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INTRODUCTION 
 

Epigenetic regulators play important roles in tumor 

evolution, among which histone methyltransferases 

(HMTs) have increasingly become the appealing 

therapeutic targets for cancer disease interventions 

because they are frequently dysregulated in a spectrum 

of human cancers [1]. Differentially deposited histone 

methylation modifications mediated by distinct HMTs 

can govern gene transcription. Genome-wide studies 

show that H3K36me3 mostly distributes in the gene 

body in a 3′ end enriched manner like the Ser2 

phosphorylated RNAPII and maintains the repressive  

chromatin status. In addition, H3K36me3 acts as a 

safeguard to prevent aberrant transcriptional initiation 

from cryptic gene promoters [2–5]. SET-domain-

containing 2 (SETD2) is the major HMT catalyzing the 

H3K36me3 [6]. Previous studies have suggested that 

SETD2-silenced cells exhibit deficiency in chromosome 

segregation and DNA repair [7–9]. SETD2-catalyzed 

H3K36me3 has been shown to recruit DNMT3b to 

ensure the fidelity of gene transcription initiation in 

embryonic cells [10]. Moreover, H3K36me3 mediated 

by SETD2 has been implicated in RNA splicing during 

gene transcription, and it affects the alternative splicing 

of a subset of genes involved in tumorigenesis [11–13]. 
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ABSTRACT 
 

The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be 
frequently mutated or deleted in many types of human cancer. However, the role of SETD2 in lung 
adenocarcinoma (LUAD) has not been well documented. In the present study, we found that SETD2 was 
significantly down-regulated both in LUAD tissues and cell lines. Functionally, the increased expression of 
SETD2 significantly attenuated the proliferation of cancer cells by affecting the cell cycle, whereas SETD2 
deficiency dramatically improved these proliferative abilities of cancer cells. Through conjoint analysis of RNA-
seq and ChIP data, we identified a functional target gene of SETD2, CXCL1, and its expression was negatively 
correlated with that of SETD2. Moreover, SETD2 deletion stimulated cell cycle-related proteins to promote 
LUAD. Further mechanistic studies demonstrated that histone H3 lysine 36 trimethylation (H3K36me3) 
catalyzed by SETD2 interacted with the promoter of CXCL1 to regulate its transcription and downstream 
signaling pathways, contributing to tumorigenesis in vitro and in vivo. Our findings suggested that SETD2 
inhibited tumor growth via suppressing CXCL1-mediated activation of cell cycle, indicating that the regulation 
of H3K36me3 level by targeting SETD2 and/or the administration of downstream CXCL1 might represent a 
potential therapeutic way for new treatment in LUAD. 
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In accordance with the crucial roles of SETD2 in 

maintaining chromosome stabilization and integrity and 

regulating gene transcription, SETD2 has been reported 

to be frequently mutated or deleted in many types of 

human cancer [14–17]. 

 

Lung adenocarcinoma (LUAD) is a major subtype of 

non-small cell lung cancer (NSCLC), which is the 

leading cause of cancer-related death worldwide. 

However, the genetic characterization and molecular 

mechanisms of SETD2 in tumorigenesis of LUAD 

remain largely undetermined. 

 

In the present study, we showed that SETD2 functioned 

as a putative tumor suppressor in LUAD using human 

LUAD tissue specimens and cell lines in combination 

with gene expression profile obtained from The Cancer 

Genome Atlas (TCGA). We found that elevated levels 

of SETD2 significantly attenuated the proliferation of 

cancer cells by affecting cell cycle, whereas SETD2 

deficiency dramatically improved these proliferative 

abilities of cancer cells. Notably, chemokine (C-X-C 

motif) ligand 1 (CXCL1) was identified as one 

functional downstream gene of SETD2. The 

mechanistic investigation demonstrated that H3K36me3 

catalyzed by SETD2 interacted with the promoter of 

CXCL1 to regulate its transcription and downstream 

signaling pathways, contributing to tumorigenesis in 
vitro and in vivo. In addition, SETD2 deletion up-

regulated the expression of CXCL1 and stimulated cell 

cycle-related proteins to promote LUAD. Collectively, 

our study revealed an in facto regulatory mechanism by 

which SETD2 deficiency determined the CXCL1-

mediated activation of cell cycle and consequent 

tumorigenesis. 

 

RESULTS 
 

SETD2 expression is down-regulated in human 

LUAD 
 

To explore the possible roles of SETD2 in LUAD, we 

first examined the gene expression profile from TCGA, 

which indicated that the SETD2 expression was 

significantly decreased in tumors compared with normal 

counterparts (Figure 1A). The Kaplan-Meier analyses 

showed that low expression of SETD2 was significantly 

associated with a poor prognosis in LUAD patients 

(Figure 1B), providing important prognostic 

information for risk stratification of overall survival. 

Simultaneously, the SETD2 expression pattern was also 

examined using human LUAD tissue specimens. 

Results showed that the expression level of SETD2 was 

significantly decreased in tumors compared with normal 

adjacent lung epithelial tissues (Figure 1C). Likewise, 

human lung cancer cell lines (A549, H1975, H1299, 

H1650 and PC-9) showed a significantly lower 

expression of SETD2 compared with HBE cell line 

(Figure 1D). In addition, western blotting analyses and 

IHC staining revealed that the SETD2 expression at the 

protein level was inversely correlated with the clinical 

stage of LUAD (Figures 1E, 1F). The correlation 

between SETD2 expression and patients’ clinical 

parameters in human LUAD tissues was summarized in 

Table 1. Our data demonstrated that SETD2 expression 

was significantly associated with tumor size (P = 0.012) 

and tumor stage (P = 0.027) of the patients. Taken 

together, these findings highlighted SETD2 as a 

prognostic biomarker for LUAD patients. 

 

Overexpression of wildtype SETD2 inhibits cancer 

cell growth in vitro 

 

To investigate the effect of SETD2 on phenotypes of 

lung cancer cells in vitro, we first ectopically 

overexpressed a wildtype or a catalytically dead version 

of SETD2 (F2478L mutant) in lung cancer cells H1650 

and PC-9. Real-time qPCR and western blotting 

analyses were performed to confirm the overexpression 

of SETD2 (Figures 2A, 2B). Cell viability analysis 

revealed that increased expression of wildtype SETD2 

significantly attenuated the proliferation of cancer cells 

(Figure 2C). Moreover, colony formation (Figure 2D) 

and EDU assay (Figure 2E) were markedly inhibited 

upon wildtype SETD2 overexpression. Next, we 

examined whether SETD2 affected cell cycle phase. 

Flow cytometry was used for cell cycle phase analyses 

in H1650 and PC-9 cells. Results demonstrated that the 

proportions of cells in G0-G1 phase and G2-M phase 

were significantly increased and decreased upon 

wildtype SETD2 overexpression, respectively, while the 

proportion of cells in S phase remained unchanged, 

suggesting a S phase arrest in wildtype SETD2-

overexpressing lung cancer cells (Figure 2F). However, 

the overexpression of wildtype or catalytically dead 

version of SETD2 (F2478L mutant) in lung cancer cells 

H1650 and PC-9 showed no effect on the apoptosis 

level as measured by Annexin V/PI assay (Figure 2G). 

Notably, the overexpression of catalytically dead 

version of SETD2 showed none effect on these 

parameters of H1650 and PC-9 cells, which suggested 

that over-expression this kind of large protein showed 

no toxic to the H1650 and PC-9 cells. 

 

To further illustrate the critical role of SETD2 on 

proliferation of lung cancer cells in vitro, we next 

knock-downed the level of SETD2 in lung cancer cells 

H1650 and PC-9 via two lentivirus-mediated shRNAs 

(shRNA1 and shRNA2) targeting SETD2. Real-time 

qPCR and western blotting analyses were performed to 

confirm the SETD2 deficiencies (Figures 3A, 3B). 

Deletion of SETD2 significantly improved the 
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proliferation, colony formation and EDU positive cells 

(Figures 3C–3E) abilities of cancer cells. Also, SETD2 

deficiency improved the G2-M phase and impaired the 

S phase (Figure 3F). Moreover, SETD2 deficiency did 

not affect the apoptosis of H1650 and PC-9 cells 

(Figure 3G). These results collectively implicated that 

SETD2 inhibited the cell proliferation and cell cycle of 

LUAD cells. 

 

SETD2 negatively regulates CXCL1 expression 
 

As our above-mentioned data demonstrated that 

overexpression of SETD2 could suppress cancer cell 

growth in vitro, we hypothesized that some of SETD2- 

and/or H3K36me3-regualted genes would affect 

tumorigenesis. Here, we focused on up-regulated 

genes by SETD2 deficiency. First, SETD2-silenced 

H1650 cells were generated using three shRNA 

constructs, which displayed similar knockdown 

efficiency (Supplementary Figure 1). Then we 

performed RNA sequencing (RNA-seq) analysis using 

H1650 cells with or without SETD2 depletion to 

identify SETD2-regulated genes. Among 1,501 genes 

expressed, 990 genes were up-regulated, and 511 

genes were down-regulated (fold change > 5) in 

SETD2-silenced cells (Supplementary Table 1). 

Notably, CXCL1 was found to be significantly up-

regulated upon SETD2 depletion (Figure 4A and 

Supplementary Figure 2), acting as an appealing 

downstream target of SETD2. 

 

 
 

Figure 1. SETD2 is clinically relevant in human LUAD. (A) Box plot of SETD2 expression levels in patients with lung cancer from TCGA. 

(B) The association of SETD2 expression at the mRNA level and overall survival using TCGA data (P values by log-rank test). (C) Scatter plot of 
SETD2 expression levels in LUAD tumors and adjacent normal epithelial tissues. (D) Real-time qPCR analysis of SETD2 expression in HBE cells 
and human lung cancer cell lines A549, H1975, H1299, H1650 and PC-9. (E) Western blotting analyses of SETD2 expression at the protein level 
in four clinical stages of lung cancer progression using human lung tissue specimens. (F) SETD2 staining of human lung cancer tissues with 
four clinical stages of cancer progression. Scale bars: 50 μm. *P<0.05, **P<0.01. Two-tailed Student’s t test. 
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Table 1. Correlation between SETD2 expression in LUAD tissues and patients’ clinical parameters.  

Clinical Parameters Cases 
SETD2 expression level 

High Low P 
Gender    0.653 

Male 49 22 27  
Female 41 13 28  

Age (years)    0.472 

<62 45 31 14  
≥62 45 25 20  

Tumor diameter (cm)    0.012* 

≤5 69 11 58  
>5 21 6 15  

Lymphatic metastasis    0.245 

Yes 6 1 5  
No 84 35 49  

TNM stage    0.027* 
I+II 65 28 37  
III+IV 25 4 21  

* Chi-squared test. *P<0.05 
 

To further investigate the negative regulation of SETD2 

on CXCL1 in lung cancer, we examined the correlated 

expression between SETD2 and CXCL1. Results 

indicated that the CXCL1 expression was down-

regulated by SETD2 overexpression in lung cancer cells 

H1650 and PC-9, while SETD2 deletion up-regulated 

the expression of CXCL1 in these two cell lines (Figure 

4B). Meanwhile, the lung cancer cell lines (A549, 

H1975, H1299, H1650 and PC-9) showed a remarkably 

higher expression level of CXCL1 compared with HBE 

cell line (Figure 4C), showing an opposite expression 

pattern of SETD2 (Figure 1D). 

 

Next, the clinical relevance of CXCL1 was assessed by 

analyses of human LUAD tissues and corresponding 

patient information. The expression of CXCL1 was 

elevated in tumors compared with adjacent normal lung 

tissues, whereas its expression was negatively correlated 

with SETD2 expression (Figure 4D). Kaplan-Meier 

analyses showed that CXCL1 overexpression was 

correlated with worse overall survival in patients with 

lung cancer (Figure 4E). Collectively, these results 

suggested that SETD2 negatively regulated CXCL1, 

which could function as a prognostic biomarker in 

LUAD. 

 

SETD2 depletion stimulates cell cycle progression 

 

To illustrate the mechanisms by which SETD2 

depletion regulated CXCL1 to aggravate LUAD 

progression, we conducted functional annotation of 

genes positively correlated with CXCL1. Both Gene 

ontology (GO) enrichment analysis (Figure 5A) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway analysis (Figure 5B) indicated that “Wnt 

signaling pathway” was the prominently enriched  

gene set related to cancer progression and cell 

proliferation in the absence of SETD2. More 

importantly, gene co-expression network analysis 

emphasized the crucial roles of CTNNB1, WNT3 and 

RAC1 (Figure 5C). To further confirm the regulatory 

mechanism of SETD2 on cell cycle progression, we 

examined the expressions of G1 phase checkpoints and 

found that Cyclin D1 and Cyclin E1 were significantly 

up-regulated in SETD2-silenced H1650 and PC-9 cells 

(Figure 5D), whereas they were suppressed in wildtype 

SETD2-ovexpressing H1650 and PC-9 cells (Figure 

5D). Therefore, these findings implicated that SETD2 

depletion altered the cell cycle progression to accelerate 

LUAD progression. 

 

SETD2-catalyzed H3K36me3 interacts with CXCL1 

promoter to regulate CXCL1 transcription 

 

As aforementioned, SETD2 catalyzed the trimethylation 

of lysine 36 on histone 3 to regulate gene transcription 

and was implicated in RNA splicing during gene 

transcription. Therefore, we sought to answer how 

SETD2 regulates CXCL1 expression. Figure 6A shows 

that four truncations of CXCL1 promoter were amplified 

and cloned into pGL3-basic vectors for luciferase 

reporter assays. Results demonstrated that SETD2 

ablation significantly increased the expressions of -2.5 k 

and -2.0 k CXCL1 promoter regions, while no changes 

were observed in the expressions of -1.5 k and -1.0 k 

CXCL1 promoter regions (Figure 6A), suggesting that 

SETD2 negatively regulated CXCL1 expression via its -

2.0 k~-1.5 k promoter region. 
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Next, we examined whether SETD2-catalyzed 

H3K36me3 was associated with CXCL1 expression. 

Western blotting analyses were performed using cell 

lysates from H1650 and PC-9 cells with or without 

SETD2 overexpression or depletion. Results indicated 

that the H3K36me3 level was significantly increased or 

reduced upon SETD2 overexpression and ablation, 

respectively (Figure 6B). Moreover, independent ChIP-

qPCR experiments in H1650 and PC-9 cells using 

antibodies against SETD2 and H3K36me3 showed that 

SETD2 and H3K36me3 were present at CXCL1 gene 

loci (Figure 6C). In addition, DNA gel electrophoresis 

results showed enrichment of CXCL1 promoter in anti-

H3K36me3 ChIP assays (Figure 6D). Furthermore, 

SETD2 silence dramatically activated the signaling of 

ERK and JAK/STAT3 signaling pathways, which were 

indicated by the elevated level of phosphorylated ERK, 

JAK2 and STAT3 (Figure 6E). Taken together, these 

results revealed that SETD2-catalyzed H3K36me3 

interacted with CXCL1 promoter to regulate its 

transcription and downstream signaling pathways. 

 

SETD2-CXCL1 axis inhibits the cell proliferation 

ability and cell cycle in LUAD cells in vitro and in 

vivo 

 

We next evaluated the critical role of CXCL1 in the 

SETD2-overexpression or deficiency LUAD cells. First, 

 

 
 

Figure 2. Overexpression of wildtype SETD2 inhibits cancer cell growth in vitro. (A) Real-time qPCR showed the expression level of 

wildtype or catalytically dead version of SETD2 (F2478L mutant) in lung cancer cells H1650 and PC-9 and its overexpression. (B) Western 
blotting analyses of wildtype or catalytically dead version of SETD2 (F2478L mutant) overexpression in H1650 and PC-9 cells. Quantitative 
results were shown in the right panel. (C) Cell proliferation assays of wildtype or catalytically dead version of SETD2 (F2478L mutant) 
overexpressing H1650 and PC-9 cells. (D) Anchorage-independent growth assays of wildtype or catalytically dead version of SETD2 (F2478L 
mutant) overexpressing H1650 and PC-9 cells. Quantitative results were indicated in the right panel. (E) EDU staining of wildtype or 
catalytically dead version of SETD2 (F2478L mutant) overexpressed H1650 and PC-9 cells (×200). (F) Cell cycle analysis of wildtype or 
catalytically dead version of SETD2 (F2478L mutant) overexpressing H1650 and PC-9 cells. Proportion of cells in G0-G1 phase, S phase and G2-
M phase was quantified. (G) Apoptosis analysis of wildtype or catalytically dead version of SETD2 (F2478L mutant) overexpressed H1650 and 
PC-9 cells by Annexin V/PI assay. *P<0.05, **P<0.01. Two-tailed Student’s t test. 
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Figure 3. Deficiency of SETD2 improves cancer cell growth in vitro. (A) Real-time qPCR confirmed the downregulated expression level 
of SETD2 in lung cancer cells H1650 and PC-9. (B) Western blotting analyses of SETD2 deficiency in H1650 and PC-9 cells. Quantitative results 
were shown in the right panel. (C) Cell proliferation assays of SETD2 deficiency H1650 and PC-9 cells. (D) Anchorage-independent growth 
assays of SETD2 deficiency H1650 and PC-9 cells. Quantitative results were indicated in the right panel. (E) EDU staining of SETD2 down-
regulated H1650 and PC-9 cells (×200). (F) Cell cycle analysis of SETD2 deficiency H1650 and PC-9 cells. Proportion of cells in G0-G1 phase,  
S phase and G2-M phase was quantified. (G) Apoptosis analysis of SETD2 down-regulated H1650 and PC-9 cells by Annexin V/PI assay. 
*P<0.05. Two-tailed Student’s t test. 

 

 
 

Figure 4. Clinical relevance of CXCL1 in human LUAD. (A) CXCL1 was up-regulated upon SETD2 depletion as indicated in volcano plot. (B) 

Real-time qPCR analysis of CXCL1 expression level upon SETD2 overexpression or depletion in H1650 and PC-9 cells. (C) Real-time qPCR analysis of 
CXCL1 expression in HBE cells and human lung cancer cell lines A549, H1975, H1299, H1650 and PC-9. (D) Scatter plot of CXCL1 expression levels 
in LUAD tumors and adjacent normal epithelial tissues (left panel). The association (by Pearson’s) between SETD2 and CXCL1 expressions in 
patients (right panel). (E) Kaplan-Meier plot of overall survival based on the CXCL1 expression index in patients (P values by log-rank test). 
*P<0.05. Two-tailed Student’s t test. Pearson’s correlation test was used to analysis the correlation between CXCL1 and SETD2. 
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we detected the effect of exogenous CXCL1 treatment in 

SETD2 overexpressed LUAD cells, compared with 

vector control LUAD cells. As shown in Figure 7A, 7B, 

the SETD2-impaired cell viability and colony formation 

ability of LUADs were obviously rescued by exogenous 

CXCL1 treatment. Similarly, the decreased G2-M phases 

caused by SETD2 overexpression eventually rose again, 

with the S phase relatively decreased (Figure 7E). On the 

contrary, endogenous CXCL1 neutralization by Anti-

CXCL1 antibody significantly suppressed the cell 

viability and colony formation of LUAD cells (Figure 

7C, 7D). Cell cycle analysis also suggested that 

endogenous CXCL1 neutralization reversed the enhanced 

G2-M phase and reduced S phase caused by SETD2 

deficiency (Figure 7F). 

 

We further validated the regulatory relationship 

between SETD2 and CXCL1 in nude mice xenograft 

 

 
 

Figure 5. SETD2 suppressed cell cycle progression. (A) GO and (B) KEGG analysis showed the altered pathways in the absence of SETD2. 

(C) Gene co-interaction network identified crucial roles of CTNNB1, WNT3 and RAC1 in lung cancer which were marked by asterisks. Green 
lines represented the negative regulation between two genes, and red lines represented positive regulation. (D) Protein levels of G1 phase 
checkpoints Cyclin D1 and Cyclin E1 upon SETD2 overexpression or knockdown in H1650 and PC-9 cells. Quantitative results were shown on 
the right. *P<0.05. Two-tailed Student’s t test. 
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model. SETD2 and CXCL1 were ectopically 

overexpressed separately or simultaneously in H1650 

cells to establish the SETD2-overexpressing (Lv-

SETD2), CXCL1-overexpressing (Lv-CXCL1) and 

SETD2/CXCL1 double overexpressing (Lv-

SETD2+CXCL1) H1650 cells, which were 

subcutaneously injected to nude mice. Xenograft assays 

showed that SETD2 overexpression dramatically 

reduced tumor growth compared with the control group 

(Figure 8A), while CXCL1 overexpression reversed 

tumor volume (Figure 8B) and weight (Figure 8C) 

regardless of the SETD2 expression level. H&E staining 

and IHC staining confirmed the expression levels of 

SETD2 and CXCL1 in these tumors (Figure 8D). 

Furthermore, we confirmed the regulatory mechanism 

of SETD2 on cell cycle progression via evaluating the 

expressions of G1 phase checkpoints (Cyclin D1 and 

Cyclin E1). We found that Cyclin D1 and Cyclin E1 

were significantly down-regulated in wildtype SETD2-

overexpressed xenograft tumors (Figure 8E), whereas 

they were elevated after CXCL1 overexpressed  

(Figure 8E). Consistent with the in vitro data, the 

overexpression of SETD2 or CXCL1 showed no effect 

on the apoptosis of H1650 cells in vivo, as indicated by 

TUNEL assay (Figure 8F). These results suggested the 

modulatory effects of SETD2/CXCL1 axis on tumor 

growth in LUAD. 

 

DISCUSSION 
 

Cancer cells acquire molecular changes in a different 

way from those in normal cells, potentially exposing 

them to new epigenetic vulnerabilities [18]. Therefore, 

important epigenetic regulators can be implicated as  

potential therapeutic targets. SETD2 and its catalyzed 

H3K36me3 play crucial roles in maintaining 

chromosome integrity and regulating gene transcription 

[19–22]. SETD2 is frequently mutated or deleted in 

spectrum of human cancers [23–28]. In the present 

study, we found that SETD2 was significantly

 

 
 

Figure 6. SETD2-catalyzed H3K36me3 interacts with CXCL1 promoter to regulate CXCL1 transcription. (A) A schematic diagram 
showing the CXCL1 promoter luciferase reporter vectors with four distinct promoter regions, which then were co-transfected with Lv-SETD2-
shRNA1, Lv-SETD2-shRNA2, or Lv-Scramble into H1650 and PC-9 cells and subjected to luciferase activity assays. (B) Western blotting analyses 
of H3K36me3 levels upon SETD2 overexpression or depletion in H1650 and PC-9 cells. Quantitative results were indicated on the right panel. 
(C) ChIP-qPCR assays of SETD2 and H3K36me3 in CXCL1 gene. (D) ChIP assay of H3K36me3 in CXCL1 promoter. (E) Western blotting analyses 
of phosphorylated and total protein level of ERK, JAK2 and STAT3 upon SETD2 overexpression or depletion in H1650 and PC-9 cells. 
Quantitative results were indicated on the right panel. *P<0.05, **P<0.01. Two-tailed Student’s t test. 
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decreased in LUAD. SETD2 depletion greatly up-

regulated CXCL1 via its enzymatic activity in 

catalyzing H3K36me3, which stimulated Wnt-

dependent cell cycle progression and promoted 

tumorigenesis (Figure 8E). 

Previous studies using murine models have revealed 

that activation of Wnt signaling is associated with 

initiation and progression of lung cancer [29]. Several 

Wnt pathway molecules have been elevated in LUAD, 

such as WNT1, WNT2, WNT3 and β-catenin [30–32]. 

 

 
 

Figure 7. SETD2-CXCL1 axis inhibits the cell proliferation ability and cell cycle in LUAD cells in vitro. (A) Cell proliferation and 
colony formation assay (B) evaluated the effect of exogenous CXCL1 treatment in SETD2 overexpressed LUAD cells, compared with vector 
control LUADs cells. (C) Cell proliferation and colony formation assay (D) evaluated the effect of endogenous CXCL1 neutralization by Anti-
CXCL1 antibody in SETD2 deficiency LUAD cells, compared with vector control LUADs cells. (E) Cell cycle analysis of the effect of exogenous 
CXCL1 treatment in SETD2 overexpressed LUAD cells, compared with vector control LUADs cells. (F) Cell cycle analysis of the effect of 
endogenous CXCL1 neutralization by Anti-CXCL1 antibody in SETD2 deficiency LUAD cells, compared with vector control LUADs cells. *P<0.05. 
One-way ANOVA with Dunn’s multiple-comparisons test. 



 

www.aging-us.com 25198 AGING 

In line with these results, our RNA-Seq analysis 

revealed that Wnt signaling pathway and its related key 

molecules were implicated in tumorigenesis upon 

SETD2 depletion. Although our results indicated that 

SETD2 exerted its function in a manner largely dependent 

on canonical Wnt signaling, several other important 

signaling pathways (e.g. NF-κB signaling and cytosolic 

transport process) were also altered in the absence of 

SETD2. Therefore, other signaling pathways might also 

contribute to the impact of SETD2 on tumorigenesis. 

 

Chemokines and their receptors play important roles in 

different biological processes, such as inflammation, 

immune responses and angiogenesis [33]. Penetration of 

inflammatory cells and chemokines into tumors is 

regarded as an important gist for clinical prognosis of 

cancer [34]. The chronic inflammation in many organs, 

like gastrointestinal, prostate, lung and bladder, can 

increase the risks of cancer and promote the cancer 

progression [35–39]. Chemokine CXCL1 is a 

monomeric protein of chemotaxis cytokines, which 

specifically binds to its receptor CXCR2 [40] and has 

been reported to promote tumor growth and metastasis 

in various cancers. There is no CXCL1 expression in 

normal melanin cells, while the sustained expression of 

CXCL1 promotes malignant transformation and tumor 

growth of melanoma via autocrine, as well as 

microvascular growth into tumors in paracrine fashion 

[41–44]. Additionally, CXCL1 is abnormally up-

regulated in many other cancers, such as colorectal 

cancer, breast cancer, bladder cancer and epithelial 

ovarian cancer [45–48]. Our results were consistent with 

these previous studies, in which the CXCL1 expression 

was up-regulated by SETD2 depletion in LUAD.

 

 
 

Figure 8. SETD2 impairs lung cancer cell growth in vivo. (A) A representative image of tumor volume of control and SETD2-
overexpressing H1650 cells with or without CXCL1 overexpression. (B) Measurement of subcutaneous tumor growth of control and SETD2-
overexpressing H1650 cells with or without CXCL1 overexpression. (C) Subcutaneous tumors were excised and weighed after mice were 
sacrificed. (D) H&E, SETD2 and CXCL1 staining of subcutaneous tumors of control and SETD2-overexpressing H1650 cells with or without 
CXCL1 overexpression. Scale bars: 50 μm. (E) Protein levels of G1 phase checkpoints Cyclin D1 and Cyclin E1 upon SETD2 or CXCL1 
overexpression in H1650 cells generated xenograft tumors. (F) Apoptosis levels in the H1650 cells generated xenograft tumor were evaluated 
by TUNEL assay. (G) Graphic model of SETD2 functions in LUAD. SETD2-catalyzed H3K36me3 recruited specific transcription factors to 
negatively regulate CXCL1 transcription, in which activation of CXCL1 facilitated cell cycle progression, whereas inactivation of CXCL1 led to 
tumor growth suppression. *P<0.05, **P<0.01. One-way ANOVA with Dunn’s multiple-comparisons test. 
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Moreover, the elevated CXCL1 levels affected cell 

cycle progression and promoted cancer cell proliferation 

and colony formation. 

 

Our results indicated that SETD2 and its catalyzed 

H3K36me3 interacted with CXCL1 promoter to 

regulate the CXCL1 expression. It is widely reported 

that H3K36me3 facilitates transcription [49], while in 

this study, we initially showed that SETD2 mediated 

H3K36me3 suppressed the expression of CXCL1. 

Nevertheless, the transcription factors involved 

remained undetermined here. According to previous 

reports, several transcription factors have participated in 

the regulation of CXCL1 expression, such as Sp1, NF-

κB and HMGI (Y), which interact with corresponding 

cis-acting elements to stimulate CXCL1 promoter 

activity [50]. In our GO analysis using differentially 

expressed genes between control and SETD2-silenced 

H1650 cells, “positive regulation of NF-κB signaling” 

was enriched, which could partially explain how 

SETD2 regulated CXCL1 transcription. 

 

In summary, our findings highlighted the inhibitory 

effects of SETD2 in LUAD with potential implications 

for cancer intervention. Moreover, our results established 

a role for SETD2- or H3K36me3-mediated cell growth 

aberration in tumorigenesis and might provide guidance 

for further understanding the molecular mechanisms 

associated with SETD2 deficiency. 

 

MATERIALS AND METHODS 
 

TCGA dataset 

 

The gene expression profile of LUAD patients was 

downloaded from the TCGA database (https://portal. 

gdc.cancer.gov/), including 513 tumor samples and 59 

normal samples. The gene expression levels were 

quantified as FPKM (fragments per kilobase per million 

mapped reads) by normalizing the mRNA length and 

library size after the read counts were generated using 

TopHat and HTSeq-count. To enable the log2 

transformation, the zero values of the expression data 

were replaced with the minimum nonzero FPKM 

values. The differential expression of the genes between 

the two groups was defined as P < 0.05. 

 

LUAD tissue specimens 

 

A total of 20 paired human LUAD and adjacent normal 

epithelial tissues were acquired from the Third 

Affiliated Hospital of Soochow University between 

2014 and 2017. Tissue specimens were obtained 

through surgey and stored in liquid nitrogen at -80° C. 

All human tissue-related experiments were approved by 

the Ethical Committee of the Third Affiliated Hospital 

of Soochow University. Written informed consents 

were obtained from all patients before surgery. 

 

Expression plasmids and siRNA 
 

The full-length human SETD2 and CXCL1 cDNAs 

were cloned into pLVX-IRES-Puro vector (Clontech) to 

generate SETD2 and CXCL1 expression plasmids, 

respectively. The siRNA targeting SETD2 was 

purchased from GenePharma. Three independent 

shRNA expression plasmids targeting SETD2 were 

generated by cloning annealed shRNA oligonucleotides 

into the PLKO.1-TRC vector. The shRNA sequences 

were listed as follows: shSETD2-1 forward: 5′-

CCGGAGTAGTGCTTCCCGTTATAAACTCGAGTT

TATAACGGGAAGCACTACTTTTTTG-3′, reverse: 

5′-AATTCAAAAAAGTAGTGCTTCCCGTTATAAA 

CTCGAGTTTATAACGGGAAGCACTACT-3′; shSE 

TD2-2 forward: 5′-CCGGACGAATTAAAGACCGC 

AATAACTCGAGTTATTGCGGTCTTTAATTCGTTT

TTTG-3′. reverse: 5′-AATTCAAAAAACGAATTA 

AAGACCGCAATAACTCGAGTTATTGCGGTCTTT

AATTCGT-3′; shSETD2-3 forward: 5′-CCGG 

TTCCGACGAGGGTCATCATATCTCGAGATATGA

TGACCCTCGTCGGAATTTTTG-3′; reverse: 5′-

AATTCAAAAATTCCGACGAGGGTCATCATATCT

CGAGATATGATGACCCTCGTCGGAA-3′. 

 

Cell lines and cell culture 

 

All cells used in this study were obtained from the 

Chinese Cell Bank of the Chinese Academy of Sciences 

(Shanghai, China). Human bronchial epithelial (HBE) 

cells and human lung cancer cells A549, H1975, H1299, 

H1650 and PC-9 were maintained in RPMI-1640 culture 

medium supplemented with 10% fetal bovine serum 

(FBS) and 1% penicillin/streptomycin (P/S) solution. 

Lentivirus was used to establish individual stable cell 

lines. siRNA duplexes targeting SETD2 (100 nM) and 

corresponding negative control (NC) oligonucleotides 

were transfected into cells using Lipofectamine 3000 

(Invitrogen) according to the manufacturer’s instructions. 

 

Cell proliferation assay was performed using CellTiter 

96® Non-Radioactive Cell Proliferation Assay (MTT) 

kit (Promega) according to the manufacturer’s 

instructions. Briefly, cells were seeded into a 96-well 

plate (100 μL/well) at a density of 1×10
4
 cells/mL and 

cultured at 37° C in an incubator containing 5% CO2. 

Each well was added with 10 μL MTS solution and then 

incubated at 37° C for 2 h. The spectrophotometric 

absorbance at 590 nm was determined for each sample. 

All the experiments were performed in triplicate. 

 

For soft agar colony formation assays, cells  

were suspended in RPMI-1640 containing 0.35%  

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


 

www.aging-us.com 25200 AGING 

low-melting agar (Invitrogen) and 10% FBS and seeded 

onto a coating of 0.8% low-melting agar in RPMI1640 

containing 10% FBS. Plates were incubated at 37° C in 

a humidified atmosphere containing 5% CO2. Colonies 

were counted after 3 or 4 weeks of culture. Each 

experiment was conducted in triplicate. 

 

RNA extraction and real-time qPCR 

 

Total RNA was extracted using TRIzol reagent 

according to the manufacturer’s instructions. Next, 1 μg 

of purified RNA was reversely transcribed into first-

strand cDNA using Superscript II (Invitrogen). Syber 

Green Universal Master Mix reagent (Roche) and 

primer mixtures were used for the real-time qPCR. 

GAPDH was used as the housekeeping gene. The 

primer sequences used for real-time qPCR were as 

follows: SETD2 forward: 5′-ATCGAGAGAGGA 

CGCGCTATT-3′, reverse: 5′-AGGTACGCCTTG 

AGTATGTCTT-3′; CXCL1 forward: 5′-AGCTTGC 

CTCAATCCTGCATCC-3′; reverse: 5′-TCCTTCAG 

GAACAGCCACCAGT-3′. 

 

Western blotting analysis 

 

Total proteins were extracted and subjected to SDS-

PAGE. SETD2 antibody (Invitrogen), Cyclin D1 

antibody (Cell Signaling Technology), Cyclin E1 

antibody (Abcam), and H3K36me3 antibody (Cell 

Signaling Technology), phos-ERK antibody (Santa 

Cruz Biotechnology), ERK (Santa Cruz 

Biotechnology), phos-JAK2 (Santa Cruz 

Biotechnology), JAK2 (Santa Cruz Biotechnology), 

phos-STAT3 (Abcam) and STAT3 (Abcam) were used 

at a dilution of 1:2,000. H3 (Cell Signaling Technology, 

1:2,000) and GAPDH (Santa Cruz Biotechnology, 

1:2,000) were used as loading controls. 

 

Cell cycle analysis 

 

Cells were digested by 0.25% trypsin when they were in 

their logarithmic growth phase, followed by 

centrifugation at 1,000 rpm for 5 min to obtain the cell 

pellet. After fixed in pre-cooled 70% ethanol at –20° C 

overnight, propidium iodide (PI) was added into cells. 

Cell cycle phases were examined by flow cytometry 

(Beckman). Each experiment was conducted in triplicate. 

 

Reporter vector construction and luciferase reporter 

assays 

 

Four CXCL1 promoter truncations containing 

respective -2.5 k, -2.0 k, -1.5 k and -1.0 k regions of 

CXCL1 promoter were amplified and cloned into 

pGL3-basic vectors (Promega) to conduct specific 

CXCL1 promoter-luciferase reporter vectors. 

The siNC or siSETD2 was co-transfected with distinct 

CXCL1 promoter reporter vector into H1650 and PC-9 

cells using Lipofectamine 3000 (Invitrogen). The 

luciferase activity was determined at 48 h after 

transfection using the Dual-Luciferase Reporter Assay 

System (Promega) according to the manufacturer’s 

instructions. Each experiment was performed in 

triplicate. 

 

RNA-seq and data analysis 
 

Total RNA from H1650 cells with or without SETD2 

depletion was subjected to HiSeq RNA-Seq. 

Transcriptome reads from RNA-Seq experiments were 

mapped to the reference genome (hg19) using Hisat2 

software. The gene expression level was quantified by 

the Ballgown package. P < 0.05 was considered 

statistically significant. The differentially expressed 

genes were subsequently analyzed for the enrichment of 

biological pathways using the ClusterProfiler package. 

Gene interaction network analysis was performed using 

STRING website (https://string-db.org/) and Cytoscape 

software (3.6.0). The RNA-seq data is available from 

the Gene Expression Omnibus database (https:// 

www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE150809. 

 

Chromatin immunoprecipitation (ChIP) assays 
 

The ChIP assays were performed using the Magnetic 

ChIP kit (Millipore) according to the manufacturer’s 

instructions. Briefly, H1650 and PC-9 cells were fixed 

by 1% formaldehyde, fragmented by a combination of 

MNase and sonication. SETD2 (Active Motif) and 

H3K36me3 (Active Motif) antibodies were then used 

for immunoprecipitation. After washing and reverse-

crosslinking, the precipitated DNA was amplified by 

CXCL1 promoter primers and then quantified by the 

Step-One Plus Real-Time PCR System and DNA gel 

electrophoresis. 

 

Immunohistochemistry (IHC) assays 

 

Tumors from xenograft models were collected and then 

embedded by paraffin after fixed by 4% PFA. IHC 

analyses were performed using specific anti-SETD2 

(Invitrogen) and anti-CXCL1 (Abcam) antibodies. 

 

Tumor xenografts 
 

BALB/c nude mice (5 weeks old) were purchased from 

SLAC Animal Center (Shanghai, China) and then used 

for xenograft tumor model. The animal-related 

experiments were approved by the Institutional Animal 

Care and Use Committee of the Third Affiliated 

Hospital of Soochow University. H1650 cells were 

https://string-db.org/
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subcutaneously injected to nude mice, and then tumor 

volumes were monitored every 5 days. Tumor volumes 

were estimated by length and width and calculated 

using the following formula: 

 

Tumor volume = (length * width^
2
)/2 

 

About 1 month later, the nude mice were sacrificed, and 

then tumors were excised, pictured, and weighed. 

 

Statistical analysis 

 

All experiments were performed in triplicate. GraphPad 

Prism 8.0 was used for statistical analyses. Data in all 

figures were presented as the mean ± SEM. Pearson 

correlation coefficients were used to evaluate the 

relationship between the expressions of SETD2 and 

CXCL1. Cox proportional hazards regression model 

and multivariate Cox proportional hazards model 

analyses were performed with the statistical software 

SPSS 22.0. Statistical significance was determined by 

multiple t-test, one-way ANOVA, two-way ANOVA, 

Pearson correlation coefficients or log-rank test. For 

computing gene signature scores based on expression 

profiling data from H1650 cells, genes were first z-

normalized to the SD from the median across the cell 

samples, and the average of the z-normalized values for 

all the genes in the signature was used to represent the 

signature score for each sample profile. Survival rates 

were calculated using the Kaplan-Meier method and 

differences between survival curves were examined 

using a log-rank test. For all statistical tests, the 0.05 

level of confidence (two-sided) was accepted for 

statistical significance. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The depletion efficiency of SETD2 in H1650 cells. (A) Real-time qPCR analysis of SETD2 expression at the 

mRNA level upon SETD2 siRNA transfection in H1650 cells. (B) Western blotting analysis of SETD2 expression at the protein level upon SETD2 
siRNA transfection in H1650 cells.*P< 0.05. 

 

 

 
 

Supplementary Figure 2. CXCL1 is up-regulated upon SETD2 depletion. (A) Heat map indicating the differentially expressed genes in 

SETD2-silenced H1650 cells. (B) Heat map of top 10 differentially expressed genes in which CXCL1 was underlined by red. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 
Supplementary Table 1. RNA-seq analysis identified a total of 1,501 genes expressed in SETD2-silenced cells, among 
which 990 genes were up-regulated, and 511 genes were down-regulated (fold change > 5). 


