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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the fourth leading 

cause of cancer-related death worldwide [1]. Surgical 

resection has been adopted as the standard treatment for 

most patients with early-stage HCC [2, 3]. However, up 

to 70% of patients experience tumor recurrence within 

five years after surgery [2, 3]. Therefore, the biggest 

challenge in the clinical management of HCC is to 

prevent tumor recurrence and to improve the prognosis 

of advanced or unresectable disease. 

 

Angiogenesis, the formation of new blood vessels, is 

crucial in tumor development, growth, and metastasis 

because blood vessels carry nutrients and facilitate the 

spread of tumor cells. Vascular endothelial growth factor 
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ABSTRACT 
 

Anti-vascular endothelial growth factor (anti-VEGF) drugs have long been the only first-line treatment for 
advanced or unresectable hepatocellular carcinoma (HCC). Recently, the combination of bevacizumab (an anti-
VEGF drug) and atezolizumab (an immune checkpoint blockade, ICB) has been proven to have superior efficacy 
over sorafenib. However, the complex association between VEGF signaling pathway and tumor immune 
microenvironment is still largely unknown. Here, we analyzed the RNA sequencing and clinical data of 365 HCC 
patients obtained from The Cancer Genome Atlas to investigate the potential correlation between VEGF 
signaling pathway and tumor immune microenvironment, including immune cell infiltration, 66 immune 
markers, genomic instability, and immune-related pathways. Our study revealed that VEGF signaling pathway 
score was positively correlated with immune cell infiltration and the expression profile of 66 immune markers. 
Enrichment analysis indicated that genes differentially expressed between two VEGF score subtypes were 
enriched in many immune-related Gene Ontology terms. Most importantly, both VEGF signaling pathway and 
activated CD8+ T cells were positively correlated with prognosis. Our findings suggest the co-activation of VEGF 
signaling pathway and tumor immune microenvironment in HCC patients, indicating the underlining mechanism 
of combination therapy including anti-VEGF drugs and ICBs. 
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(VEGF) signaling is important in angiogenesis and has 

been identified as a therapeutic target in diverse cancer 

types, including HCC [4]. Among the VEGF receptors, 

VEGF-receptor 2 (VEGFR2) is now considered the main 

receptor, and VEGFR2 activation promotes endothelial 

cell mitogenesis and vascular permeability [4]. Anti-

VEGF monotherapy has been the only standard treatment 

for advanced or unresectable HCC over the past decade 

after sorafenib was approved by the US Food and Drug 

Administration (FDA) [5]. After sorafenib, lenvatinib 

was approved as a first-line treatment, while several other 

anti-VEGF drugs, including regorafenib, cabozantinib, 

and ramucirumab, were approved as second-line 

treatments [6–9]. Sorafenib provided longer overall 

survival (OS) compared with a placebo and lenvatinib 

was non-inferior to sorafenib [5, 6]. Despite this, patients 

with advanced HCC continue to have unsatisfactory 

clinical outcomes, with an OS of approximately one year 

[5–9]. To improve patient prognosis, there is an urgent 

medical need for novel treatments or improved clinical 

benefits of anti-VEGF drugs.  

 

Over the last decade, cancer immunotherapy such as 

immune checkpoint blockade (ICB) therapy, has made 

tremendous breakthroughs in a variety of malignancies. 

However, only a small subset of HCC patients respond to 

ICB monotherapy [10, 11]. The major hurdles in 

achieving satisfactory benefits are high inter- and intra-

tumor heterogeneity, various immune microenvironment, 

lack of predictive markers, and insufficient efficacy of 

monotherapy. The IMbrave 150 study was a phase 3 

clinical trial that compared the efficacy of atezolizumab 

(ICB) plus bevacizumab (anti-VEGF drug) versus 

sorafenib as a first-line treatment for patients with 

unresectable HCC [12]. Recently, the results of this study 

demonstrated the impressive clinical benefits of the 

combination therapy of atezolizumab and bevacizumab, 

which resulted in a significantly prolonged OS [12]. 

Based on this, the US FDA has approved atezolizumab 

plus bevacizumab as a novel first-line treatment for 

advanced or unresectable HCC. In another phase 3 trial, 

LEAP-002, early clinical data has also indicated 

promising efficacy for the combination of lenvatinib and 

pembrolizumab (ICB) [13]. However, the underlying 

mechanisms of the combination of anti-VEGF drugs and 

ICBs have not yet been elucidated. Dual PD-1 and 

VEGFR2 blockade exhibited a synergistic antitumor 

effect in mouse models of HCC by promoting vascular 

normalization and enhancing antitumor immune 

responses [14]. Although the VEGF signaling pathway 

contributes to immunosuppressive tumor micro-

environment, the association between VEGF signaling 

pathway and immune-related genes is poorly understood 

[15]. Recently, the expression profile of immune 

checkpoint genes was shown to be related to the prognosis 

of HCC patients [16]. Of note, NRP1, an immune 

checkpoint gene that is also involved in VEGF-VEGFR2 

signaling, was found to be an important prognostic factor 

in HCC [16]. 

 

Therefore, we aimed to investigate the association 

between VEGF signaling pathway, tumor immune 

microenvironment, and the prognosis of HCC patients 

using data obtained from The Cancer Genome Atlas 

(TCGA; n = 365) in this study. It is important to gain a 

more comprehensive understanding of the field to 

improve the clinical management of HCC patients, 

especially for decision making regarding anti-VEGF 

treatments, ICB therapies, and their combination in 

patients with advanced HCC. 

 

RESULTS 
 

Immune cell infiltration patterns associated with 

VEGF score subtypes 
 

RNA sequencing and clinical data of 371 HCC patients 

were downloaded from the TCGA database, among 

which six were excluded due to incomplete follow-up 

information. Based on calculated enrichment scores of 

the VEGF signaling pathway, patients were divided into 

two VEGF subtypes: the high score subtype with scores 

in the top one-third (n = 122) and the low score subtype 

with scores in the bottom two-thirds (n = 243).  

 

Based on the published data from the TCGA group, we 

compared the tumor purity and the stromal fraction 

between the high and the low VEGF score subtype. 

This revealed a significantly lower tumor purity and 

higher stromal fraction in the high VEGF score 

subtype (P < 0.0001) (Figure 1A). More importantly, 

the high VEGF score subtype exhibited a significantly 

higher leukocyte fraction (P < 0.0001) (Figure 1A). 

Based on the ESTIMATE results, we found that the 

high VEGF score subtype had a significantly higher 

immune score, stromal score, and Estimate score (all 

with P < 0.0001) (Figure 1B). Infiltration of 28 

immune cell types was estimated for each by using 

ssGSEA scores. Compared with the low VEGF score 

subtype, the high VEGF score subtype had relatively 

higher immune cell infiltration, including cells 

contributing to anti-tumor immunity (e.g., activated 

CD8+ T cells, type 1 T helper cells, and natural killer 

cells) and cells contributing to pro-tumor suppression 

(e.g., regulatory T cells, immature dendritic cells, and 

myeloid-derived suppressor cells, MDSCs) (Figure 

1C). For each VEGF score subtype, Spearman’s 

correlation test suggested a positive association 

between these two categories of immune cells in the 

local tumor microenvironment (Figure 1D). The high 

VEGF score group exhibited both higher anti-tumor 

immunity and pro-tumor suppression (Figure 1E). 
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For specific immune cell types, the high VEGF score 

subtype had significantly higher infiltration of 26 

immune cell types (except for memory B cells and 

type17 T helper cells) (Figure 2). Spearman’s 

correlation tests also indicated positive correlations 

between VEGF signaling pathway ssGSEA scores and 

the ssGSEA scores of 28 immune cell types 

(Supplementary Figure 1). Although the absolute levels 

of immune cells varied between the two VEGF score 

subtypes, the relative cell fractions of most immune 

cells estimated by the CIBERSORT algorithm appeared 

to be similar (Supplementary Figure 2A, 2B). Notably, 

higher fractions of M1 macrophages, M0 macrophages, 

and gamma delta T cells were observed in the high 

VEGF score subtype (Supplementary Figure 2A, 2C).  

 

Immune-regulatory gene expression profiles 

associated with VEGF score subtypes 
 

The high VEGF score subtype exhibited higher 

expression of 66 immune markers associated with 

immune stimulation or suppression (Figure 3). The

 

 
 

Figure 1. Immune cell infiltration patterns of the two VEGF score subtypes. The high VEGF score subtype showed lower tumor 

purity, higher stroma fraction, and higher leukocyte fraction (A). Higher immune score, stromal score, and Estimate score based on the 
ESTIMATE algorithm were observed in the high VEGF score subtype (B). The high VEGF score subtype had relatively higher immune cell 
infiltration, including cells contributing to both anti-tumor immunity and pro-tumor suppression (C). A positive association between these 
two categories of immune cells in the local tumor microenvironment was observed in both VEGF score subtypes (D). The high VEGF score 
subtype showed both higher anti-tumor immunity and pro-tumor suppression (E). 
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correlations between the 66 immune marker 

expression scores in all patients, patients of the high 

VEGF score subtype, and patients of the low VEGF 

score subtypes were investigated by Spearman’s 

correlation tests and visualized in Supplementary 

Figures 3–5, respectively. We then focused on several 

important checkpoint molecules including PD-1, PD-

L1, CTLA-4, IDO1, and LAG3, and found that the 

expression levels of these molecules were all 

significantly higher in the high VEGF score subtype 

(Figure 4A–4E). 

 

To investigate the genomic changes associated with 

each VEGF score subtype, we compared the TMB, 

single-nucleotide variant (SNV) neoantigen number, 

and indel neoantigen number between the two VEGF 

score subtypes. We found significantly lower TMB, 

SNV neoantigen number, and indel neoantigen number 

in the high VEGF score subtype than in the low VEGF 

score subtype (Figure 4F–4H), which indicated 

relatively lower genome instability in the high VEGF 

score subtype. 

 

DEGs between VEGF score subtypes were enriched 

in immune-related GO terms 

 

In all, 495 DEGs between the two VEGF score 

subtypes were identified, among which 456 were 

upregulated, and 39 were downregulated in the high 

VEGF score subtype. GO pathway enrichment analysis 

revealed the following top GO terms: adaptive immune 

response, complement activation (classical pathway), 

humoral immune response mediated by circulating 

immunoglobulin in biological process (Figure 5A); 

immunoglobulin complex, immunoglobulin complex 

(circulating), external side of plasma membrane in 

cellular components (Figure 5B); antigen binding, 

immunoglobulin receptor binding, extracellular matrix

 

 
 

Figure 2. Comparison of the infiltration of 28 immune cell types between the two VEGF score subtypes. The high VEGF score 

subtype exhibited significantly higher infiltration of 26 immune cell types (except for memory B cells and type17 T helper cells). 
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structural constituent in molecular functions (Figure 

5C). Moreover, we constructed a network of the top 20 

GO summary terms via the Metascape website, which 

revealed the relationships between immune-related GO 

terms, angiogenesis-related GO terms, and stroma 

related GO terms (Figure 5D). 

 

Among the 495 DGEs, 172 were immune-related genes 

according to the data obtained from ImmPort. To further 

investigate these immune-related genes, a PPI network 

consisting of 44 nodes and 112 edges was constructed 

using the STRING database and Cytoscape v3.6.1 

(Figure 6A). CCL19 exhibited the highest connectivity 

degree (15) in the PPI network. Analysis via the MCODE 

algorithm revealed two important modules with MCODE 

scores of 8.444 (10 nodes and 38 edges) and 4 (4 nodes 

and 6 edges) (Figure 6B, 6C). These two top modules 

included 10 genes (including CCL11, CCL19, CCL21, 

CCL22, CCR4, CCR8, CXCL5, CXCL14, MMP9, and 

SSTR5) and four genes (including CD1E, CD19, 

CD79A, and CR2), respectively (Figure 6B, 6C).  

High VEGF score subtype and high levels of 

activated CD8+ T cells predict favorable prognosis 
 

Given the prognostic value of CD8+ T cells in a variety of 

solid tumors, we then divided the 365 HCC patients into a 

high activated CD8+ T cell group (CD8Hi, n = 122) and a 

low activated CD8+ T cell group (CD8Lo, n = 243) based 

on ssGSEA scores.  Compared with the low VEGF score 

subtype, the high VEGF score subtype had a significantly 

longer recurrence free survival (RFS, P = 0.0191) and the 

tendency of a longer OS (P = 0.0685) (Figure 7A, 7B). 

We also observed significantly better RFS and OS in the 

CD8Hi group when compared with the CD8Lo group (P 

< 0.0001 and P = 0.0034, respectively) (Figure 7C, 7D). 

We then categorized the 365 patients into four groups 

(VEGFHiCD8Hi, VEGFHiCD8Lo, VEGFLoCD8Hi, and 

VEGFLoCD8Lo) based on the ssGSEA scores of the 

VEGF signaling pathway and activated CD8+ T cells. 

Upon comparing RFS and OS between the groups, both 

suggested better prognosis in the VEGFHiCD8Hi group 

compared  with   the  VEGFHiCD8Lo  group  and  the  

 

 
 

Figure 3. The high VEGF score subtype showed a higher expression of 66 immune markers associated with immune stimulation 
or suppression. 
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VEGFLoCD8Lo group, but not the VEGFLoCD8Hi 

group (Figure 7E, 7F). 

 

DISCUSSION 
 

Cancer immunotherapies, particularly ICBs targeting the 

PD-1/PD-L1 and CTLA-4 immune checkpoints, have 

made great success in a variety of malignancies over the 

past decade and have revolutionized treatment strategies 

for many cancer patients. However, for HCC, the 

response rate and prognostic benefit of ICBs alone appear 

to be extremely limited [10, 11]. Recent evidence has 

impressively demonstrated that combination therapy of 

anti-VEGF drugs and ICBs provides promising efficacy 

in HCC patients [12, 13]. The success of such 

combination therapy requires a better understanding of 

the complex associations between the VEGF signaling 

pathway and the tumor immune microenvironment. 

 

 
 

Figure 4. Expression levels of important checkpoint molecules including PD-1 (A), PD-L1 (B), CTLA-4 (C), IDO1 (D), and LAG3 (E) were all 

significantly higher in the high VEGF score subtype. Significantly lower TMB (F), SNV neoantigen number (G), and indel neoantigen number 
(H) were observed in the high VEGF score subtype. 
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Pathologic angiogenesis plays a critical role in tumor 

development and progression. There is now much 

evidence demonstrating that the VEGF/VEGFR2 

signaling pathway is one of the most important pathways 

regulating angiogenesis. Activation of the VEGF 

signaling pathway promotes endothelial cell proliferation 

and vascular permeability, which can facilitate immune 

cell infiltration [8]. Additionally, by altering the adhesion 

molecules expressed on immune cells (e.g., integrin 

ligands intercellular adhesion molecule 1) and endothelial 

cells (e.g., vascular cell adhesion protein 1), VEGF can 

control the trafficking of immune cells to tumors [15]. 

However, VEGF has also been demonstrated to induce 

immunosuppression through several mechanisms, 

including inhibiting the trafficking, proliferation, and 

effector function of cytotoxic T cells and the maturation 

and antigen presentation of dendritic cells, promoting the 

recruitment and proliferation of immunosuppressive 

cells, and leading to a hypoxic and low-pH immuno-

suppressive microenvironment [15]. In our study, using 

RNA sequencing data from TCGA database, we found 

that there were more infiltrated immune cells, including 

both immune-active cells and immune-suppressive cells, 

in the high VEGF score subtype, which supports previous 

theories. Moreover, positive correlations between VEGF 

scores and immune cell scores were observed for most of 

the 28 immune cell types. These findings implied that 

both immune-active cells and immune-suppressive cells 

might enter the tumor microenvironment when VEGF-

related molecules are upregulated. This also indicates the 

potential for feedback from the recruitment and 

infiltration of immune-active cells to facilitate immune 

suppression. Notably, we found a lower fraction of M1 

macrophages and a higher fraction of M2 macrophages in 

the low VEGF score subtype. High infiltration of M2 

macrophages in the tumor stroma has been reported to be 

associated with a down-regulating antitumor immune 

response [30]. In contrast, the high VEGF score subtype 

exhibited a higher fraction of M1 macrophages, 

indicating a potentially more responsive tumor status to 

ICBs. This result was inconsistent with the previous 

findings that VEGF could contribute to macrophage 

polarization from M1 toM2 [15]. Given that the total 

amount of macrophages was also higher in the

 

 
 

Figure 5. DEGs between the two VEGF score subtypes enriched in immune-related GO terms. GO pathway enrichment 

analysis revealed that immune-related GO terms ranked top in biological process (A), cellular components (B), and molecular functions 
(C). The network of the top 20 GO summary terms revealed the relationships between immune-related GO terms, angiogenesis-related 
GO terms, and stroma related GO terms (D). 
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Figure 6. PPI network of immune-related genes. The PPI network consisted of 44 nodes and 112 edges (A). Two important modules 
were observed via the MCODE algorithm (B, C). 
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high VEGF score subtype and the spatial organization of 

macrophages was unclear, the relationship between 

VEGF and macrophages requires further investigation. 

Additionally, the fraction of gamma delta T cells was 

relatively higher in the high VEGF score subtype. 

Gamma delta T cells have been found to possess 

cytotoxic antitumor activity and insufficient levels of 

functional gamma delta T cells is associated with tumor 

recurrence and poor prognosis [31–33]. Given that the 

role of gamma delta T cells in HCC is poorly 

understood, further studies are needed to validate our 

finding. 

 

Our data revealed that the expression levels of 66 

immune markers, both immune stimulation-related 

genes and immune suppression-related genes, were 

higher in the high VEGF score subtype. Notably, 

immune checkpoint genes, including PD-1, PD-L1, 

CTLA-4, IDO1, and LAG3, also exhibited 

significantly higher expression levels in the high 

VEGF score subtype. This indicated that the tumor 

was more likely to be responsive to ICB treatments in 

high VEGF score subtype. Additionally, the high 

VEGF score subtype had both lower TMB and 

neoantigen numbers compared to the low VEGF score 

subtype, indicating lower genetic instability. High 

immune infiltration is thought to lower genetic 

instability by eliminating tumor subclones and 

inhibiting tumor evolution [34]. On the contrary, 

insufficient immune infiltration might allow immune 

escape, leading to tumor evolution and increased 

genomic instability [34]. Together, these findings 

suggest that the VEGF high score subtype is more 

immune inflamed and may be more likely to benefit 

from ICB treatments. In agreement with previous 

findings, numerous DEGs between the two VEGF score  

 

 
 

Figure 7. Survival analysis of 365 HCC patients. High VEGF score subtype (A, B) and high activated CD8+ T cells (C, D) predicted 

favorable prognosis. Improved RFS and OS were observed in the VEGFHiCD8Hi group compared to the VEGFHiCD8Lo group and the 
VEGFLoCD8Lo group, but not the VEGFLoCD8Hi group (E, F). 
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subtypes were immune-related genes (172 of 495). To 

comprehensively explore the differences in gene 

expression profiles, we conducted GO pathway 

enrichment analysis, which indicated that many immune-

related GO terms were ranked top in biological process, 

cellular components, and molecular functions. Other top 

GO terms were primarily associated with stromal 

components (e.g., extracellular matrix, extracellular 

matrix structural constituent), which was also consistent 

with the high stromal score in the high VEGF score 

subtype. The network of the top 20 summary GO terms 

further indicated the interplay between the immune 

microenvironment, the development of blood vessels, and 

the stroma. Additional PPI analysis focused on the 

immune-related genes revealed two important modules 

that included 10 genes (including CCL11, CCL19, 

CCL21, CCL22, CCR4, CCR8, CXCL5, CXCL14, 

MMP9, and SSTR5) and four genes (including CD1E, 

CD19, CD79A, and CR2), respectively. The cytokines in 

the first module primarily display chemotactic activities 

for miscellaneous immune cells, which explain the higher 

immune infiltration in the high VEGF score subtype. 

Genes in the second module were associated with 

encoding important components of B cells, which are 

important in humoral immunity.  

 

Although both immune active factors and immune 

suppressive factors were present in the local tumor 

microenvironment, the former appeared to be the 

dominating components. Our survival analysis also 

supported the findings mentioned above and indicated a 

better prognosis (especially RFS) for the high VEGF 

score subtype. Another possible explanation is that HCC 

patients of the high VEGF score subtype might respond 

better to widely used anti-VEGF therapies. Given the 

prognostic value of CD8+ T cells in various 

malignancies, we next focused on them. Activated CD8+ 

T cells, in agreement with previous literature, predicted 

favorable clinical outcomes in HCC patients [35–38].  

We also observed that the survival curves of the 

VEGFLoCD8Lo group and the VEGFHiCD8Lo group 

were similar and lower than the other two groups (the 

VEGFHiCD8Hi group and the VEGFLoCD8Higroup), 

suggesting an important role for immune infiltration 

accompanying angiogenesis in eliminating the tumor.  

 

One of the biggest limitations of our study is that there is 

no information regarding the spatial organization of 

immune cells in the tumors. As previously demonstrated, 

center tumor immune cells, but not invasive margin 

immune cells, primarily contribute to tumor elimination 

and favorable prognosis [39, 40]. Additionally, although 

we considered the whole VEGF/VEGFR2 pathway rather 

than single molecules to better represent angiogenesis, 

vessel development in tumors is indeed very complicated 

and could be affected by many other factors. Finally, we 

demonstrated the correlation between VEGF signaling 

and tumor immune microenvironment, but not a causal 

relationship. Given that our findings are based on 

bioinformatics analysis, further laboratory experiments 

are needed to validate these results. 

 

CONCLUSIONS 
 

In conclusion, our study found the potential co-activation 

of VEGF signaling pathway and tumor immune 

microenvironment, indicating a potential benefit for 

combination therapy including anti-VEGF and ICBs in 

HCC patients.  

 

MATERIALS AND METHODS 
 

Data sources 

 

The level 3 RNA sequencing and clinical data of HCC 

patients were retrieved from TCGA data portal (https:// 

portal.gdc.cancer.gov). 
 

Gene signatures and single-sample gene set 

enrichment analysis (ssGSEA) scores 
 

The enrichment score of the VEGF signaling pathway 

(the KEGG_VEGF_SIGNALING_PATHWAY, Sup-

plementary Figure 6), was calculated using ssGSEA. The 

KEGG_VEGF_SIGNALING_PATHWAY only focused 

on the VEGF/VEGFR2 axis. The gene set representing 

the KEGG_VEGF_SIGNALING_PATHWAY was 

downloaded from the GSEA Molecular Signatures 

Database (MSigDB) v7.1 (https://www.gsea-

msigdb.org/gsea/downloads.jsp) and includes a total of 

76 genes [17, 18]. Data on tumor purity, stromal fraction, 

and leukocyte fraction were obtained from a previously 

published study from the TCGA group [19]. For the 

quantification of infiltrated immune cells, we utilized a 

previously published calculation method based on the 

expression profiles of 782 genes from 28 immune cell 

types [20]. The degree of immune infiltration was 

estimated by the ssGSEA scores through the Gene Set 

Variation Analysis (GSVA) package in R v3.6.2 [21]. 

We obtained immune scores, stromal scores, and 

Estimate scores, which were calculated by using the 

ESTIMATE algorithm, for TCGA cohorts from the 

official data portal (https://bioinformatics.mdanderson. 

org/estimate/) [22]. The CIBERSORT algorithm 

(https://cibersort.stanford.edu) was used to determine the 

relative abundances of 22 immune cell types in the tumor 

microenvironment [23]. 
 

Immune signature and immune markers  
 

To investigate the expression of immune markers, we 

calculated expression scores using a panel of 66 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.gsea-msigdb.org/gsea/downloads.jsp
https://bioinformatics.mdanderson.org/estimate/
https://bioinformatics.mdanderson.org/estimate/
https://cibersort.stanford.edu/
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immune markers that are associated with immune 

stimulation or suppression in the tumor micro-

environment [24]. To determine if VEGF signaling 

pathway subtypes are associated with genomic changes, 

we downloaded tumor mutation burden (TMB) and 

neoantigen data from two previously published studies 

from the TCGA group [19, 25]. 

 

Identification of differentially expressed genes 

(DEGs) and Gene Ontology (GO) pathway 

enrichment analyses  

 

RNA sequencing data was analyzed using the limma 

package in R v3.6.2 to identify DEGs with cutoff values 

of |log2FC| ≥ 1.5 and FDR < 0.05 [26]. GO pathway 

enrichment analyses of DEGs were performed using the 

Metascape website (http://metascape.org) [27].  

 

Functional enrichment of protein-protein interaction 

(PPI) network and module analysis of immune-

related DEGs 

 

Immune-related genes were extracted from the 

identified DEGs, based on the immune-related gene list 

downloaded from the Immunology Database and 

Analysis Portal (ImmPort) (https://immport. 

niaid.nih.gov). We utilized the STRING database to 

construct and download PPIs among the immune-

related DEGs [28]. Cytoscape v3.6.1 was used to 

reconstruct the PPI network and calculate the 

connectivity degree of each node [29]. Hub clusters in 

the network were detected and visualized using the 

molecular complex detection (MCODE) algorithm. 

 

Statistical analysis 

 

Continuous parameters were compared using the 

Student’s t test. The correlations between the VEGF 

signaling pathway ssGSEA scores and the ssGSEA 

scores across 28 immune cell types were determined 

by Spearman’s correlation test. The correlation 

between the immune marker expression scores was 

determined by Spearman’s correlation test and was 

visualized using the corrplot package in R v3.6.2. To 

visualize and compare immune cell infiltration 

patterns and immune signatures across different 

VEGF signaling pathway subtypes, we generated 

heatmaps using the pheatmap package in R v3.6.2. 

Bubble plots were plotted using the ggplot2 package 

in R v3.6.2. For survival analysis, Kaplan–Meier 

curves were plotted and compared using the Cox 

proportional-hazards regression model. In all 

analyses, a P value of a two-sided test less than 0.05 

was considered to be statistically significant. All 

statistical analyses were performed with GraphPad 

Prism v8.3.0 and R v3.6.2. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 
 

Supplementary Figure 1. Spearman’s correlation tests indicated positive correlations between the ssGSEA score of the VEGF 
signaling pathway and the ssGSEA scores of 28 immune cell types. 

 

 
 

Supplementary Figure 2. The relative cell fractions of most immune cells estimated by the CIBERSORT algorithm appeared to be  

similar (A, B). Higher fractions of M1 macrophages, M0 macrophages, and gamma delta T cells were observed in the high VEGF score  
subtype (A and C). 
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Supplementary Figure 3. Correlations between the 66 immune marker expression scores in all patients. 

 
 

Supplementary Figure 4. Correlations between the 66 immune marker expression scores in patients of the high VEGF score 
subtype. 
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Supplementary Figure 5. Correlations between the 66 immune marker expression scores in patients of the low VEGF score 
subtypes. 

 

 
 

Supplementary Figure 6. The VEGF signaling pathway obtained from the KEGG pathway database 
(KEGG_VEGF_SIGNALING_PATHWAY). 


