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INTRODUCTION 
 

Aging is the largest risk factor for cardiovascular 

diseases (CVD) [1]. However, coronary heart disease 

usually starts in women 10 years later than in men, a 
difference that increases to 20 years for cardiac events 

such as myocardial infarction [2, 3]. It has been shown 

that sex steroid hormones play a key role in CVD 
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ABSTRACT 
 

Aging is associated with a decline in sex hormones, variable between sexes, that has an impact on many different 
body systems and might contribute to age-related disease progression. We aimed to characterize the sex differences 
in gut microbiota, and to explore the impact of depletion of gonadal hormones, alone or combined with postnatal 
overfeeding, in rats. Many of the differences in the gut microbiota between sexes persisted after gonadectomy, but 
removal of gonadal hormones shaped several gut microbiota features towards a more deleterious profile, the effect 
being greater in females than in males, mainly when animals were concurrently overfed. Moreover, we identified 
several intestinal miRNAs as potential mediators of the impact of changes in gut microbiota on host organism 
physiology. Our study points out that gonadal hormones contribute to defining sex-dependent differences of gut 
microbiota, and discloses a potential role of gonadal hormones in shaping gut microbiota, as consequence of the 
interaction between sex and nutrition. Our data suggest that the changes in gut microbiota, observed in conditions 
of sex hormone decline, as those caused by ageing in men and menopause in women, might exert different effects 
on the host organism, which are putatively mediated by gut microbiota-intestinal miRNA cross-talk. 
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susceptibility, but the differences in sex steroid profiles 

between elder men and women are smaller when 

compared to earlier in life [4]; for instance, sex steroid 

cardio-protection in women disappears after menopause 

[5]. Likewise, the decline in testosterone (T) seen in 

aging men is associated with a greater likelihood of 

CVD [6]. The mechanisms involved in the sex 

difference in CVD are not yet fully understood, but it is 

crucial to develop strategies and therapies aimed at 

reducing the incidence of CVD.  

 

The gut microbiota has been shown to be involved in 

the development of CVD [7], suggesting a potential role 

in the dimorphism of their incidence, as gender, in 

addition to other factors, such as age, genetic make-up 

and nutritional habits, impacts on gut microbiota 

architecture [8–10]. In fact, in recent years there has 

been accumulating evidence suggesting that the 

differences in the intestinal microbiota according to 

gender may be associated with the sex differences 

observed in the development of autoimmune, metabolic 

and CV diseases [11, 12]. Moreover, diet and nutrition 

influence the host and the microbial metabolites [13], 

which might be associated with the onset of human 

pathologies [14]. In fact, the composition of the 

intestinal microbiota depends on the interactions 

between diet and the host’s gender, and the therapies 

used to restore the dysbiosis of the gut microbiota 

associated to disease should be gender-specific. 

 

We have previously shown that the intestinal microbiota 

from post-menopausal women presents a higher 

Firmicutes/Bacteroidetes (F/B) ratio than men, and a 

lesser abundance of short chain fatty acids (SCFA)-

producing bacteria compared with the intestinal 

microbiota from pre-menopausal women, highlighting 

the influence of estrogens on gut microbiota 

architecture [15]. Moreover, we have also shown the 

differences in the intestinal microbiota architecture 

between post-menopausal women and age-matched 

men, which may stem from the actual differences in sex 

hormone levels in elder men and women and/or may 

reflect the residual influence of the dramatic differences 

in sex steroid profiles in early life between the sexes, 

and which may have a persistent effect on gut 

microbiota over time [9]. Moreover, intestinal 

microbiota transplant experiments in germ-free mice 

have recently demonstrated that the sex of the recipient 

animal shapes the composition of the intestinal 

microbiota [10]. In addition, it has been shown that 

males have a less diverse gut microbiota than their 

female littermates, a difference which is minimized with 

the castration of males, showing the influence of 
androgens on gut microbiome composition [16]. In fact, 

it has been shown that sex steroid manipulation during 

periods of early development alters gut microbiota [17]. 

However, the gender contribution to the sex differences 

in the gut microbiota, independently of sex steroid 

hormones, is not well understood, and may contribute to 

explaining the differences between genders in the 

incidence of cardiometabolic diseases. This set of 

interrelated conditions includes CVD, such as coronary 

heart disease, as well as metabolic diseases, such as 

type 2 diabetes and obesity. In order to shed light on the 

sex differences in the gut microbiota and the 

contribution of gonadal hormones and obesity to such 

differences, we explored here the sex-specific 

architecture of gut microbiota in gonadal-intact and 

gonadectomized rats of both sexes, alone or in 

combination with postnatal overnutrition. 

 

RESULTS 
 

Sex differences in gut microbiota according to 

nutritional status 

 

We first explored differences between gonadal-intact 

male and female rats. In these studies, we found a 

higher α-diversity of the bacterial community in 

gonadal-intact females than in males, as assessed by 

both Shannon and Observed OTUs indexes under 

normal feeding (NL-CD) or postnatal overfeeding (SL-

HFD) conditions (Supplementary Figure 1A). 

 

In terms of bacterial composition, NL-CD males were 

characterized by higher Elusimicrobia, Cyanobacteria, 

and Verrucomicrobia phyla, whereas females were 

characterized by higher Euryarchaeota and TM7 phyla. In 

postnatal overfed rats (SL-HFD), differences in 

Cyanobacteria, Euryarchaeota and TM7 remained 

between sexes, in addition to higher Bacteroidetes and 

Spirochaetes phyla in males and higher Firmicutes phyla 

in females (Figure 1A; Supplementary Figure 2A).  

Moreover, whereas no differences in the F/B ratio were 

observed between sexes in animals under normal 

feeding, we observed a higher ratio in females than in 

males subjected to postnatal overfeeding (Figure 2). 

 

Gut microbiota differences between sexes in 

gonadectomized animals 

 

We next evaluated the differences between 

gonadectomized (GNX) males and females, under 

normal feeding or overfeeding conditions.  

 

We found no differences in the α-diversity of the 

bacterial community between GNX males and females, 

regardless of the feeding condition (Supplementary 

Figure 1A). In terms of bacterial composition, most of 

the differences at phylum level found between male and 

female intact rats, both under normal feeding and 

postnatal overfeeding conditions, were also presented in 
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GNX animals. In fact, differences in TM7, 

Cyanobacteria, and Euryarchaeota phyla under normal 

feeding remained, whereas differences in Elusimicrobia 

and Verrucomicrobia phyla were absent. In addition, 

GNX males had higher Proteobacteria than GNX 

females. In postnatal overfeeding condition, differences 

in Cyanobacteria, Euryarchaeota, Firmicutes and TM7 

remained between GNX males and females, whereas 

differences in Bacteroidetes and Spirochaetes 
disappeared. Additionally, GNX males had higher 

Elusimicrobia than GNX females (Figure 1B; 

Supplementary Figure 2B). Moreover, whereas no 

differences in the F/B ratio were observed between 

sexes in GNX animals under normal feeding, we 

detected a higher F/B ratio in GNX females than in 

GNX males following postnatal overnutrition  

(Figure 2). In addition, from 55 bacterial genera 

included in LEfSe analysis, the abundance of 11 of 

these was different between sexes under normal feeding 

conditions, and the difference in the abundance of 6 of 

these disappeared after gonadectomy. Moreover, 8 

additional bacterial genera were differentially 

represented between sexes only after gonadectomy in 

conditions of normal feeding. By contrast, the 

abundance of 13 genera was different between sexes 

under postnatal overfeeding condition, and the 

difference in the abundance of 5 of these disappeared 

after gonadectomy. In addition, 9 additional bacterial 

genera were differentially represented between sexes 

only after gonadectomy in overfed animals 

(Supplementary Table 1). 

 

Impact of postnatal overfeeding in sex steroid 

hormones levels 

 

Next, we evaluated the relationship between the 

obesogenic insult (postnatal overfeeding) and 

circulating sex steroids by measuring their plasma
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Figure 1. LEfSe analysis between sexes under normal feeding and overfeeding conditions in intact (A) and gonadectomized (B) animals. Cladogram 
representing the taxonomic hierarchical structure of the identified differences between genders using Linear discriminant analysis effect size 
(LEfSe). Each filled circle represents one phylotype. Red denotes bacterial taxa statistically overrepresented in females; green denotes bacterial taxa 
overrepresented in males. Phylum and class are indicated by their names on the cladogram and the order, family, or genus are given in the key. 

 

 
 

Figure 2. Firmicutes/Bacteroidetes ratio in intact and gonadectomized animals under normal feeding and overfeeding 
conditions. *P<0.05 in One-way ANOVA statistical analysis. 
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levels using the sensitive gas chromatography-tandem 

mass spectrometry method. 

 

We found lower T, dihydrotestosterone, and 

androstenedione serum levels in males subjected to 

postnatal overfeeding that in those with normal feeding. 

No differences in the serum concentrations of these 

hormones, whose levels were much lower than in males, 

were found in females, regardless of their nutritional 

status. However, we found lower serum levels of 

estradiol (E2) in females under normal feeding than in 

those subjected to postnatal overfeeding, whereas no 

differences in progesterone or estrone (E1) levels (the 

latter was only detected in females) were found  

(Table 1). Because of the surgical removal of the 

gonads, sex steroid levels were not assessed in GNX 

male or female rats. 

 

Sex-dependent metabolic disruption after 

gonadectomy 

 

Further, we studied the sex-dependent metabolic 

alterations, alone or in combination with postnatal 

overnutrition, caused by GNX in males and females. 

 

No differences in body weight (BW) were found 

between gonadal-intact and GNX males. By contrast, 

the BW of GNX females was higher than in intact 

females. We also observed in females an increase in 

plasma leptin levels in parallel with changes in BW 

after gonadectomy (Table 2). 

 

Glucose tolerance, as measured by the area under the 

curve (AUC) of glucose during glucose tolerance test 

(GTT), was significantly worse in males subjected to 

postnatal overfeeding (SL-HFD), in both gonadal-

intact and GNX conditions. However, GNX per se 

did not alter AUC GTT values in any of  

the two nutritional conditions. Nonetheless, we 

observed a higher ΔAUC GTT (as a net increment of 

the AUC over basal levels) of glucose in GNX males 

vs. intact males that were raised under postnatal 

overfeeding conditions. In turn, in gonadal-intact 

female rats, AUC GTT was not altered by SL-HFD, 

while in GNX females, the same obesogenic diet 

tended to increase glucose intolerance, although this 

change did not reach statistical significance 

(P=0.086). Regarding insulin sensitivity, obese (SL-

HFD) males displayed insulin resistance, defined by 

significantly higher AUC during the insulin tolerance 

test (ITT) values than in lean (NL-CD) males, but 

GNX did not worsen insulin sensitivity neither in 

NL-CD or SL-HFD conditions. In contrast, higher 
insulin resistance was detected in SL-HFD females 

only when they were previously ovariectomized 

(Table 2). 

Gonadal hormone contribution to gut microbiota 

structure 

 

Next, we evaluated the hormonal contribution to gut 

microbiota structure by comparing the gut microbiota of 

intact versus GNX males and intact versus GNX 

females. 

 

We found a higher α-diversity of the bacterial 

community in GNX males than in intact males as 

assessed by both Shannon and Observed OTUs indexes 

under normal feeding conditions, while no differences 

were found in overfed males (a trend for higher α-

diversity in GNX males was observed). However, 

ovariectomy in females did not change these diversity 

indexes (Supplementary Figure 1B). 

 

In terms of bacterial composition under normal feeding 

conditions, we observed that the gut microbiota of GNX 

males was characterized by higher Firmicutes, 

Deferribacteres and TM7 phyla, and lower 

Bacteroidetes phylum, compared with intact males. By 

contrast, in animals subjected to postnatal overfeeding, 

the gut microbiota from GNX and intact males differed 

in the minority phylum Elusimicrobia, which was more 

abundant in GNX males. On the other hand, 

gonadectomy slightly impacted on the gut microbiota 

from females under normal feeding, with lower 

Proteobacteria phylum in GNX females, whereas in 

conditions of postnatal overfeeding, the gut microbiota 

from GNX females was characterized by higher 

Elusimicrobia and Spirochaetes phyla and lower 

Actinobacteria phylum (Figure 3; Supplementary 

Figure 3). 

 

Microbiota putatively modulates host metabolism 

via miRNAs 

 

Finally, we evaluated the potential role of miRNAs on 

the dialogue (cross-talk) between gut microbiota and 

host organism in response to changes in sex hormones 

and nutritional status. 

 

To this end, we analyzed the relationship between the 

bacterial taxa identified by LEfSe analysis according to 

gender, sex hormones and obesity, and the expression 

levels of the miRNAs in the small and large intestine, 

determined by expression microarray analysis. Of note, 

we did not include in the analysis all the bacterial taxa 

but only those identified by LEfSe analysis in order to 

reduce random associations (Supplementary Tables 2–5; 

Figures 4, 5). From 758 miRNAs tested, the expression 

of 99 and 101 miRNAs was detectable in the large and 
small intestine, respectively, in at least 7 of the 8 

experimental groups. From these, 54 miRNAs were 

detectable in both the large and small intestine. From 



 

www.aging-us.com 19984 AGING 

Table 1. Sex steroid plasma levels in intact animals under normal feeding and postnatal overfeeding conditions.  

  Males  Females 

Sex steroid (pg/ml)  NL-CD SL-HFD p-value  NL-CD SL-HFD p-value 

Testosterone   9347.12±2850.11 2070.24±421.49 0.027  80.49±19.95 122.16±36.97 0.323 

Dihydrotestosterone  87.23±22.91 22.63±5.31 0.016  3.74±1.05 8.15±2.33 0.097 

Androstenedione  669.91±169.78 133.64±20.40 0.007  47.47±2.94 73.38±14.72 0.089 

Estradiol  0.32±0.32 n.d. n.a.  3.19±0.13 8.46±2.33 0.032 

Progesterone  909.23±125.72 765.00±317.08 0.679  18380.32±2037.92 16474.30±3361.90 0.626 

Estrone  n.d. n.d. n.a.  1.00±0.27 2.79±1.68 0.278 

NL-CD: normal litter, control diet. SL-HFD: small litter, high fat diet. Plasma was collected at PND-150 for determination of sex 
steroids by mass spectrometry. p-value: One-way ANOVA statistical analysis. n.d.: not detectable; n.a.: not available. 
 

Table 2. Metabolic parameters in intact and gonadectomized animals under normal feeding and under postnatal 
overfeeding. 

  
Males 

 
Females 

  
non-GNX GNX p-value 

 
non-GNX GNX p-value 

Body weight (g) 
NL-CD 356.96±12.47 328.78±7.71 0.079  223.53±5.62 256.31±5.45 0.006 

SL-HFD 478.61±7.65 481.31±15.16 0.826  260.30±8.65 319.73±8.92 <0.001 

 p-value <0.001 <0.001   0.011 <0.001  

Leptin (ng/ml) 
NL-CD 10.26±2.90 8.69±2.44 0.691  3.77±0.51 7.43±0.95 0.014 

SL-HFD 34.03±5.02 32.45±3.79 0.813  10.19±1.81 22.62±4.09 0.010 

 p-value 0.005 0.001   0.014 0.005  

AUC GTT 
NL-CD 18230.00±818.40 17381.43±1473.46 0.404  21231.25±1434.01 20641.25±1452.55 0.601 

SL-HFD 23947.50±1215.50 24797.50±1255.93 0.558  22875.00±1000.87 24111.25±1329.62 0.514 

 p-value 0.001 0.005   0.330 0.086  

Δ AUC GTT 
NL-CD 4835.00±531.22 3855.71±758.97 0.118  6126.25±769.10 7021.25±625.65 0.348 

SL-HFD 3798.75±1084.42 8687.50±1328.90 0.023  8340.00±1237.97 6066.25±542.50 0.089 

 p-value 0.394 0.003   0.078 0.230  

AUC ITT 
NL-CD 5986.25±240.34 7126.25±585.95 0.130  6593.75±215.38 5890.00±264.53 0.111 

SL-HFD 7705.00±268.30 7623.75±327.63 0.841  6275.00±138.07 7401.25±553.07 0.132 

 p-value 0.005 0.561   0.327 0.030  

NL-CD: normal litter, control diet. SL-HFD: small litter, high fat diet. GNX: gonadectomized animals. Non-GNX: intact animals. 
Glucose tolerance test (GTT) was performed at PND-120. Insulin tolerance test (ITT) was performed one week later than GTT. 
Body weight corresponds to PND-150 animals. p-value: One-way ANOVA statistical analysis. 
 

the correlation analysis, we selected 27 miRNAs in the 

small intestine and 25 in the large intestine (1 miRNA 

were shared by both the large and small intestine), in 

which Pearson’s correlation coefficient was > 0.9 or  

< -0.9 and P<0.01. Further, we performed a 

supplemental analysis with the 51 selected miRNAs 

using the DIANAtools V.3. DIANA-miRPath is a web-

server which provides accurate statistics and can 

accommodate advanced pipelines. miRPath can utilize 

predicted miRNA targets (in CDS or 3’-UTR regions) 

provided by the DIANA-microT-CDS algorithm or 

even experimentally validated miRNA interactions 

derived from DIANA-TarBase [18]. Thus, in addition to 

several KEGG pathways related with metabolism, our 

approach detected miRNA-mediated associations 

between the gut microbiota and sex steroid-related 

pathways. The functions of KEGG, in which selected 

miRNAs were assigned, included the metabolism of 

lipids, amino acids, cofactors and vitamins, signal 

transduction, and endocrine systems. Specifically, 

insulin, GnRH, estrogen, and prolactin signaling 

pathways, as well as progesterone-mediated oocyte 

maturation, were involved (Supplementary Tables 6, 7). 

 

DISCUSSION 
 

Our study documents that many of the differences in the 

gut microbiota found between males and females, both 

under normal and overfeeding conditions, persisted 

after gonadectomy. However, removing the sex 

hormones shaped several gut microbiota features 

towards a more deleterious profile, especially in 
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females, mainly when animals were subjected to 

postnatal overfeeding. In addition, our study also shows 

that overnutrition in females significantly increased F/B 

ratio as compared with males. 

 

Previous observations in humans showed that the F/B 

ratio, which is of major importance in the development 

of obesity as it increases in this condition [19], is higher 

in women than in men under obesity conditions [9], and 

increases in women after menopause [15]. Consistent 

with this, our study showed that the F/B ratio was 

higher in females than in males subjected to postnatal 

overfeeding, both in intact and GNX animals, even 

taking into account that the gonadectomy of males, as 

previously shown in mice [20], increased the F/B ratio. 

In line with this, our study showed that this increase 

was proportional to the prevailing T levels, being higher 

in normal fed animals than in postnatal overfed males, 

which showed a decline of endogenous T levels due to 

obesity [21]. 

 

By contrast to males, in which no changes in BW were 

observed after gonadectomy, in females, ovariectomy 

caused an increase in BW in parallel with the rise in 

leptin levels. This observation may be explained on the 

basis of the anti-obesity effect of estrogens through 

decreasing food intake and increasing energy 

expenditure [22]. In fact, animal studies have shown 

that while females are relatively resistant to diet-

induced obesity, ovariectomy reverses this protective 

effect [23], whereas estrogens protect ovariectomized 

females from obesity [24]. 
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Figure 3. LEfSe analysis between intact and gonadectomized animals under normal feeding and overfeeding conditions in females (A) and 

males (B). Cladogram representing the taxonomic hierarchical structure of the identified differences between genders using Linear 
discriminant analysis effect size (LEfSe). Each filled circle represents one phylotype. Red denotes bacterial taxa statistically overrepresented in 
intact animals; green denotes bacterial taxa overrepresented in gonadectomized animals. Phylum and class are indicated by their names on 
the cladogram and the order, family, or genus are given in the key. 
 

It has been proposed that the gender differences in the 

incidence during adulthood of cardiometabolic diseases - 

a set of interrelated cardiovascular and metabolic diseases 

- may be explained, at least partially, by sex-specific 

effects of dietary factors during early stages of life, in 

addition to maternal conditions in the uterus [25]. Herein, 

we show that the postnatal overfeeding (continued with 

an obesogenic diet after weaning) of females had a 

discernible impact on the F/B ratio, a phenomenon that 

was not observed in males. This contrasts with previous 

observations from studies in animal models, mostly 

performed only in males, that showed an obese 
microbiota pattern characterized by a high F/B ratio [19]. 

Thus, our study suggests that persistent overnutrition 

since lactation may have a durable influence on the 

sensitivity of gut microbiota to diet-induced changes in 

the adulthood. This idea is supported by the fact that 

obesity in childhood, which is associated with a higher 

risk of obesity in adulthood [26], is linked to alterations 

in gut microbiota at an early age [27]. Moreover, the 

influence of postnatal overfeeding in shaping gut 

microbiota in females, but not in males, may also help to 

explain the inconsistent results surrounding changes in 

F/B ratio in several studies in humans, as the period of 

life in which overfeeding triggered obesity seems to be 

important for determining gut microbiota dysbiosis. In 

fact, while several studies have shown an increased F/B 
ratio in obesity [28, 29], others did not confirm these 

observations [30], or even showed that this ratio was 

reduced in obese subjects [31]. 
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Moreover, postnatal overfeeding and gonadectomy also 

impacted differentially on several bacterial taxa at lower 

hierarchical levels. In relation to metabolic disease, our 

study showed that the lower abundance of Bacteroides 

genus and Prevotellaceae family in females as 

compared with males, which has been associated to 

metabolic syndrome in humans [32], disappeared after 

gonadectomy under normal feeding conditions, but not 

under postnatal overfeeding conditions. In addition, we 

also observed a higher abundance of Clostridiaceae 

family in females after gonadectomy under normal 

feeding conditions; this family is also related with 

metabolic syndrome in humans [33]. 

 

All together, these alterations in gut microbiota suggest 

a higher impact of GNX in females when animals were 

postnatally overfed, a phenomenon which is consistent 

with previous observations in humans, in which the 

differences in the gut microbiota between men and 

postmenopausal women are influenced by the grade of 

obesity [9, 15]. In addition, the combination of both 

 

 
 

Figure 4. Heatmap from the Pearson’s correlation coefficient 

between the bacterial genera (A) and species (B) identified by 
LEfSe analysis and the expression levels of the miRNAs in the 
large intestine. 

overfeeding and sex steroid removal by gonadectomy 

seems to have a more deleterious effect in females than 

in males, as suggested by the abundance of two SCFA-

producing bacterial genera, Butyricimonas and 

Roseburia. In fact, the lower abundance of these 

bacterial genera in GNX females under postnatal 

overfeeding supports the idea that the microbiota in 

males, but presumably not in females, is able to adapt 

itself when it is exposed to high caloric supply early on 

life, and is able to maintain a higher SCFA production 

than in females. This, therefore, may impact 

differentially on disease predisposition between 

genders, and might also affect disease incidence. In fact, 

it has been described that metabolic diseases increase 

after menopause in women in parallel with estrogen 

depletion [5], which is also related with gender 

differences in fat distribution [34]. 

 

We also explored whether the dialogue, or cross-talk, 

between gut microbiota and host organism in response 

to changes in sex hormones and nutritional status can 

 

 
 

 

Figure 5. Heatmap from the Pearson’s correlation coefficient 
between the bacterial genera (A) and species (B) identified by 
LEfSe analysis and the expression levels of the miRNAs in the 
small intestine. 
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take place through regulation of miRNA expression in 

the small and large intestines, which is increasingly 

recognized as transmitters or decoders of dysbiosis into 

cardiometabolic diseases [35, 36]. Based on KEGG 

pathways, our study identified miR-23b-5p and miR-

186-5p, expressed in the small intestine, as potential 

modulators of steroid biosynthesis, in response to gut 

microbiota changes. In fact, we found a relationship in 

terms of abundance-expression of these miRNAs with 

an unknown bacterial species from the Parabacteroides 

genus (in the case of miR-23b-5p) and with an unknown 

genus from the S24-7 family (miR-186-5p). These 

findings point out that these bacterial taxa might be 

related in modulating steroid biosynthesis. In addition, 

the expression in small intestine of another two 

miRNAs, miR-181a-5p and miR-139-5p, both involved 

in the estrogen signaling pathway, was related with the 

intestinal abundance of Parabacteroides and Clostridium 

(from Peptostreptococcaceae family) in the first case, 

and with Ruminococcus flavefaciens in the second. 

 

We also identified platelet activation as one of the 

pathways that may be modulated by gut microbiota-

miRNAs cross-talk in response to sex steroid-related 

alterations. In fact, it was recently shown that T reduces 

platelet activation in elderly people [37]. Taking into 

account the decline in T seen in aging [6], a potential 

role of the gut microbiota through miRNA actions 

 

 
 

Figure 6. Impact of gonadal hormone depletion, alone or combined with postnatal overfeeding, on the sex-differences in gut 
microbiota, subsequent metabolic alterations and potential miRNAs involved. Upper panel: gender differences in intact and 
gonadectomized animals. GNX, gonadectomized animals. The bacterial taxa indicated are more abundant in the gender shown by the symbol. 
Intermediate panel: impact of depletion of gonadal hormones. The variables indicated are more abundant in the animal model shown (intact 
or GNX animals). ∆AUC, delta area under the curve. GTT, glucose tolerance test. Lower panel: effect of postnatal overfeeding on intact and 
gonadectomized animals (in this panel, text refers to effect found in postnatal overfeeding as compared with normonutrition). ITT, insulin 
tolerance test. miRNAs shown are putatively involved in the dialogue between gut microbiota and host organism in response to changes in 
sex hormones and nutritional status, and related with the insulin signaling pathway, steroid biosynthesis, the estrogen signaling pathway, 
adherens junctions and progesterone-mediated oocyte maturation. 
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inducing changes in blood platelets might be suggested. 

This idea is also supported by the previously described 

aging-induced changes in the gut microbiota [38]. 

 

Moreover, our study showed that gut microbiota-

miRNAs cross-talk may also influence the intestinal 

barrier integrity through modulation of adherens 

junctions, which, together with the tight junction, 

provide important adhesive contacts between epithelial 

cells, and are involved in intestinal barrier permeability 

[39]. However, this potential mechanism would be 

complementary to the direct effect through bacterial 

species involved in the stability of the mucosal layer 

[40]. In addition, diet may also exert its effect through 

the cross-talk between gut microbiota and the intestinal 

expression of miRNAs, as evidenced by the relationship 

between miR-125a-3p, involved in adherens junctions, 

and the abundance of Bacteroides in the small intestine, 

associated to a meat-rich diet, as most of the species are 

bile acid resistant [41]. 

 

Intestinal absorption of bacterial components, such as 

endotoxin lipopolysaccharide, induces inflammation 

through toll-like receptor activation, which may 

promote insulin resistance [42]. In line with this, our 

study also showed the relationship between the 

intestinal expression of the insulin signaling-related 

miR-27a-3p, and the abundance of Butyricimonas in the 

large intestine. Moreover, this bacterial genus is a 

butyrate-producer [43], which may also be involved in 

insulin signaling, as SCFA increases the action and 

release of insulin through intestinal incretins [44, 45]. 

Furthermore, SCFA are also involved in energy 

metabolism and appetite regulation [46], which may be 

partially responsible of the weight gain in females after 

GNX, a condition in which the abundance of this genus 

is higher in males than in females (GNX, SL-HFD). 

Additionally, miR-27a-3p is also involved in mediating 

sex-steroid actions in other tissues, such as 

progesterone-mediated oocyte maturation, therefore 

supporting the view that the cross-talk between gut 

microbiota and the host via specific miRNAs may also 

involve gonadal steroid mediated events. This idea is 

also supported by the relationship found between miR-

181a-5p, related with the estrogen signaling pathway, 

and the abundance of Parabacteroides in the small 

intestine, a genus associated to sulphate assimilation but 

also a producer of SCFA [47]. Overall, our results 

support the idea that gut microbiota-miRNA cross-talk 

may serve as decoder of changes in the gut microbiota 

composition into the host metabolism, in line with 

previous data [35, 36]. 

 
In conclusion, our study documents the contribution  

of gonadal hormones to defining sex-dependent 

differences on gut microbiota, and discloses a potential 

role of gonadal hormones in shaping gut microbiota, as 

consequence of the interaction between sex and 

nutrition (Figure 6). Thus, the development of therapies 

aimed at restoring gut microbiota alterations in elderly 

people, in order to reduce the risk of diseases such as 

CVD, should be gender-specific. Our data suggest that 

the changes in gut microbiota, observed in conditions of 

sex hormone decline, such as those caused by ageing in 

men and menopause in women, may exert different 

effects on the host organism, which are putatively 

mediated by gut microbiota-miRNA cross-talk. 

 

MATERIALS AND METHODS 
 

Animals and diets 

 

Wistar male and female rats bred in the vivarium of the 

University of Cordoba were used. The animals were 

maintained at 22 ± 1°C under constant conditions of light 

(14 hours) with free access to water. The experimental 

animals were fed a control diet (CD), D12450B (10%, 

20%, and 70% calories from fat, protein, and 

carbohydrate, respectively), or a high-fat diet (HFD), 

D12451 (45%, 20%, and 35% calories from fat, protein 

and carbohydrate, respectively; Research Diets Inc., New 

Brunswick, NJ, USA). All the experimental protocols 

were approved by Cordoba University Ethical Committee 

for animal experimentation and conducted in accordance 

with the European Union guidelines for use of 

experimental animals. 

 

Experimental design 

 

On postnatal day (PND)-1, pups were cross-fostered 

and reared in two different litter sizes: small litters 

(SLs) (4 pups per litter; as a model of postnatal 

overnutrition) or normal litters (NLs) (12 pups per 

litter), as extensively described previously [48–50]. The 

animals were weaned at PND-23 and housed in groups 

of four or five rats per cage. From weaning onwards, 

subgroups of NL and SL females and males were fed 

CD or HFD ad libitum, respectively; thus, two 

experimental groups (NL-CD and SL-HFD) were 

generated, representative of the lean and obese 

phenotype, respectively. On PND-90, subsets of 

animals from each group were subjected to 

gonadectomy, via bilateral abdominal approach in the 

case of females, or via scrotal route in case of males, as 

a model of cessation of gonadal secretions. At PND-

120, the animals were subjected to a GTT, and one 

week later to an ITT to assess the development of 

insulin resistance in the different experimental models. 

 

Experiments were terminated at PND-150, both in 

gonadal-intact and GNX animals; the latter, 60 days 

after surgical removal of the gonads. At this stage, 
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phenotypic indices and serum biochemical/hormonal 

parameters were monitored; sampling in the groups of 

intact females was carried out at the same stage of the 

ovarian cycle, namely, diestrus-1. Rats were euthanized 

by decapitation and trunk blood was collected for 

analyses. Additionally, sections of small and large 

intestine were dissected and fecal samples were 

obtained from the different study groups directly from 

stool expulsion stimulated by manual handling. Samples 

were frozen in liquid nitrogen and stored at -80 °C until 

analysis. 

 

Phenotypic indices and hormonal measurements 

 

Terminal BW was monitored on PND-150 intact and 

GNX rats. Glucose concentrations were measured in 

blood samples, taken from the experimental animals at 

PND-120 after overnight fasting. In PND-150, serum 

levels of leptin were assayed by double-antibody RIA, 

using the kit provided by EMD MILLIPORE (St. 

Charles, MO, USA). The sensitivity limit of the assay 

was 0.8 ng/mL, and the intra- and inter-assay 

coefficients of variation were less than 4% and 9%, 

respectively. In addition, in intact animals of both 

experimental groups (NL-CD and SL-HFD), sex steroid 

plasma levels were determined using a thoroughly 

validated, sensitive gas chromatography-tandem mass 

spectrometry method, in keeping with previous 

references [51, 52]. Next, the serum levels of T, 

dihydrotestosterone, androstenedione, progesterone, E1 

and E2 were measured. The lowest levels of 

quantification in the assay were: 8 pg/mL for T, 2.5 

pg/mL for dihydrotestosterone, 12 pg/mL for 

androstenedione, 74 pg/mL for progesterone, and 0.5 

pg/mL for E1 and E2, in line with previous references 

[51, 52]. 

 

Glucose tolerance tests and insulin tolerance tests 

 

To assess glucose handling in all the experimental 

groups, the rats were subjected to GTT on 

approximately PND-120. The rats were fasted overnight 

and subsequently received an intraperitoneal (ip) bolus 

of glucose (1 g/kg BW). Blood glucose levels were 

determined before (0) and at 20, 60, and 120 minutes 

post administration. After complete recovery, one week 

later, insulin sensitivity was assessed using ITT. For 

this, the rats were fasted overnight, followed by an ip 

injection of 1UI insulin (Sigma-Aldrich, St. Louis, MO) 

per kg BW. Blood glucose levels were measured before 

(0) and at 20, 60, and 120 minutes after insulin 

administration. Integral glucose changes and net 

increases in integral glucose levels were estimated as 
area under the curve (AUC) and delta area under the 

curve (∆AUC), respectively, during the 120 min period 

after the glucose or insulin administration, as calculated 

by the trapezoidal method. All glucose concentrations 

were measured using a handheld glucometer (ACCU-

CHECK Aviva; Roche Diagnostics). 

 

Intestinal microbiota analysis 

 

DNA extraction from feces was performed using the 

QIAamp DNAStool Mini Kit Handbook (QIAGEN, 

Hilden, Germany), following the manufacturer’s 

instructions. The microbiota composition analysis  

of the fecal samples was performed on a MiSeq Illumina 

platform (Illumina, San Diego, CA, USA), according to 

the manufacturer's instructions. Briefly, polymerase  

chain reaction (PCR) was performed using 0.2 μM  

of the primer 5’-TCGTCGGCAGCGTCAGATGTG 

TATAAGAGACAG-3' and 5'-GTCTCGTGGGCTC 

GGAGATGTGTATAAGAGACAG-3’ [53] to generate 

amplicons containing the hypervariable region V3 of the 

16s rRNA gene. KAPA HiFi HotStart ReadyMix 

(KAPABIOSYSTEMS) and 1.25 μl of extracted DNA  

(5 ng/μl in 10 mM Tris pH8.5) were used with the 

following PCR parameters: 3 minutes denaturation at 

95°C, followed by 25 cycles (30 s at 95°C, 30 s at 60°C, 

30 s at 72°C) and a final extension at 72°C for 5 min. The 

amplicon purification was performed using Agentcourt 

AMPure XP beads (Beckman Coulter). A second PCR 

reaction attaches dual indices and Illumina sequencing 

adapters. For this, the Nextera XT Index Kit was used. 

This PCR was performed with a KAPA HiFi HotStart 

ReadyMix (KAPABIOSYSTEMS), 5 μl of the previous 

amplicon, 5 μl of each Nextera XT Index Primer 1(N7xx) 

and 5 uL of each Nextera XT Index Primer 2(S5xx), with 

the following cycle parameters: 3 minutes denaturation at 

95°C, followed by 8 cycles (30 s at 95°C, 30 s at 55°C, 30 

s at 72°C), and a final extension at 72°C for 5 min. The 

PCR product purification was performed using 

Agentcourt AMPure XP beads (Beckman Coulter). 

Sequencing data were analyzed and visualised using 

QIIME 2 v. 2019.7 [54]. Demultiplexed single-end reads 

containing V3 hypervariable region were truncated at 212 

bp (Quality score median >30), and denoised using the 

DADA2 method [55]. After filtering, the high-quality 

reads of the 64 samples (n = 8 for each group) ranging 

from 224,029 to 18,682 sequence counts were taken, with 

the rarefaction depth established at 18,500 sequence 

counts. Bacterial α-diversity across the samples was 

calculated using the observed OTUs and Shannon indexes 

[56]. Principal component analysis of community 

structure (beta-diversity) was performed using the 

unweighted and weighted UniFrac distance metrics [57] 

and analyzed by permutational multivariate analysis of 

variance (PERMANOVA). Taxonomy was assigned to 

the high-quality reads using q2-feature-classifier [58] with 
a sequence identity threshold of 99%, interrogating the 

sequences with the Greengenes database (13_8) [59]. To 

be consistent with the taxonomic data obtained from 16S 
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rRNA, only taxa in the bacteria domain were included in 

the statistical analysis. The relative taxonomic abundance 

was measured as the proportion of reads over the total in 

each sample assigned to a given taxonomy. To exclude 

bacterial taxa that were not present in the majority of 

samples, a cut-off for exclusion was fixed; only bacterial 

taxa containing sequence reads in at least 75% of total 

samples were considered. Linear discriminant analysis 

(LDA) effect size (LEfSe) (http://huttenhower. 

sph.harvard.edu/galaxy/) was used to compare groups at 

baseline and visualize the results using taxonomic bar 

charts and cladograms [60]. 

 

RNA isolation from the small and large intestine 

 
Frozen tissue was ground to a fine powder in liquid 

nitrogen, using a mortar and pestle. RNA was isolated 

with the commercial kit Direct-zolTM RNA MiniPrep 

Plus (Zymo Research Corp., CA, USA, and quantified 

using the v3.5.2 Nanodrop ND-1000 spectrophotometer 

(Nanodrop Technologies, Cambridge, UK). 

 
miRNA expression analysis 

 
miRNA expression profiles were generated using the 

SurePrint Rat miRNA Microarrays (Rat miRNA 8x15K 

Microarray, Release 21.0, Agilent Technologies Inc., 

Santa Clara, CA, USA). RNA samples of each 

experimental group were pooled and labeled using the 

miRNA Labeling and Hyb Kit (Agilent Technologies 

Inc.), according to the manufacturer's instructions. 

Hybridization was performed using this latter kit, also 

according to the manufacturer's instructions. Microarray 

images of each slide were obtained with a Gene Pix 

4000B scanner (Axon Instruments, Union City, CA, 

USA). Image quantization was performed using Agilent 

Feature Extraction Software (Agilent Technologies 

Inc.). Raw microarray data were analyzed using the 

limma R package [61]. Spots with foreground mean and 

median differing by more than 50 were filtered out and 

data quality was checked using limma tools. 

Background correction was performed using saddle-

point approximation in the normal-exponential 

convolution method Normexp [62]. Next, within arrays 

Print-tip loess [63] and between arrays quantile were 

used for normalization. Finally, replicate spots in the 

array data were averaged. 

 
Software for miRNA analysis 

 
To identify the role of selected miRNAs in the cellular 

processes, we performed an analysis using the 

DIANAtools V.3. DIANA-miRPath is a web-server 

(http://diana.imis.athena-innovation.gr/DianaTools/index. 

php), which provides accurate statistics and can 

accommodate advanced pipelines. DIANA-miRPath can 

utilize predicted miRNA targets (in CDS or 3’-UTR 

regions) provided by the DIANA-microT-CDS algorithm 

or even experimentally validated miRNA interactions 

derived from DIANA-TarBase [18]. 

 

Statistical analysis 

 

The PASW statistical software package, version 20.0 

(IBM Inc., Chicago, IL, USA), was used for statistical 

analysis of the data. We used One-way ANOVA to test 

the differences in the plasma metabolites between 

groups of animals. Pearson’s correlation test was used 

to evaluate the relationship between miRNA intestinal 

expression and bacterial taxa abundance. Data are 

presented as mean ± standard error of the mean. P-

values <0.05 were considered statistically significant in 

all the statistical analyses. 
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postnatal overfeeding; GNX: gonadectomized; E2: 

estradiol; E1: estrone; AUC: area under the curve; 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Diversity indexes according to sex, gonadectomy and feeding conditions. (A) Sex effect on alpha 

diversity; (B) Gonadectomy effect on alpha diversity. 
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Supplementary Figure 2. Linear discriminant analysis (LDA) scores between sexes under normal feeding and overfeeding conditions, in 

intact (A) and gonadectomized (B) animals. 
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Supplementary Figure 3. Linear discriminant analysis (LDA) scores between intact and gonadectomized animals, under normal feeding and 
overfeeding conditions in females (A) and males (B). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2 to 7. 

 

Supplementary Table 1. Bacterial genera with different abundance between sexes in intact and gonadectomized 
animals. 

 

Normal feeding  Postnatal overfeeding 

non-GNX GNX  non-GNX GNX 

Methanobrevibacter F F  F F 

Bacteroides M   M M 

Parabacteroides    M M 

Prevotella (Prevotellaceae) M    M 

Unknown (f_RF16) M M  M M 

Unknown (f_S24-7)  F    
Butyricimonas     M 

CF231    M  
Unknown (Elusimicrobiaceae) M M   M 

Elusimicrobium M    M 

Lactobacillus F     
Unknown (Christensenellaceae)     M 

Clostridium (Clostridiaceae)  F    
Roseburia     M 

Unknown (Peptococcaceae)  F  F F 

rc4-4  M   M 

Clostridium (Peptostreptococcaceae)  F    
Unknown (Ruminococcaceae)     M 

Oscillospira    F F 

Phascolarctobacterium M     
Unknown (Mogibacteriaceae)    F  
Unknown (Desulfovibrionaceae)  M    
Desulfovibrio F   F F 

Flexispira  M    
Helicobacter  M  F  
Treponema    M  
Unknown (f_F16) F F  F F 

Unknown (f_WCHB1-25) M M  M  
Defluviitalea     M 

GNX: gonadectomized animals. Non-GNX: intact animals. M: higher abundance in males. F: higher abundance in females. 
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Supplementary Table 2. Relationship between the bacterial genera identified by LEfSe analysis and the expression 
levels of the miRNAs in large intestine. 

Supplementary Table 3. Relationship between the bacterial species identified by LEfSe analysis and the expression 
levels of the miRNAs in large intestine. 

Supplementary Table 4. Relationship between the bacterial genera identified by LEfSe analysis and the expression 
levels of the miRNAs in small intestine. 

Supplementary Table 5. Relationship between the bacterial species identified by LEfSe analysis and the expression 
levels of the miRNAs in small intestine. 

Supplementary Table 6. KEGG pathways related with miRNAs expression in the intestine. 

Supplementary Table 7. KEGG pathways associated with microbiome-related miRNAs. 


