathway was trimmed to only 

contain unique genes to reduce pathway overlaps and 

pathway redundancies [62]. The hallmark gene sets 

were used as the reference gene set [63]. FDR < 0.05 

was set as the cut-off criterion. 

 

Construction of nomogram predictive models 
 

To precisely predict the 1-year, 3-year and 5-year OS of 

OVC patients, a prognostic nomogram was established 

using the "rms" R package based on the 11-lncRNA 

signature, age and race. Calibration curves were used to 

http://www.string-db.org/
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compare the concordance between nomogram-predicted 

survival and observed survival.  

 

Statistical method 
 

For the correlation analysis, Pearson's correlation test 

was performed. For the survival analysis, Cox 

regression analysis and Kaplan-Meier log-rank test were 

performed. To analyze differences between groups, the 

Mann-Whitney test was used for continuous data, 

whereas the Chi-square test was used for categorical 

data. 

 

Abbreviations 
 

OVC: ovarian cancer; lncRNA: long noncoding RNA; 

OS: overall survival; DFS: disease free survival; MREs: 
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