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INTRODUCTION 
 

Pancreatic ductal adenocarcinoma (PDAC) is one of the 

most invasive solid malignancies and could become the 

second leading source of cancer-related deaths in the 
United States. Surgical resection, which is the only 

established therapy, significantly enhances the five-year 

survival rate to 20–30%. However, fewer than 20% of 

all PDAC patients are eligible for resection since most 

patients are diagnosed with advanced-stage disease 

featuring metastasis. However, patients with PDAC in 

the same TNM stage can differ in overall survival  

(OS), perhaps because of the complex desmoplastic 

microenvironment and the different molecular 

characteristics of PDAC. Thus, new strategies and 

better signatures are needed to help predict prognosis 
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ABSTRACT 
 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. Extensive 
enhancement of glycolysis and reprogramming of lipid metabolism are both associated with the development and 
progression of PDAC. Previous studies have suggested that various gene signatures could convey prognostic 
information about PDAC. However, the use of these signatures has some limitations, perhaps because of a lack of 
knowledge regarding the genetic and energy supply backgrounds of PDAC. Therefore, we conducted multi-mRNA 
analysis based on metabolic reprogramming to identify novel signatures for accurate prognosis prediction in PDAC 
patients. In this study, a three-gene signature comprising MET, ENO3 and CD36 was established to predict the 
overall survival of PDAC patients. The three-gene signature could divide patients into high- and low-risk groups by 
disparities in overall survival verified by log-rank test in two independent validation cohorts and could 
differentiate tumors from normal tissues with excellent accuracy in four Gene Expression Omnibus (GEO) cohorts. 
We also found a positive correlation between the risk score of the gene signature and inherited germline 
mutations in PDAC predisposition genes. A glycolysis and lipid metabolism-based gene nomogram and 
corresponding calibration curves showed significant performance for survival prediction in the TCGA-PDAC 
dataset. The high-risk designation was closely connected with oncological signatures and multiple aggressiveness-
related pathways, as determined by gene set enrichment analysis (GSEA). In summary, our study developed a 
three-gene signature and established a prognostic nomogram that objectively predicted overall survival in PDAC. 
The findings could provide a reference for the prediction of overall survival and could aid in individualized 
management for PDAC patients. 
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and subsequently improve individualized treatment for 

PDAC patients. 

 

Recent advances in gene chips and high-throughput next-

generation sequencing technology have modified the 

transcriptomic research landscape and demonstrated that 

mRNA prognostic signatures can help to predict OS in 

PDAC [1]. Numerous bioinformatics analyses have been 

conducted to elucidate molecular mechanisms and direct 

clinical practice [2]. Raman et al. developed a five-gene 

prognostic model that accurately predicted OS from a 

PDAC dataset in The Cancer Genome Atlas (TCGA) (the 

TCGA-PDAC dataset) using Cox proportional hazards 

regression analysis [3]. Similarly, Yan et al. revealed a 

four-gene signature (with LYRM1, KNTC1, IGF2BP2, 

and CDC6) that is significantly related to the progression 

of pancreatic cancer through the same method [4]. 

However, this method is not suitable for high-

dimensional microarray data because of the limitation of 

overfitting. The least absolute shrinkage and selection 

operator (LASSO) regression method does not have this 

class of limitation and has been broadly used for 

optimized selection of genes [5]. Notably, PDAC is 

characterized by an incredibly nutrient-deficient and 

hypoxic environment caused by vascular disturbances, 

desmoplastic reactions and unrestrained growth. 

Oncogenic activation of Kirsten rat sarcoma 2 viral 

oncogene homolog (KRAS) and mutations in other tumor 

suppressor genes promote abnormal mitochondrial 

metabolism and enhance glycolysis and lipid metabolism 

since these genes are intrinsic components of metabolic 

plasticity [6]. Reprogramming of metabolic pathways, 

including enhancement of lipid metabolism and 

glycolysis, has emerged as a hallmark of cancer [7, 8]. 

The most common transformation is enhancement of 

glycolysis, which enables vigorous growth of cells by 

generating a large variety of substrates and facilitates 

invasion and migration by affecting glycolytic enzymes 

to improve the supply of ATP [9, 10]. Biosynthesis, 

glycosylation and redox homeostasis are also linked to 

intermediates related to glycolysis. Overexpression of 

glycolytic enzymes and increased lactate production in 

PDAC cells promote metastatic colonization of distant 

organs and tumor angiogenesis by regulating the 

invasion-metastasis cascade [11]. Fatty acids (FAs) and 

glycerol are key molecules released by adipocytes and 

are the main precursors of the lipids used as energy 

sources by cancer cells. As a result, cancer-associated 

adipocytes play a role in providing energy for cancer 

cells since they supply sufficient FAs and lipids to affect 

the metabolism of tumor cells and promote the growth of 

malignant tumors. FAs are also used by cells to 

synthesize membranes and to generate signaling 

molecules that stimulate the proliferation and invasion of 

cancer cells. Previous studies have sought to delineate 

correlations between lipid remodeling and the 

progression of invasive malignant biological behavior in 

PDAC. Lipid breakdown and fibrotic changes in the 

tumor microenvironment enhance the levels of FAs. 

 

In this study, we performed a systematic and 

comprehensive gene signature discovery and validation 

effort, with consideration of various components of 

metabolic reprogramming, to develop a multi-gene 

model for the robust prediction of the prognoses of 

PDAC patients. A prognostic nomogram consisting of 

the identified gene signature and clinical prognostic 

factors was also created for prediction of OS. The 

molecular mechanism and inherited germline mutations 

of the gene signature were also investigated. All of 

these findings could provide a reference for improved 

prediction of OS and could aid in the individualized 

management of PDAC patients. 

 

RESULTS 
 

Identification of DEGs from public datasets 
 

The results of this study are summarized in a flow chart 

(Figure 1). The detailed information in three eligible 

PDAC datasets in the GEO database (GSE15471, 

GSE16515, and GSE32676) met our criteria. Analysis of 

these PDAC datasets revealed that 237 differentially 

expressed genes (DEGs) were shared among the 3 series 

of comparisons between tumor and adjacent para-

cancerous tissues in the Venn and UpSet diagrams; these 

DEGs were regarded as credible DEGs (Figure 2A, 2B). 

In addition, KEGG pathway enrichment analyses were 

performed for these overlapping up- or down-regulated 

genes. As shown in Figure 2C, the DEGs were most 

enriched in the ECM-receptor interaction pathway, the 

PI3K-Akt signaling pathway and numerous energy 

metabolism-related pathways, such as the proteoglycans 

in cancer pathway and the central carbon metabolism in 

cancer pathway. 

 

Prognostic signature construction 

 

Based on these 237 DEGs and clinical features from the 

TCGA database, 100 genes significantly related to OS 

time (P < 0.05) were identified by the log-rank test, as 

shown in Figure 3A. Twelve glycolysis and lipid 

metabolism-related genes significantly associated with 

survival of PDAC were screened (Table 1). To avoid 

overfitting during the subsequent model construction, 

LASSO regression was performed to build a prognostic 

signature, which included twelve genes from the 237 

previously identified DEGs. The LASSO coefficient 

profiles of the twelve genes are presented in Figure 3B. 
A formula to calculate the risk score for PDAC was 

derived based on individual three-gene expression 

levels weighted by regression coefficients, as follows: 
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Risk score (1.0167070 expression level of MET)

(0.4313794 expression level of ENO3)

(0.1764747 expression level of CD36).

 

 

 

 

 

With the median risk score as the cutoff, PDAC patients 

were classified into a low-risk group (n = 89) and a 

high-risk group (n = 88) (Figure 3C). Survival analysis 

confirmed that the survival times of the low risk 

patients were distinctly longer than those of the high-

risk patients in the TCGA discovery cohort (P < 0.0001; 

Figure 3D). The finding was subsequently validated in 

ICGC validation datasets; the results obtained for these 

datasets agreed with those obtained for the discovery 

cohort (P = 0.038; Figure 3F). The same trend was also 

verified in the FUSCC validation cohort (P = 0.017; 

Figure 3H). Furthermore, to evaluate the performance 

of the three-gene signature in predicting the prognoses 

of PDAC patients, time-dependent ROC curves with 

respect to the 1-year, 3-year and 5-year survival rates 

were constructed for the TCGA, ICGC and FUSCC 

datasets, and the area under the curve (AUC) values for 

these curves were evaluated (Figure 3E, 3G, 3I). The 

AUC at 1, 3, and 5 years was 0.709, 0.749, and 0.836 in 

the TCGA set, respectively. The AUC at 1, 3, and 5 

years was 0.644, 0.621, and 0.955 in the ICGC set, 

respectively. The AUC at 1 and 3 years was 0.601, 

0.745 in the FUSCC set, respectively. 

 

 
 

Figure 1. Flowchart presenting the process of establishing the gene signature in this study. 
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Validation of the expression of and alterations in the 

three genes 
 

The mRNA expression levels of the three genes were 

validated using the Gene Expression Profiling 

Interactive Analysis (GEPIA) database and GEO. In the 

GEPIA dataset, only MET mRNA expression was 

significantly elevated in tumor samples (Figure 4A–

4C). In the GEO dataset, we found that MET expression 

levels were significantly higher in PDAC tumor tissue 

than in paracancerous tissue in the GEO32676 and 

GEO15471 datasets (Figure 4D). In contrast, the  

mRNA expression of ENO3 and CD36was markedly 

down-regulated in tumor tissues (Figure 4E, 4F). 

Protein expression of the DEGs in pancreatic tumor  

and non-tumor tissues was evaluated by the Human 

Protein Atlas (https://www.proteinatlas.org/) [12]. 

Immunohistochemical (IHC) staining information for 

the three genes in PDAC from the Human Protein Atlas 

database is shown in Figure 4G–4I. Moreover, the OS 

times were also obtained from the GEPIA database 

(Figure 4J–4L). A total of 848 patients in four cohorts 

(the ICGC, Queensland Centre for Medical Genomics 

[QCMG], TCGA and UT Southwestern Medical Center 

[UTSW] cohorts) were included in this study for 

analysis of the mutation information of the three 

glycolysis- and lipid metabolism-related genes.  

Overall, amplification and deep deletion were the most 

common types of mutations in MET, CD36 and ENO3 

(Figure 4M). 

 

Validation of the risk score formula in the GEO and 

TCGA cohorts 

 

ROC curve analysis was performed with AUCs to 

evaluate the usefulness of the risk score of the gene 

signature in distinguishing PDAC tissues from control 

samples in four GEO cohorts (Figure 5A). Tumor tissues 

could be reliably identified based on this risk score. 

Subgroup analyses were performed to assess the three-

gene signature and clinical characteristics of pancreatic 

cancer (including American Joint Committee on Cancer 

[AJCC] stage and grade) from appropriate datasets. In 

terms of AJCC stage and grade, stage T3-4 and grade 3-4 

patients had higher risk scores than stage T1-2 and grade 

1-2 patients. However, the same trend was not noted for 

N stages (Figure 5B–5D). The Kaplan-Meier curves of 

these clinical features are shown in Figure 5E–5H. The 

survival time of the high-risk score group was 

significantly shorter than that of the low-risk score group 

for all pathological T stages and for grades 1-2. In terms 

of mutations, risk scores were observed to be highly 

correlated with the mutation states of key genes in 

PDAC. The risk scores for the CDKN2A, KRAS and 

TP53 mutant groups were significantly higher than that 

of the wild-type group (Figure 5I–5L). 

 

 
 

Figure 2. Identification of DEGs in pancreatic cancer between tumor and paracancerous tissues. (A) Volcano plots of DEGs in the 

3 indicated datasets. (X-axis: log2(FC); Y-axis: -log10(FDR) for each gene. Genes with FDR <0.01 and FC >1 or <-1 were considered as DEGs in 
each series. Blue: down-regulated genes; Gray: non-differential genes; Red: up-regulated genes). (B) Upset Venn diagrams of the DEGs 
identified in 3 GEO datasets. (C) Top 10 enriched KEGG pathways of the DEGs. 

https://www.proteinatlas.org/
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Figure 3. Lasso analysis and Kaplan-Meier curve for the patients in the TCGA, ICGC and FUSCC cohorts. (A) Representative 
heatmap of the DEGs significantly related to OS time identified by the log-rank test in the TCGA cohort. (B) LASSO coefficient profiles of the 
12 glycolysis and lipid metabolism-based genes. LASSO, least absolute shrinkage and selection operator method. (C) Risk score analysis of the 
differentially expressed DEG signatures of PDAC. Risk scores of DEG signatures (top); survival status and duration of cases (middle); low‐score 
and high‐score groups for the three genes (bottom). (D) The Kaplan-Meier plot (low risk vs. high risk PDAC cases) of 5-year overall survival in 
the TCGA cohort. (E) Time-dependent ROC analyses at 1, 3, and 5 years in the TCGA cohort. (F) The Kaplan-Meier plot (low risk vs. high risk 
PDAC cases) of 5-year overall survival in the ICGC cohort. (G) Time dependent ROC analyses at 1, 3, and 5 years in the ICGC cohort. (H) The 
Kaplan-Meier plot (low risk vs. high risk PDAC cases) of 5-year overall survival in the FUSCC cohort (I). Time dependent ROC analyses at 1, 3, 
and 5 years in the FUSCC cohort. 
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Table 1. The survival information of the 12 glycolysis and lipid metabolism-based genes. 

gene 
Overall Survival Disease Free Survival 

HR Log-rank p HR Log-rank p 

PKM 1.7 0.0097 1.6 0.046 

MET 2.2 0.00023 2.2 0.00044 

HK2 1.5 0.053 1.5 0.084 

LDHA 2.2 0.0002 2.1 0.00064 

ENO3 0.65 0.045 0.64 0.042 

LDLR 1.7 0.012 1.4 0.15 

CD36 0.56 0.0053 0.64 0.046 

FAS 1.7 0.013 1.2 0.48 

SDC1 1.6 0.018 1.8 0.011 

SDC4 1.7 0.015 1.8 0.0083 

ITPR3 1.3 0.21 1.6 0.042 

ITGB1 1.6 0.029 1.8 0.013 

 

Correlations between the three-gene signature and 

clinical characteristics 

 

We examined the association of the three-gene 

signature (risk score) with clinical features in PDAC 

patients using univariate and multivariate Cox 

proportional hazard regression analyses. Univariate Cox 

proportional hazard regression showed that N stage, 

age, and risk score could predict poor survival of PDAC 

patients, as shown in Table 2 (P < 0.05). In addition, 

multivariate Cox proportional hazard regression showed 

that the risk score (P < 0.001) was an independent 

prognostic indicator of PDAC (Figure 6A). Based on 

the results acquired from multivariate Cox regression of 

OS in the TCGA dataset, we developed a nomogram to 

predict 1-, 3- and 5-year survival probability in PDAC 

(Figure 6B). The C-index of our nomogram in the 

TCGA cohort was 0.689 (95% confidence interval, 

0.628-0.749), and the calibration curves for this 

nomogram presented good agreement between the 

possibility estimated by the nomogram and the actual 

proportion (Figure 6C–6E). 

 

Analysis of gene set enrichment relevance of the 

three-gene signature 

 

To elucidate the molecular mechanism of the three-gene 

signature, patients from the TCGA PDAC dataset were 

divided into high- and low-risk groups according to the 

cutoff value. GSEA compared the high- and low-risk 

groups. Gene ontology (GO) gathers information about 

molecular function, biological processes, and cellular 

components in a number of different organisms. These 

enriched gene ontology (GO) data revealed that 

molecular alteration in the high-risk group was closely 

related to the nuclear periphery, apical junction and 

nuclear matrix. Oncological signatures were 

significantly enriched, including HOXC6, SMAD2, 

SMAD3 and MTORC (Figure 7). 

 

DISCUSSION 
 

Pancreatic ductal adenocarcinoma (PDAC) is one of the 

most invasive solid malignancies and could become the 

second leading source of cancer-related deaths in the 

United States by 2030 [13]. Therefore, updated models 

with effective gene signatures are needed that can better 

identify patients with PDAC in high- and low-risk 

groups. Such models could aid in the selection of 

appropriate treatments and improve clinical management. 

Currently, clinical indices and tumor biomarkers are used 

to predict prognosis and relapse in patients with PDAC 

[14]. However, the value of some clinical features, such 

as tumor dimensions and lymph node metastases, in 

relapse and survival prediction remains controversial. 

Carbohydrate antigen 19-9 (CA19-9), CA50 and 

carcinoembryonic antigen (CEA) are classic serum bio-

markers used for PDAC prognosis prediction. However, 

these tumor markers are not specific to PDAC; thus, 

elevations in their levels can be related to other 

gastrointestinal carcinomas. Compared with most solid 

cancers, PDAC is recognized as a more heterogeneous 

disease influenced by genetic polymorphisms and 

hypoxic environments, and metabolic reprogramming is a 

novel feature of PDAC. It has become increasingly 

recognized that extensive enhancement of glycolysis and 

reprogramming of lipid metabolism are both associated 

with the development and progression of PDAC [15]. 

Previous studies have suggested that various gene 
signatures could convey prognostic information about 

PDAC. However, the use of these signatures has some 

limitations, perhaps because of a lack of knowledge 
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Figure 4. Validation of expression and alteration of the three genes in pancreatic cancer. (A–C) The MET, CD36 and ENO3 mRNA 
expression levels in TCGA pancreatic cancer tumor tissue and matching normal tissue from data on TCGA and GTEx. Data were obtained from 
the GEPIA (http://gepia.cancer-pku.cn/). (D–F) The MET, CD36 and ENO3 mRNA expression levels in GEO32676 and GEO15471 pancreatic 
cancer tumor tissue compared with non-tumor tissues. (G–I) The representative protein expression of the 3 glycolysis and lipid metabolism-
based genes in pancreatic cancer tumor tissue. Data were obtained from the human protein atlas (https://www.proteinatlas.org/). (J–L) 
Survival analysis of patients with PAAD in terms of MET, CD36 and ENO3 in TCGA patients. (M) Genetic alterations of the three genes in the 
ICGC, QCMG, TCGA and UTSW pancreatic cancer datasets. Data were obtained from the cBioportal (https://www.cbioportal.org/). 

http://gepia.cancer-pku.cn/
https://www.proteinatlas.org/
https://www.cbioportal.org/
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regarding the genetic and energy supply backgrounds of 

PDAC. Therefore, we conducted multi-mRNA analysis 

based on metabolic reprogramming to identify novel 

signatures for accurate prognosis prediction in PDAC 

patients. 

 

In the current study, a three-gene signature based on 

metabolic reprogramming was identified using the 

LASSO Cox regression model. This signature offered 

excellent accuracy in identifying patients with poor 

survival. The signature also showed significant ability 

to distinguish between PDAC and non-PDAC in GEO 

datasets and a strong, positive correlation with the 

mutation states of key genes in PDAC. Univariable and 

multivariate Cox analyses indicated that the three-gene 

signature was a powerful and independent prognostic 

indicator. Additionally, we developed a nomogram that 

included clinical factors. GSEA was used to further 

explore the underlying mechanism of the signature in 

high-risk PDAC patients. 

 

PDAC cells have a powerful ability to survive in harsh 

environments by transforming their energy metabolism 

processes. MET, also known as c-MET, is a receptor 

tyrosine kinase that builds connections between the 

extracellular matrix and cytoplasm by binding with its 

ligand hepatocyte growth factor (HGF). The MET 

receptor incorporates its ligand, HGF, through MET 

dimerization, and this process activates MET. In cancer 

cells, aberrant HGF/c-Met axis triggering, which is 

strongly linked to c-Met gene mutations and 

amplification, promotes tumor development/progression 

by inducing the PI3K/AKT, Ras/MAPK, JAK/STAT, 

SRC, Wnt/β-catenin, and other signaling pathways. Up-

regulated MET expression is also related to a shorter 

time to distant metastasis in PDAC patients receiving 

adjuvant and neoadjuvant chemoradiation therapy [16]. 

Furthermore, Yan et al. revealed a novel link between 

paracrine HGF/c-MET signaling and enhancement of 

stem cell-like potential and glycolysis in PDAC, 

involving activation of yes-associated protein [17]. 

Currently, drugs targeting c-Met that are in clinical 

trials can be divided into monoclonal antibodies (e.g., 

onartuzumab) and small molecule inhibitors, including 

ATP-competitive inhibitors (e.g., crizotinib) and non-

ATP competitive inhibitors (e.g., tivantinib). Targeting 

 

 

 

Figure 5. (A) The ROC curves of the risk scores differentiating pancreatic cancer from normal tissues in the four validation GEO datasets. The 

clinical and tumor mutation relevance of the three gene signatures. (B–D) The distribution of the risk scores in different AJCC stages in the 
TCGA cohort. (E–H) The Kaplan-Meier plot (low risk- score vs. high risk- score) of 5-year overall survival in patients in the TCGA cohort. (I–L) 
The expression level of the risk score in different mutation statuses of KRAS, TP53, CDKN2A, and SMAD4 in the TCGA dataset. 
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Table 2. Univariable Cox regression analyses of the risk score, age, gender, grade and tumor stage TCGA. 

 

HR (95% CI for HR) Wald. Test P. value 

Age 1 (1-1.1) 5.4 0.02 

Gender 0.8 (0.53-1.2) 1 0.31 

Risk. Score 31 (8-120) 24 8.60E
-07

 

Grade 1.5 (0.93-2.3) 2.8 0.097 

Stage 0.74 (0.23-2.4) 0.26 0.61 

N 2.1 (1.3-3.6) 7.9 0.0049 

T 1.8 (0.93-3.5) 3 0.081 

 

of c-Met for the treatment of tumorigenesis and 

metastasis is still believed to have broad clinical 

significance [18]. Enolase (ENO), also known as 

phosphopyruvate hydratase, is a metalloenzyme that 

catalyzes the conversion of 2-phosphoglycerate (2-PG) 

into phosphoenolpyruvate (PEP) during glycolysis and 

reverses the transformation of phosphoric acid-pyruvate 

into 2-phosphate-d-glycerate through glycogen synthesis. 

The ENOs in mammalian cells are composed of 3 

subunits: α, or nonneuronal ENO (NNE); β, or muscle-

specific ENO (MSE); and γ, or neuron-specific ENO 

(NSE) [19]. These molecules are cytoplasmic enzymes 

associated with glycolysis and gluconeogenesis. ENO1 is 

activated by various glucose transporters and glycolytic 

enzymes associated with cell cycle progression and the 

Warburg effect in tumor cells. Some studies have shown 

that ENO1 acts as a potent promoter in tumor cells by 

regulating AMPK/mTOR and PI3K/AKT signaling and 

inactivating a downstream signaling pathway [20]. Up-

regulated expression of the ENO2 gene has also been 

observed in non-small cell lung carcinomas (NSCLCs). 

The β-subunit of ENO is encoded by the ENO3 gene. 

Choa Park et al. suggested that up-regulated ENO3 gene 

expression is directly positively correlated with the 

 

 
 

Figure 6. Validation of the nomogram in predicting overall survival of pancreatic cancer in the TCGA dataset. (A) Forest plot 

summary of multivariable Cox regression analyses of the risk score, age, sex, grade and tumor stage in the TCGA cohort. The squares 
represent the hazard ratio (HR), and the transverse lines represent 95% CIs. CI, confidence interval. (B) A nomogram to predict survival 
probability at 1, 3 and 5 years for PDAC patients based on the results derived from the TCGA cohort. (C–E) Calibration curve for the 
nomogram when predicting 1, 3- and 5-year overall survival. 
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consequence of STK11 loss of function in lung cancer. 

Additionally, down-regulation of ENO3 expression has 

been found to exert a selective anticancer effect in 

STK11 mutant cells compared with STK11 wild-type 

cells. However, the role of ENO3 in PDAC remains 

unknown [21]. 

 

Fatty acid (FA) derivatives consist of sterols, 

phospholipids, and sphingolipids, along with signaling 

molecules that mediate the invasion, migration, and 

chemoresistance of cancer cells [7]. CD36, a 

transmembrane glycoprotein that belongs to the 

scavenger receptor class B family, is an essential 

member of this group [22]. In addition to FA uptake, 

CD36 promotes cholesterol uptake and transduces 

intracellular signaling, mediating the metabolic targeting 

of FAs. CD36 has also been revealed to play roles in 

other important cellular processes related to tumor 

 

 
 

Figure 7. Gene set enrichment analyses. (A–C) Top 3 (HOXC6 target cancer, intestine probiotics, target of SMAD2 or SMAD3.) 

oncological signatures significantly C2 (hallmark gene sets) enriched in the high-risk group identified by gene set enrichment analysis. (D–F) 
Top 3 (nuclear periphery, apical junction assembly, nuclear matrix.) oncological signatures significantly C5 (biological process) enriched in the 
high-risk group identified by gene set enrichment analysis. (G–I) Top 3 (MTORC1 signaling, glycolysis, unfolded protein response.) oncological 
signatures significantly H (hallmark gene sets) enriched in the high-risk group identified by gene set enrichment analysis. 
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biology, including angiogenesis, antigen presentation 

and cell adhesion [23]. Recent reports have revealed that 

low expression of CD36 is associated with low TNM 

stages and CA19-9 levels but poor survival prognosis in 

PDAC patients [24]. However, Masahiko Kubo et al. 

suggested that increased expression of CD36 could 

increase gemcitabine resistance by regulating anti-

apoptotic proteins and the endothelial-mesenchymal 

transition of PDAC cells [25]. These controversial 

results rendered the role of CD36 in PDAC unclear and 

could be partly due to limited awareness of FA 

components and their contributions to the biological 

behavior of PDAC. 

 

Like other studies, the present study inevitably had 

some limitations. First, the main sources of our research 

data were public datasets, and our findings were not 

validated in a prospective cohort. Moreover, more 

experiments incorporating multiplatform analyses with 

genomics, transcriptomics and proteomics approaches 

should be performed to investigate the molecular 

mechanism of the identified signature to illuminate the 

association between the three-gene signature and PDAC 

prognosis. 
 

In conclusion, our study successfully identified a three-

gene signature and a prognostic nomogram for the 

prediction of OS in pancreatic cancer patients. The 

three-gene signature was found to be closely associated 

with the progression and prognosis of pancreatic cancer. 

This classifier could have clinical applications in 

guiding the use of metabolic reprogramming and could 

be useful for the personalized management of PDAC 

patients. Future investigations of the related molecular 

mechanisms and prospective, randomized clinical trials 

regarding this signature will be of great clinical 

significance and could provide a roadmap for precision 

medicine. 

 

MATERIALS AND METHODS 
 

Acquisition of PDAC gene expression data and 

clinical data 
 

Microarray gene expression profiles for PDAC were 

downloaded from the NCBI Gene Expression Omnibus 

(GEO) (https://www.ncbi.nlm.nih.gov/geo/), TCGA 

(http://cancergenome.nih.gov/) and the International 

Cancer Genome Consortium (ICGC) database 

(https://dcc.icgc.org/). The gene expression microarray 

datasets GSE15471, GSE16515 and GSE32676 were 

chosen and downloaded for differentially expressed 

gene (DEG) analysis. The datasets met the following 

criterion: they contained data on human pancreatic 

tissue samples from tumors and adjacent paracancerous 

areas. Datasets that were unanalyzable, that included 

few DEGs (fewer than 100), or that included defectively 

annotated genes were excluded. The probe names were 

transformed into gene symbols using the annotation 

files supplied by the manufacturer. The median ranking 

value was used as the expression value if several 

probes matched a single gene. Robust multiarray 

average (RMA)-normalized data were log2-

transformed for further analysis. Normalized RNA-

sequencing data in transcripts per million (TPM) 

format and the associated clinical information of the 

PDAC samples were downloaded from the TCGA 

dataset. For validation, we used transcriptomic data 

from the ICGC and recruited 82 patients who 

underwent surgical resection at Fudan University 

Shanghai Cancer Center (FUSCC) from 2010 to 2012. 

These patients were diagnosed according to strict 

pathological criteria, and total RNA was extracted from 

their tumor tissues. Strictly controlled postoperative 

follow-ups were conducted for all of the patients. All of 

the procedures were implemented after obtaining 

approval from the Clinical Research Ethics Committee 

of FUSCC, and informed consent was acquired from 

each patient. 

 

DEG identification and bioinformatic analysis 
 

The “limma” package of R software (version 3.6.2) was 

used to establish a prognostic gene signature by 

identifying the DEGs from the mRNA data. A 

|log2(fold change [FC]) | > 1, a P-value < 0.05, and a 

false discovery rate (FDR) < 0.05 were considered the 

cutoffs for DEGs between tumor and nontumor samples 

in the GEO database. Next, the DEGs that overlapped 

among 3 series, as determined with Venn and UpSet 

diagrams, were regarded as credible DEGs. Gene 

ontology (GO) enrichment and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway analyses were 

applied to explore the potential biological roles of the 

DEGs. Significantly relevant signaling pathways were 

identified with the Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) 

(https://david.ncifcrf.gov/) [26]. P < 0.05 was consider-

ed the threshold for statistical significance. 

 

Establishment of the LASSO regression model and 

calculation of risk score 
 

We used log-rank tests to examine the associations 

between gene expression and OS in the TCGA dataset. 

DEGs with P-values < 0.05 were considered statistically 

significant and were included in the following analyses. 

Genes obtained from the Molecular Signature Database 

(MSigDB) gene sets “REACTOME_GLYCOLYSIS” 

and “REACTOME_METABOLISM_OF_LIPIDS_ 

AND_LIPOPROTEINS” were used as glycolytic and 

lipid metabolism-related genes, respectively [7, 8, 27]. 

https://www.ncbi.nlm.nih.gov/geo/
http://cancergenome.nih.gov/
https://dcc.icgc.org/
https://david.ncifcrf.gov/
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Table 3. The sequences of the primers for the three genes signatures. 

Primer Sequence (5'to 3') Base number 

m-MET-F AGCAATGGGGAGTGTAAAGAGG 22 

m-MET-R CCCAGTCTTGTACTCAGCAAC 21 

m-ENO3-F GGCTGGTTACCCAGACAAGG 20 

m-ENO3-R TCGTACTTCCCATTGCGATAGAA 23 

m-CD36-F GGCTGTGACCGGAACTGTG 19 

m-CD36-R AGGTCTCCAACTGGCATTAGAA 22 

 

Twelve glycolysis and lipid metabolism-related genes 

were selected to construct LASSO Cox regression 

analysis models with the R package “glmnet”. LASSO 

analysis is the most popular method for evaluating 

survival data and is especially appropriate for analyzing 

gene expression profiles. The “glmnet” package returned 

a series of models. For each model, the tuning parameter λ 

was inversely correlated with the complexity of the model 

and the value of deviance. Ten-fold cross-validation was 

performed to screen the best model from the series (the 

model with the minimum mean cross-validation error). 

The patients were divided into high-risk and low-risk 

groups according to a cutoff median risk score. Kaplan-

Meier analysis and time-dependent receiver-operating 

characteristic (ROC) curve analysis were used to test 

predictive differences between the high- and low-risk 

groups in the discovery and two validation datasets. Cox 

regression analysis was employed to test whether the risk 

score was an independent prognostic factor. A nomogram 

and related calibration curves were created based on the 

TCGA cohort for further clinical application. 

 

Gene set enrichment analysis (GSEA) and mutation 

analyses 

 

GSEA was applied to elucidate the molecular 

mechanisms of the prognostic gene sets [28]. The TCGA 

dataset was divided into high- and low-risk groups 

according to the cutoffs. GSEA was performed in the 

Java program GSEA, version 3.0. The MSigDB v. 6.2. 

C2 collection (curated gene sets), C5 collection (GO gene 

sets), and H collection (hallmark gene sets) were 

searched to identify enriched KEGG pathways and 

biological information and dysfunctional oncogenic 

signatures associated with the high-risk group. Results 

with a |normalized enrichment score (NES)| > 1 and an 

FDR < 0.05 were considered statistically significant. 

Somatic mutations (SNPs and small indels) in TCGA 

were obtained with MuTect2 in the University of 

California, Santa Cruz (UCSC), with the Xena  

browser (https://xenabrowser.net/datapages/). Genetic 

alterations in the three genes associated related to 

pancreatic cancer were obtained from cBioPortal 

(https://www.cbioportal.org/) [29]. 

RNA extraction, reverse transcription, and qRT-

PCR analysis 
 

RNA was obtained from patients’ samples and 

clinically diagnosed with PDAC at the Fudan 

University Shanghai Cancer Center (FUSCC) from 

2010 to 2012. Informed consent was obtained from each 

patient, and all of the experiments were performed with 

the approval of the Clinical Research Ethics Committee 

of FUSCC (ethical code: 050432-4-1212B). In the 

FUSCC validation set, total RNA was extracted from 82 

patient samples using a MiniBEST Universal RNA 

Extraction Kit (9767, TaKaRa). A PrimeScript RT 

Reagent Kit (K1622, Thermo Scientific) was used to 

synthesize first-strand cDNA isolated from total RNA. 

Then, SYBR Green qRT-PCR was conducted on an 

ABI 7900HT platform (Applied Biosystems, USA). We 

used GAPDH mRNA as an internal reference. The 

primers used for the mRNA molecules tested in this 

study were synthesized by Sangon (Shanghai, China), 

and the sequences are listed in Table 3. 

 

Statistical analysis 
 

Statistical analysis was performed in R software 

(version 3.6.2, https://www.r-project.org/) and 

GraphPad Prism software, version 7.01 (GraphPad 

Software, La Jolla, CA, USA). Categorical variables 

were analyzed by the χ
2
 test or Fisher’s exact test. 

Continuous variables were analyzed using Student’s t-

test for paired samples. Kaplan-Meier curves and log-

rank tests were used. Calibration plots were produced to 

assess whether actual outcomes matched predicted 

outcomes for the nomogram. All of the statistical tests 

were 2 sided, and a P-value < 0.05 was considered to 

indicate statistical significance. 
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https://www.r-project.org/


 

www.aging-us.com 24240 AGING 

Genome Consortium; LASSO: least absolute shrinkage 

and selection operator; MSigDB: Molecular Signatures 

Database; OS: overall survival; PDAC: pancreatic ductal 

adenocarcinoma; TCGA: The Cancer Genome Atlas. 

 

AUTHOR CONTRIBUTIONS  
 

CL and XY designed this study; ZT, YBL, JX and SS 

developed the methodology and acquired the related 

data; JH, QM, BZ and JL performed the data analysis 

and interpretation; ZT, BL, MW and YZ drafted and 

revised the manuscript; CL and XY supervised the 

study. 

 

CONFLICTS OF INTEREST 
 

The authors confirm that the contents of this article 

have no conflicts of interest. 

 

FUNDING 
 

This study was jointly funded by the National Natural 

Science Foundation of China (Nos. 81902428, 

81802352 and 81772555), the Shanghai Sailing 

Program (No. 19YF1409400), the National Science 

Foundation for Distinguished Young Scholars of China 

(No. 81625016), the Clinical and Scientific Innovation 

Project of Shanghai Hospital Development Center 

(SHDC12018109) and the Scientific Innovation Project 

of Shanghai Education Committee (2019-01-07-00-07-

E00057). 
 

REFERENCES 
 

1. Adams CR, Htwe HH, Marsh T, Wang AL, Montoya ML, 
Subbaraj L, Tward AD, Bardeesy N, Perera RM. 
Transcriptional control of subtype switching ensures 
adaptation and growth of pancreatic cancer. Elife. 
2019; 8:e45313. 

 https://doi.org/10.7554/eLife.45313 PMID:31134896 

2. Anslan S, Bahram M, Hiiesalu I, Tedersoo L. PipeCraft: 
flexible open-source toolkit for bioinformatics analysis 
of custom high-throughput amplicon sequencing data. 
Mol Ecol Resour. 2017; 17:e234–40. 

 https://doi.org/10.1111/1755-0998.12692 
PMID:28544559 

3. Raman P, Maddipati R, Lim KH, Tozeren A. Pancreatic 
cancer survival analysis defines a signature that 
predicts outcome. PLoS One. 2018; 13:e0201751. 

 https://doi.org/10.1371/journal.pone.0201751 
PMID:30092011 

4. Yan X, Wan H, Hao X, Lan T, Li W, Xu L, Yuan K, Wu H. 
Importance of gene expression signatures in pancreatic 
cancer prognosis and the establishment of a prediction 
model. Cancer Manag Res. 2018; 11:273–83. 

 https://doi.org/10.2147/CMAR.S185205 
PMID:30643453 

5. Frost HR, Amos CI. Gene set selection via LASSO 
penalized regression (SLPR). Nucleic Acids Res. 2017; 
45:e114. 

 https://doi.org/10.1093/nar/gkx291 PMID:28472344 

6. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, 
Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, 
Coloff JL, Yan H, Wang W, Chen S, et al. Oncogenic kras 
maintains pancreatic tumors through regulation of 
anabolic glucose metabolism. Cell. 2012; 149:656–70. 

 https://doi.org/10.1016/j.cell.2012.01.058 
PMID:22541435 

7. Sunami Y, Rebelo A, Kleeff J. Lipid metabolism and lipid 
droplets in pancreatic cancer and stellate cells. Cancers 
(Basel). 2017; 10:3. 

 https://doi.org/10.3390/cancers10010003 
PMID:29295482 

8. Yang J, Ren B, Yang G, Wang H, Chen G, You L, Zhang T, 
Zhao Y. The enhancement of glycolysis regulates 
pancreatic cancer metastasis. Cell Mol Life Sci. 2020; 
77:305–21. 

 https://doi.org/10.1007/s00018-019-03278-z 
PMID:31432232 

9. McDonald OG, Li X, Saunders T, Tryggvadottir R, 
Mentch SJ, Warmoes MO, Word AE, Carrer A, Salz TH, 
Natsume S, Stauffer KM, Makohon-Moore A, Zhong Y, 
et al. Epigenomic reprogramming during pancreatic 
cancer progression links anabolic glucose metabolism 
to distant metastasis. Nat Genet. 2017; 49:367–76. 

 https://doi.org/10.1038/ng.3753 PMID:28092686 

10. Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, 
Liang D, Hu Q, Liu L, Liu C, Luo G, et al. Energy sources 
identify metabolic phenotypes in pancreatic cancer. 
Acta Biochim Biophys Sin (Shanghai). 2016; 48:969–79. 

 https://doi.org/10.1093/abbs/gmw097 
PMID:27649892 

11. Zhao H, Duan Q, Zhang Z, Li H, Wu H, Shen Q, Wang C, 
Yin T. Up-regulation of glycolysis promotes the 
stemness and EMT phenotypes in gemcitabine-
resistant pancreatic cancer cells. J Cell Mol Med. 2017; 
21:2055–67. 

 https://doi.org/10.1111/jcmm.13126 PMID:28244691 

12. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, 
Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, 
Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, 
et al. Proteomics. Tissue-based map of the human 
proteome. Science. 2015; 347:1260419. 

 https://doi.org/10.1126/science.1260419 
PMID:25613900 

13. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, 
Fleshman JM, Matrisian LM. Projecting cancer 

https://doi.org/10.7554/eLife.45313
https://pubmed.ncbi.nlm.nih.gov/31134896
https://doi.org/10.1111/1755-0998.12692
https://pubmed.ncbi.nlm.nih.gov/28544559
https://doi.org/10.1371/journal.pone.0201751
https://pubmed.ncbi.nlm.nih.gov/30092011
https://doi.org/10.2147/CMAR.S185205
https://pubmed.ncbi.nlm.nih.gov/30643453
https://doi.org/10.1093/nar/gkx291
https://pubmed.ncbi.nlm.nih.gov/28472344
https://doi.org/10.1016/j.cell.2012.01.058
https://pubmed.ncbi.nlm.nih.gov/22541435
https://doi.org/10.3390/cancers10010003
https://pubmed.ncbi.nlm.nih.gov/29295482
https://doi.org/10.1007/s00018-019-03278-z
https://pubmed.ncbi.nlm.nih.gov/31432232
https://doi.org/10.1038/ng.3753
https://pubmed.ncbi.nlm.nih.gov/28092686
https://doi.org/10.1093/abbs/gmw097
https://pubmed.ncbi.nlm.nih.gov/27649892
https://doi.org/10.1111/jcmm.13126
https://pubmed.ncbi.nlm.nih.gov/28244691
https://doi.org/10.1126/science.1260419
https://pubmed.ncbi.nlm.nih.gov/25613900


 

www.aging-us.com 24241 AGING 

incidence and deaths to 2030: the unexpected burden 
of thyroid, liver, and pancreas cancers in the United 
States. Cancer Res. 2014; 74:2913–21. 

 https://doi.org/10.1158/0008-5472.CAN-14-0155 
PMID:24840647 

14. Ray K. Pancreatic cancer: biomarkers for the early 
detection of PDAC. Nat Rev Gastroenterol Hepatol. 
2017; 14:504–05. 

 https://doi.org/10.1038/nrgastro.2017.111 
PMID:28765582 

15. Sousa CM, Kimmelman AC. The complex landscape of 
pancreatic cancer metabolism. Carcinogenesis. 2014; 
35:1441–50. 

 https://doi.org/10.1093/carcin/bgu097 PMID:24743516 

16. Fu YT, Zheng HB, Zhou L, Zhang DQ, Liu XL, Sun H. 
Valproic acid, targets papillary thyroid cancer through 
inhibition of c-met signalling pathway. Am J Transl Res. 
2017; 9:3138–47. 

 PMID:28670399 

17. Yan B, Jiang Z, Cheng L, Chen K, Zhou C, Sun L, Qian W, 
Li J, Cao J, Xu Q, Ma Q, Lei J. Paracrine HGF/c-MET 
enhances the stem cell-like potential and glycolysis of 
pancreatic cancer cells via activation of YAP/HIF-1α. 
Exp Cell Res. 2018; 371:63–71. 

 https://doi.org/10.1016/j.yexcr.2018.07.041 
PMID:30056064 

18. Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, 
Li X, Li G, Zeng Z, Xiong W. Function of the c-met 
receptor tyrosine kinase in carcinogenesis and 
associated therapeutic opportunities. Mol Cancer. 
2018; 17:45. 

 https://doi.org/10.1186/s12943-018-0796-y 
PMID:29455668 

19. Merkulova T, Dehaupas M, Nevers MC, Créminon C, 
Alameddine H, Keller A. Differential modulation of 
alpha, beta and gamma enolase isoforms in 
regenerating mouse skeletal muscle. Eur J Biochem. 
2000; 267:3735–43. 

 https://doi.org/10.1046/j.1432-1327.2000.01408.x 
PMID:10848992 

20. Zhao M, Fang W, Wang Y, Guo S, Shu L, Wang L, Chen 
Y, Fu Q, Liu Y, Hua S, Fan Y, Liu Y, Deng X, et al. Enolase-
1 is a therapeutic target in endometrial carcinoma. 
Oncotarget. 2015; 6:15610–27. 

 https://doi.org/10.18632/oncotarget.3639 
PMID:25951350 

21. Park C, Lee Y, Je S, Chang S, Kim N, Jeong E, Yoon S. 
Overexpression and selective anticancer efficacy of 
ENO3 in STK11 mutant lung cancers. Mol Cells. 2019; 
42:804–09. 

 https://doi.org/10.14348/molcells.2019.0099 
PMID:31697874 

22. Pepino MY, Kuda O, Samovski D, Abumrad NA. 
Structure-function of CD36 and importance of fatty 
acid signal transduction in fat metabolism. Annu Rev 
Nutr. 2014; 34:281–303. 

 https://doi.org/10.1146/annurev-nutr-071812-161220 
PMID:24850384 

23. Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra 
AK, Sundaresan S, Nieman KM, Pascual G, Benitah SA, 
Montag A, Yamada SD, Abumrad NA, Lengyel E. 
Adipocyte-induced CD36 expression drives ovarian 
cancer progression and metastasis. Oncogene. 2018; 
37:2285–301. 

 https://doi.org/10.1038/s41388-017-0093-z 
PMID:29398710 

24. Jia S, Zhou L, Shen T, Zhou S, Ding G, Cao L. Down-
expression of CD36 in pancreatic adenocarcinoma and 
its correlation with clinicopathological features and 
prognosis. J Cancer. 2018; 9:578–83. 

 https://doi.org/10.7150/jca.21046 PMID:29483963 

25. Kubo M, Gotoh K, Eguchi H, Kobayashi S, Iwagami Y, 
Tomimaru Y, Akita H, Asaoka T, Noda T, Takeda Y, 
Tanemura M, Mori M, Doki Y. Impact of CD36 on 
chemoresistance in pancreatic ductal adenocarcinoma. 
Ann Surg Oncol. 2020; 27:610–19. 

 https://doi.org/10.1245/s10434-019-07927-2 
PMID:31605325 

26. Huang DW, Sherman BT, Lempicki RA. Systematic and 
integrative analysis of large gene lists using DAVID 
bioinformatics resources. Nat Protoc. 2009; 4:44–57. 

 https://doi.org/10.1038/nprot.2008.211 
PMID:19131956 

27. Liberzon A, Subramanian A, Pinchback R, 
Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular 
signatures database (MSigDB) 3.0. Bioinformatics. 
2011; 27:1739–40. 

 https://doi.org/10.1093/bioinformatics/btr260 
PMID:21546393 

28. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, 
Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub 
TR, Lander ES, Mesirov JP. Gene set enrichment 
analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc Natl Acad Sci 
USA. 2005; 102:15545–50. 

 https://doi.org/10.1073/pnas.0506580102 
PMID:16199517 

29. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, 
Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, 
Cerami E, Sander C, Schultz N. Integrative analysis of 
complex cancer genomics and clinical profiles using the 
cBioPortal. Sci Signal. 2013; 6:pl1. 

 https://doi.org/10.1126/scisignal.2004088 
PMID:23550210 

https://doi.org/10.1158/0008-5472.CAN-14-0155
https://pubmed.ncbi.nlm.nih.gov/24840647
https://doi.org/10.1038/nrgastro.2017.111
https://pubmed.ncbi.nlm.nih.gov/28765582
https://doi.org/10.1093/carcin/bgu097
https://pubmed.ncbi.nlm.nih.gov/24743516
https://pubmed.ncbi.nlm.nih.gov/28670399
https://doi.org/10.1016/j.yexcr.2018.07.041
https://pubmed.ncbi.nlm.nih.gov/30056064
https://doi.org/10.1186/s12943-018-0796-y
https://pubmed.ncbi.nlm.nih.gov/29455668
https://doi.org/10.1046/j.1432-1327.2000.01408.x
https://pubmed.ncbi.nlm.nih.gov/10848992
https://doi.org/10.18632/oncotarget.3639
https://pubmed.ncbi.nlm.nih.gov/25951350
https://doi.org/10.14348/molcells.2019.0099
https://pubmed.ncbi.nlm.nih.gov/31697874
https://doi.org/10.1146/annurev-nutr-071812-161220
https://pubmed.ncbi.nlm.nih.gov/24850384
https://doi.org/10.1038/s41388-017-0093-z
https://pubmed.ncbi.nlm.nih.gov/29398710
https://doi.org/10.7150/jca.21046
https://pubmed.ncbi.nlm.nih.gov/29483963
https://doi.org/10.1245/s10434-019-07927-2
https://pubmed.ncbi.nlm.nih.gov/31605325
https://doi.org/10.1038/nprot.2008.211
https://pubmed.ncbi.nlm.nih.gov/19131956
https://doi.org/10.1093/bioinformatics/btr260
https://pubmed.ncbi.nlm.nih.gov/21546393
https://doi.org/10.1073/pnas.0506580102
https://pubmed.ncbi.nlm.nih.gov/16199517
https://doi.org/10.1126/scisignal.2004088
https://pubmed.ncbi.nlm.nih.gov/23550210

