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ABSTRACT 
 

RhoA is a member of the RHO family GTPases and is associated with essential functions in gastric cancer. In this 
study, we identified a gastric cancer biomarker, termed the “regulation of RhoA activity panel” (RRAP). Patients 
with gastric cancer from The Cancer Genome Atlas database were divided into training (N=160) and validation 
(N=155) cohorts. A cohort of 109 Chinese gastric cancer patients was utilized as an independent validation. 
Patients with mutated RRAP showed significantly better overall survival than patients with wild type RRAP. We 
also analyzed the association between RRAP and the migration capacity, immune-related signatures, and the 
tumor microenvironment. RRAP-mutant tumors had a significantly lower degree of lymph node metastasis and 
lower activities of migration-related pathways. These tumors also showed significantly increased immune cell 
infiltration and cytotoxic activity. Furthermore, two independent patient cohorts who received immune 
checkpoint blockade therapy were assessed for RRAP mutant status. As expected, for both immunotherapy 
cohorts, higher response rates to immune checkpoint blockade therapy were observed in patients with RRAP-
mutant tumors than in patients with wild type RRAP tumors. Overall, this study indicates that the RRAP gene 
set is a potential biomarker for gastric cancer prognosis and therapeutic selection. 
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INTRODUCTION 
 

Gastric cancer is one of the most frequently occurring 

and lethal malignancies [1]. The Lauren classification 

divides gastric cancer into 2 main subtypes, intestinal 

and diffuse [2]. However, this classification provides 

limited guidance for disease prognosis and treatment 

decisions. Global efforts to characterize gastric cancer 

at the molecular level from the perspective of cancer 

genomics and transcriptomics have been made, 

including those from The Cancer Genome Atlas 

(TCGA) [3] and the Asian Cancer Research Group [4]. 

Gastric cancer patients are classified into 4 subtypes 

based on gene expression profiling; each subtype 

exhibits distinct patterns of molecular alterations, 

disease progression, and prognosis [4]. Although these 

large-scale efforts have provided comprehensive 

insights into gastric cancer, they have not translated into 

a clinical benefit. A genomic-based molecular 

biomarker with prognostic and/or therapy predictive 

value is still needed for gastric cancer. 

 

Among the various genomic alternations that occur in 

gastric cancer, RHOA mutation plays a critical role in 

the development and progression of cancer by 

regulating actin organization [5], cell migration [6], 

cytokinesis and the cell cycle [7]. Recent studies have 

also suggested its potential role in modulating the tumor 

microenvironment (TME) of cancers [8, 9]. Although 

the overexpression of RhoA has been frequently 

recognized in various cancers and was found to be 

significantly associated with poor prognosis in gastric 

cancer [10], similar overall survival (OS) rates were 

nevertheless observed between patients with RHOA 

mutant and wild-type gastric cancers [11, 12]; therefore, 

the prognostic value of this gene mutation is poor. In 

2017, Shi et al. [13] established that mutations within 

the gene set designated as the ―regulation of RhoA 

activity pathway‖ were associated with better 

progression-free survival (PFS) and overall survival in 

HER2+ breast cancer patients. This gene set includes 

RhoA, as well as guanine nucleotide exchange factors 

and GTPase-activating proteins [14], both of which are 

involved in regulating RhoA activity. Furthermore, 

altered RhoA signaling has been reported in gastric 

cancers, especially in the diffuse type gastric cancer [3, 

15–21]. However, the clinical significance of this 

pathway in overall gastric cancer remains unresolved. 

Mutations in ―regulation of RhoA activity pathway‖ 

gene set may be involved in the prognosis and 

therapeutic prediction of gastric cancer through their 

effect on RhoA and its effector molecule activity.  

 

Based on the pathway changes of RhoA activity, we 

developed a statistically optimized gene subset as a 

biomarker by applying a genetic algorithm to a training 

gastric cancer cohort obtained from the gastric cancer 

dataset of TCGA. We validated this biomarker in a 

nonoverlapped TCGA-validation cohort and in an 

independent Chinese gastric cancer (CGC) cohort. The 

association of this biomarker with lymph node 

metastasis, migration-related pathways, immune-related 

signatures, and the TME was assessed to glean insights 

into possible related mechanisms. Inspired by its effect 

on the TME, we collected 2 independent cohorts of 

gastric cancer patients (denoted as IM1 and IM2) who 

received immune checkpoint blockade (ICB) treatment 

and revealed the potential predictive capability of this 

biomarker. 

 

RESULTS 
 

Prognostic biomarker “regulation of RhoA activity 

panel” for gastric cancer  
 

As shown in Figure 1, the potential biomarker 

―regulation of RhoA activity panel‖ (RRAP) was 

calculated from the TCGA training cohort with a 

genetic algorithm on the ―regulation of RhoA activity 

pathway‖ gene set (see Methods). The resulting optimal 

solution, containing 20 genes, is hereafter denoted as 

RRAP (Figure 1B). These gene mutations were 

significantly associated with gastric cancer 

(Supplementary Table 1). According to whether or not 

mutations occurred in the coding region of any of the 

RRAP genes, patients were classified as RRAP-wild 

type or RRAP-mutant. In the TCGA training cohort, 

RRAP-mutant patients displayed better OS compared to 

RRAP-wild type patients, with a hazard ratio of 0.4 

(95% confidence interval: 0.2-0.79, p-value = 0.006, 

Figure 2A). Importantly, this was also validated in the 

TCGA validation cohort, with a hazard ratio of 0.48 

(95% confidence interval: 0.26-0.91, p-value = 0.021, 

Figure 2B). Furthermore, we incorporated age, gender, 

Lauren classification, pathologic stage, and RRAP into 

a multivariate Cox analysis for overall survival. The 

results showed that RRAP was an independent 

prognostic factor after adjusting for these 

clinicopathological parameters in both the TCGA 

training (hazard ratio = 0.35, 95% confidence interval: 

0.17-0.7, p-value = 0.003; Supplementary Figure 1A) 

and TCGA validation cohorts (hazard ratio = 0.51, 95% 

confidence interval: 0.26-1, p-value = 0.05; 

Supplementary Figure 1B). 

 

The reliability of RRAP was assessed using an 

independent patient cohort that was a subset of the 109 

CGC patients. These patients were whole-exome 

sequenced, and 26 (23.9%) were identified as RRAP-

mutant. This cohort exhibited a mutational proportion 

similar to the TCGA training (26.3%) and TCGA 

validation (28.3%) cohorts. For the reliability 
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assessment cohort, Kaplan-Meier curves showed that 

RRAP-mutant was significantly associated with longer 

OS (hazard ratio = 0.13, 95% confidence interval: 0.03- 

0.52, p-value = 6.66e-4, Figure 2C). Multivariate Cox 

regression analysis was performed as described above, 

and the results again showed that RRAP was an 

independent prognostic factor (Supplementary Figure 

1C). We also merged data of the TCGA training, TCGA 

validation, and CGC cohorts into overall cohort. RRAP-

mutant patients displayed better OS compared to 

RRAP-wild type patients, with a hazard ratio of 0.38 

(95% confidence interval: 0.25-0.59, p-value = 7.37e-6) 

in the overall cohort (Figure 2D and Supplementary 

Figure 1D). 

 

RRAP was associated with cell migration activity 
 

Given the role of RhoA in cell migration, we assessed 

the effect of RRAP on tumor metastasis. Strikingly, 

patients with RRAP-mutant tumors had a significantly 

lower rate of lymph node metastasis (pN3 of regional 

lymph node) compared with RRAP-wild type patients 

(11.5% vs 36.1%, respectively, Fisher's exact test p-

value = 0.026) in the CGC cohort, which was also 

confirmed in the overall TCGA cohort (12.8% vs 

24.7%, respectively, p-value = 0.03). We also found 

that patients with RRAP-mutant tumors had a 

moderately lower distant metastasis recurrence risk 

compared to patients with RRAP-wild type tumors in 

the CGC cohort (15.4% vs 31.3%, respectively, p-value 

= 0.136); the same trend was observed in the overall 

TCGA cohort (3.6% vs. 7.9%, respectively, p-value = 

0.26). This suggested that RRAP-mutant tumors may 

have an impaired migration capacity. At the molecular 

level, we explored the RNA-seq data collected from 

TCGA and estimated the enrichment score of 4 

migration-related functions—adherens junctions, cell 

adhesion molecules, focal adhesion, and regulation of 

the actin cytoskeleton. All of these functions showed 

significantly lower activity in RRAP-mutant tumors 

compared to RRAP-wild type tumors (Figure 3A–3D). 

Further analysis revealed that 39 genes related to the 4 

functions exhibited significantly lower expression in 

RRAP-mutant tumors (log2 fold change > 1 and 

adjusted p-value < 0.01, Figure 3E). We next performed 

univariate Cox and Kaplan-Meier analysis on the 39 

genes and found that 5 genes (CLDN11, CLDN6, 

CLDN9, VTN, and F2; Supplementary Table 2) were 

significantly associated with poor OS (Figure 3F, log-

rank p-value < 0.01). Kaplan-Meier analysis revealed 

that the low expression of these 5 genes, along with 

CNTN1, CNTN2, CADM1, NCAM1, FGF19, and 

FGF20, were significantly associated with better OS 

(Figure 3G, Supplementary Figure 2). Taken together, 

these results indicated an association between RRAP 

mutation and tumor cell migration, thus resulting in 

metastasis. 

 

Association of RRAP with immune-related 

signatures 
 

We next explored the correlation between RRAP and 

the immune-related signatures of tumor mutational 

burden (TMB), neoantigen burden (NAB), and deficient 

mismatch repair (dMMR). Higher TMB was observed 

in RRAP-mutant patients in the TCGA training, TCGA 

validation, and CGC cohorts, with p-values of 3.7e-8, 

9e-11, and 6.3e-5, respectively (Figure 4A). A 

significantly higher NAB (available only in the CGC 

cohort) was observed in RRAP-mutant patients (p-value 

 

 
 

Figure 1. Identification of RRAP biomarker. (A) Outline of the cohort construction and analysis workflow. (B) RRAP selection. The right 
panel shows the interaction of genes among RRAP. 
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= 0.002, Figure 4B). Additionally, there was a 

significantly higher fraction of mutational signatures 

associated with dMMR in the RRAP-mutant tumors 

compared to RRAP-wild type tumors in all 3 cohorts 

(Figure 4C). Although the 3 immune-related signatures 

in this study could predict the response to 

immunotherapy in multiple cancers [22], TMB and 

NAB were not associated with the overall survival of 

gastric cancer patients, while dMMR was related to 

overall survival in the TCGA validation cohort  

(Figure 4D). 

Effect of RRAP mutation on the tumor 

microenvironment 
 

In addition to the 3 signatures above, we further 

explored the association between RRAP and the TME 

using TCGA expression data. For this purpose, we 

collected tumor immune infiltrate data published by 

TCGA and compared immune cellular fraction between 

RRAP-mutant and RRAP-wild type tumors [23]. 

RRAP-mutant tumors showed significantly higher 

levels of infiltration of activated CD4
+
 memory T cells 

 

 
 

Figure 2. Training and validation of RRAP. Kaplan-Meier survival curves for RRAP-wild type and RRAP-mutant patients in the (A) TCGA 
training cohort, (B) TCGA validation cohort, (C) an independent CGC cohort, (D) and the overall cohort containing merged data from the three 
cohorts. P-values were estimated with the log-rank test, and hazard ratios (HRs) were estimated with the Cox model. 
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Figure 3. Association of RRAP with lower cell migration activity. (A–D) Pathway enrichment scores between RRAP-wild type and 
RRAP-mutant were compared among 4 functions: adherens junction (AJ, A), cell adhesion molecules (CAM, B), focal adhesion (FA, C), and 
regulation of the actin cytoskeleton (ROAC, D). The Wilcoxon rank-sum test was applied to estimate differences. (E) Heatmap of differentially 
expressed genes among the 4 functions; the column was clustered and annotated with RRAP status. (F) Forest plot of association of between 
gene expression and overall survival. Squares indicate the hazard ratios and error bars represent the 95% confidence interval; the log-rank 
test was performed to estimate p-values. (G) Kaplan-Meier overall survival curves for patients with high and low expression levels of CLDN11, 
CLDN6, CLDN9, VTN, and F2. P-values were estimated with the log-rank test, and HRs were estimated with the Cox model. 
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(p-value = 8.6e-7) and M1 macrophages (p-value = 

0.00077) (Figure 5A), both of which are reportedly 

associated with longer survival in multiple cancers [24, 

25]. In addition, we observed higher infiltration of 

CD8+ T cells—the primary effector in anti-tumor 

immunity—in RRAP-mutant tumors compared to 

RRAP-wild type tumors, although it did not reach a 

statistical significance (p-value = 0.07385, Figure 5A). 

There was a significantly difference in the levels of 

CD8+ infiltration in the independent CGC cohort. IHC 

staining was used to evaluate the infiltration of CD8+ 

tumor infiltrating lymphocytes (TILs) in 52 tumors 

from the CGC cohort; 40 of these were RRAP-wild type 

tumors and 12 were RRAP-mutant tumors. Consistent 

with the TCGA RNAseq results, RRAP-mutant tumors 

exhibited increased infiltration of CD8+ TILs compared 

to RRAP-wild type tumors (p-value = 0.026) (Figure 

5B–5F). Given the functional dependence of CD4+ T 

cells and M1 macrophages on human leukocyte antigen 

(HLA) class II molecules, further analyses of several 

HLA class II molecules were also performed. The 

results showed significantly higher expression of these 

molecules in RRAP-mutant tumors compared with 

RRAP-wild type tumors (Figure 5G), including HLA-

DMA (p-value = 0.0106), HLA-DQA1 (p-value = 

0.0235), and HLA-DRA (p-value = 0.0091). Taken 

together, an increased anti-tumor immune response by 

CD4+ T cells and macrophages could be seen for 

RRAP-mutant tumors. 

 

Granule exocytosis-related molecules (e.g., 

PRF1/GZMA/GZMB) and death ligand pathways (e.g., 

the Fas/FasL apoptotic killing pathway) are involved in 

the cytotoxic effects of CD8+ T cells [26] and possibly 

of CD4+ T cells [27, 28]. We found that PRF1, GZMA, 

and GZMB were significantly increased in RRAP-

mutant tumors compared to RRAP-wild type tumors, 

with p-values of 0.0056, 0.002, and 4.5e-5, respectively 

(Figure 5H). Additionally, RRAP was associated with 

significantly increased FAS (p-value = 0.0039) and 

FASLG expression (p-value = 0.0207) (Figure 5I). The 

apoptosis pathway was also evaluated and exhibited 

higher activity in RRAP-mutant tumors than in RRAP-

wild type tumors (p = 0.0014, Figure 5J). These results 

strongly suggested that RRAP mutation affected the 

TME, providing evidence for the association of RRAP-

mutant with better OS on the basis of increasing anti-

tumor activity in the TME (Supplementary Figure 3).

 

 
 

Figure 4. Association of RRAP with immune-related biomarkers. (A) Boxplot for differences in the tumor mutational burden (TMB) 
between RRAP-wild type and RRAP-mutant tumors in the TCGA training, TCGA validation, and CGC cohorts. (B) Boxplot for differences in the 
neoantigens between RRAP-wild type and RRAP-mutant tumors in the CGC cohort. (C) Boxplot for differences in the dMMR percentage 
between RRAP-wild type and RRAP-mutant tumors in TCGA training, TCGA validation, and CGC cohort. The Wilcox rank-sum test was applied 
to compare the differences. (D) Association of overall survival and TMB, neoantigen burden (NAB), and dMMR in the 3 cohorts. The hazard 
ratio was estimated with univariate Cox analysis, and the log-rank test was applied to calculate the p-value. 
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RRAP as a potential predictive biomarker for 

checkpoint inhibitor-based immunotherapy 
 

Inspired by the significant effect of RRAP on prognosis, 

immune-related signatures and the TME, we further 

investigated the association between RRAP and the 

response to ICB therapy. Of the IM1 cohort who 

received ICB therapy (N = 37), 7 patients were 

identified as RRAP-mutant and 30 were RRAP-wild 

type. After treatment, 15 (50%) patients in the RRAP-

 

 
 

Figure 5. Association of RRAP with the tumor microenvironment. (A) Immune infiltrations estimated by CIBERSORT were compared 
between RRAP-wild type tumors and RRAP-mutant tumors. (B) The density of CD8+ TILs was compared between RRAP-wild type and RRAP-
mutant tumors. (C–F) The representative immunohistochemistry for CD8 images of RRAP-wild type tumor tissue (C, D) and RRAP-mutant 
tumor tissue (E, F). (G–I) Expression values were compared for HLA class II genes (G), cytotoxic effector molecules (H), and apoptosis-related 
genes (I). (J) The boxplot shows the difference in enrichment score of the apoptosis pathway between RRAP-wild type and RRAP-mutant 
tumors. The Wilcoxon rank-sum test was applied to estimate the p-values. 
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wild type group had progressive disease. In contrast, 

only 1 (14.3%) patient in the RRAP-mutant group had 

progressive disease (Figure 6A). We also evaluated the 

efficacy of ICB therapy between groups stratified by 

PD-L1 expression and microsatellite instability (MSI) 

and/or mismatch repair (MMR) status, and no notable 

differences were found (Figure 6B, 6C). The Kaplan-

Meier curves suggested that RRAP-mutant favored PFS 

compared with RRAP-wild type (Figure 6D), with 

respective median PFS times of 5.93 months (95% 

confidence interval: 2.83-not available) and 2.67 

months (95% confidence interval: 1.70-not available). 

However, there was no difference in PFS between PD-

L1-positive and PD-L1-negative patients (median PFS: 

3.55, 95% confidence interval: 1.93-not available and 

3.53, 95% confidence interval: 1.57-not available, 

respectively) (Figure 6E). The same observation was 

made when comparing dMMR/MSI-H and pMMR/MSS 

patients (median PFS: 3.07 95% confidence interval: 

1.37-not available and 2.83, 95% confidence interval: 2-

not available, respectively) (Figure 6F). In the IM2 

cohort (N = 47), 12 patients were classified as RRAP-

mutant; these patients had a better overall response rate 

than RRAP-wild type patients (33.3% vs 8.6%, 

respectively, Fisher's exact test p-value = 0.06). These 

results suggested that RRAP may play a role as a 

potential predictive biomarker for checkpoint inhibitor-

based immunotherapy in gastric cancer. 

 

DISCUSSION 
 

In this study, we identified RRAP as a biomarker, 

validated its prognostic effect in TCGA and CGC 

gastric cancer data sets, and investigated its association 

with tumor metastasis, the TME, and its potential 

prediction value for ICB therapies. 

 

For the TCGA training, TCGA validation, and CGC 

cohorts, the frequencies of RRAP-mutant were elevated 

(26.3%, 28.3%, and 23.9%, respectively) compared to 

RHOA mutations alone (7.5%, 4.5%, and 3.7%, 

respectively), suggesting that RRAP can be more 

broadly utilized as a predictive biomarker for gastric 

cancer. RRAP-mutant proved to be an independent 

prognostic factor and was significantly associated with 

favorable overall survival, regardless of histological

 

 
 

Figure 6. Association of RRAP and immunotherapy efficacy. (A–C) Stacked barplot showing the proportion of patients with 
progressive disease (PD), stable disease (SD), or partial response (PR) for each group divided by RRAP (A), PD-L1 (B) and MSI/MMR status (C). 
(D–F) The text indicates the number and percentage of patients in each group. Kaplan-Meier survival curves for patients grouped by RRAP 
(D), PD-L1 (E), and MSI/MMR status (F). P-values were estimated with the log-rank test, and HRs were estimated with the Cox model. 
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classification (i.e., not only in diffuse gastric cancer). 

This clinical significance is likely attributed to altered 

RhoA activity disrupting the process of tumor invasion 

and metastasis when the process is impaired by RRAP 

mutation. Clinically, our results showed that patients 

with RRAP-mutant tumors had a significantly lower 

rate of lymph node metastasis (pN3) and a lower risk of 

distant metastasis recurrence. At the molecular level, 

our analysis suggested that RRAP-mutant tumors 

exhibited a low activity of migration-related functions 

(adhesion junctions, cell adhesion molecules, focal 

adhesion, and regulation of the actin cytoskeleton). In 

these functions, 11 genes (CLDN11, CLDN6, CLDN9, 

VTN, F2, CNTN1, CNTN2, CADM1, NCAM1, FGF19, 

and FGF20) that were downregulated in RRAP-mutant 

tumors were significantly associated with improved OS. 

Our findings are supported by previous results, not only 

regarding the role of RhoA in tumor cell invasion and 

metastasis [29] but also regarding the association of 

RhoA activity with gastric cancer prognosis [30, 31]. 

 

Recent efforts have shown that RhoA can modulate the 

TME [8, 9]. Therefore, we further assessed the 

significant association between RRAP and clinical 

outcomes in terms of the TME. Our results indicated 

that RRAP-mutant patients had higher fractions of 

activated CD4+ memory T cells, CD8+ T cells, and M1 

macrophages, all of which have been reported as 

biomarkers that are positively associated with overall 

survival in multiple cancers [24, 25]. We further found 

that HLA-DMA, HLA-DQA1, and HLA-DRA, on 

which CD4+ T cells and M1 macrophages functionally 

depend [32, 33], also showed significantly increased 

expression in RRAP-mutant tumors. Our experimental 

CD8+ IHC results were highly consistent with our 

bioinformatics analysis. Moreover, we also showed that 

mutated RRAP may affect the TME by regulating the 

expression levels of granule exocytosis-related 

molecules (PRF1/GZMA/GZMB) and the death ligand 

pathway (Fas/FasL apoptotic killing pathway), which 

are involved in the cytotoxic effects of CD8+ T cells 

and possibly of CD4+ T cells. Taken together, these 

results strongly indicated an association between 

RRAP-mutant and better OS on the basis of increasing 

antitumor activity in the TME (Supplementary Figure 

3). The association between well-known 

immunotherapy-related biomarkers (TMB, NAB, and 

dMMR) and the RRAP status was also assessed. 

Interestingly, all three biomarkers were significantly 

higher in RRAP-mutant tumors; however, only RRAP 

had prognostic significance. Moreover, RhoA signaling 

plays an important role in inducing activating innate 

immune and adaptive T cell responses [34]. For 

example, the downregulation of CDC42 reduces NK 

cell-mediated killing, allowing cancer cells to escape 

from the human immune response [35]. VAV3, a Rho 

family GTPase, activates multiple cell signaling 

pathways, including NK cell activation [36]. And the 

role of RhoA for phagocytosis has been studied in 

macrophages [37, 38]. Besides, RhoA signaling in T 

cells and B cells is pivotal for activation and migration 

[34]. The association of RRAP-mutant with immune 

activation and anti-tumor activity in the tumor immune 

microenvironment may provide clues to the predictive 

effect of RRAP in immunotherapy response. 

 

The US Food and Drug Administration approved MSI-

H/dMMR as a biomarker for immunotherapy; MSI-

H/dMMR occurs in only 4-22% of gastric cancer cases  

[3, 39, 40] with an approximately 40-57% response [40, 

41]. Many studies have shown that TMB, CD8+ TILs, 

and PD-L1 expression correlate with the efficacy of 

immunotherapy [42–44]; however, the association 

between these markers and the clinical benefit of gastric 

cancer immunotherapy is uncertain [45]. Accordingly, 

in the current study, 2 retrospective analyses on the IM1 

and IM2 cohorts were performed to predict the efficacy 

of ICB therapy based on RRAP status. The response 

rate of RRAP-mutant patients was higher than that of 

RRAP-wild type patients within both the IM1 and IM2 

cohorts. The differences are expected to be significant 

in a larger sized cohort. A clinical trial based on the 

RRAP biomarker is being designed. Our findings 

indicate that RRAP plays an important role in the 

regulation of the TME. Its status as a predictive 

biomarker will be further verified in larger clinical 

cohorts receiving immunotherapy. 

 

In summary, this is one of the few efforts of biomarker 

identification for disease prognosis and therapeutic 

response based on pathway genomic characteristics in 

gastric cancer. In gastric cancer patients, RRAP-mutant 

tumors were correlated with a better prognosis, 

regardless of the histological classification and 

clinicopathological parameters. We investigated this 

correlation mainly from the perspective of RRAP 

regulating tumor invasion, metastasis, and the TME. 

Patients with RRAP-mutant tumors showed a better 

response to checkpoint inhibitor-based immunotherapy. 

These findings shed light on the clinical implications of 

the RRAP-mutant biomarker and may be used to guide 

personalized therapy for gastric cancer patients. 

 

MATERIALS AND METHODS 
 

Gastric cancer cohorts 
 

The 4 gastric cancer patient cohorts included in this 

study were the TCGA cohort (N=315, Supplementary 

Table 3), the CGC cohort (N = 109, Supplementary 

Table 3), and 2 immunotherapy cohorts, IM1 (N = 37) 

and IM2 (N = 47). Clinical and mutation data from the 
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TCGA database (N = 440) were downloaded from the 

cBioportal database [46], and survival data were 

collected from a previous study [47]. Only patients with 

American Joint Committee on Cancer (AJCC) version 8 

stage II and III were included (N = 319). Four patients 

without a survival time were excluded; the final number 

of patients in the TCGA cohort was 315. The TCGA 

training (N = 160) and validation (N = 155) cohorts 

were generated by random sampling to be 

approximately equal in sample size. Formalin-fixed, 

paraffin-embedded tumor tissue samples from the CGC 

cohort were collected from 109 stage II–III treatment-

naive gastric cancer patients who had primary gastric 

cancer resection at Peking University Cancer Hospital 

and Institute between 2008 and 2015. The tumor tissue 

samples of the IM1 cohort were obtained from 

metastatic gastric cancer patients before they started 

ICB treatment. After the samples were collected, these 

37 patients received at least 1 cycle of any ICB therapy 

regardless of the agent’s target (i.e., PD-1/PD-L1). The 

IM2 cohort containing 47 patients who received PD-1 

inhibitor therapy (toripalimab) was collected from 

multiple centers, details of which were previously 

published [48].  

 

This study was approved by the medical ethics 

committee of the Peking University Cancer Hospital, 

and participants provided informed consent. The design 

and implementation of the study complied with the local 

regulations and guidelines and with the basic principles 

of the Declaration of Helsinki. 

 

Whole-exome sequencing analysis and variant 

filtering 
 

Tumor tissue and adjacent nontumor tissue samples 

from CGC cohort patients were subjected to whole-

exome sequencing. All whole-genome sequencing 

(including DNA extraction and quality control) was 

performed in the OrigiMed laboratory. This laboratory 

is College of American Pathologists-accredited and is a 

Clinical Laboratory Improvement Amendments (CLIA) 

certified laboratory. All tumor tissue slides were 

reviewed by two independent pathologists, and samples 

with estimated tumor purity greater than 20% were 

included in the study. In detail, DNA was extracted 

from the formalin-fixed, paraffin-embedded samples 

according to the manufacturer's instructions. Next, ~ 

500 ng of genomic DNA was sheared to a mean 

fragment length of 200 bp and labeled with a 6-8 base 

barcode during polymerase chain reaction (PCR) 

amplification. Exomes were captured using a 

SureSelectXT Human All Exon V6 (Agilent 

Technologies). Sequencing was performed with an 

Illumina HiseqX instrument using 150 base paired-end 

reads. Reads were trimmed with AdapterRemoval v2 

[49], aligned to the human reference genome (GRCh37) 

by Burrows-Wheeler Aligner v0.7.5a [50], and PCR 

duplicates were removed by Picard (version 1.47). 

Somatic variants were identified by GATK4 Mutect2 

(version 4.0.6) [51] and then annotated with SnpEff 

(version 4.3b) [52]. Variants in the common dbSNP 

database (version 147) or those having a frequency 

above 1.5% in the Exome Sequencing Project 6500 or 

1000 genome project were excluded from further 

consideration. The variant files have been uploaded to 

the European Variation Archive (PRJEB31906). Low-

confidence variants in both the TCGA and CGC cohorts 

were removed by applying the following filters: (1) total 

coverage < 30, (2) variant allele depth < 7, and (3) 

variant allele frequency < 0.05. 

 

Feature selection and biomarker validation 
 

The prognostic biomarker was calculated by a genetic 

algorithm that was implemented in the Python package 

pyeasyga [50, 53]. In brief, each solution was a binary 

vector with a 0 or 1 value that had the same length as 

the original full set of the ―regulation of RhoA activity 

pathway‖ biomarker (length = 48); 1 indicated that the 

corresponding gene harbored a nonsynonymous 

substitution or indel in the coding region, and 0 

indicated neither of these changes. The goal was to find 

the best solution containing the genes with their values 

equal to 1, which was considered as the optimal gene 

subset (i.e., biomarker). The parameters of the genetic 

algorithm were empirically set as follows: a total 

population size of 40 solutions, crossover probability of 

0.1, mutation probability of 0.01, and max generation of 

50 000. The fitness value was calculated as follows: a 

cohort that was randomly selected (size = 80, 50%) 

from the 160 patients of the TCGA training cohort was 

further divided into a mutation and wild-type group 

according to the mutation status of the genes that 

corresponded to value 1 of each solution; a log-rank p-

value was calculated for this division, the whole process 

was performed 100 times, and the mean p-values were 

calculated as the fitness value. Finally, the best solution 

was generated, and the resulting genes with a value of 1 

were regarded as the final subset (i.e., the biomarker). 

 

Tumor mutational burden, neoantigens, and 

mutational signatures 
 

The tumor mutational burden (TMB) was estimated by 

dividing the total number of somatic variants by the 

coding region size. All somatic variants in the coding 

and splicing regions were counted, and the coding 

region size was estimated as 33 Mb based on RefSeq 

Genome Annotation (GRCH37). HLA typing was 

performed with OptiType (version 1.2.1) [54]. All 

nonsynonymous mutations that were identified were 
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translated into peptides of 17 amino acids with an in-

house pipeline. The sliding window (approximately 9-

11 amino acids in size) method was used to identify 

substrings within the 17mer that had a predicted HLA 

class I binding affinity of less than 500 nM to any 

patient-specific HLA allele. The binding affinity for 

amino acids and alleles was analyzed using 

NetMHCpan v3.0 [55]. The neoantigen burden was 

estimated as the total number of substrings with a 

binding affinity less than 500 nM. Mutational signature 

contributions were identified using the R package 

deconstrucSigs (version 1.8.0) [56] with 30 signatures 

documented by the Catalogue of Somatic Mutations in 

Cancer as a reference [57]; samples with an error rate 

less than 0.15 and mutation counts greater than 30 were 

considered for mutational signature analysis. Deficient 

mismatch repair was estimated as the sum of signature 

6, 15, 20, and 26 [57].  

 

RNA-seq data analysis 
 

RNA-seq data of the TCGA cohort were extracted with 

TCGAbiolinks [58]. Raw read counts were normalized 

with DEseq2 [59] and then log2 transformed. The 

ssGSEA algorithm in the R package GSVA [60] was 

used to evaluate the pathway enrichment score. Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

gene sets were retrieved from the KEGG database by 

the R package gage [61]. 

 

Immunohistochemistry staining and evaluation 
 

Immunohistochemistry (IHC) analysis for CD8 (clone 

SP16, ZSGB-BIO) was evaluated within intratumor 

areas. Aperio Scanscope (Aperio Technologies Vista, 

CA, USA) was used to quantify CD8+ density by the 

rare event tissue test method. We counted the total 

number of CD8+ cells of each area based on 6 randomly 

captured visual fields (400×400 m
2
) and defined the 

density of CD8+ TILs as the total cell number per 

square millimeter. IHC staining of anti-PD-L1 (clone 

SP142, Spring Bioscience) was also annotated within 

intratumor areas. The percentages of cancer cells and 

immune cells with anti-PD-L1 staining were measured 

in each area based on 3 visual fields in darkly stained 

areas (400×400 m
2
). The expression of PD-L1 was 

defined as positive when ≥ 1% of the tumor/stromal 

cells were positive. IHC-stained sections were scored 

independently by 2 gastrointestinal pathologists blinded 

to the clinicopathological parameters and biomarker 

results. 

 

Mismatch repair/microsatellite instability testing 
 

To evaluation the mismatch repair (MMR) and/or 

microsatellite instability (MSI) status, MLH1 (clone 

ES05, Gene Tech), MSH2 (clone 25D12, Gene Tech), 

MSH6 (clone EP49, Gene Tech) and PMS2 (clone 

EP51, Gene Tech) were stained. The complete loss of 

expression of one or more proteins was considered as 

dMMR. In some cases, the microsatellite stability status 

was calculated by using a single multiplex PCR that 

assessed five microsatellite loci (BAT-25, BAT-26, 

D2S123, D5S346, and D17S250) [62]. For 

interpretation, instability at more than one locus referred 

to high microsatellite instability (MSI-H), instability at 

a single locus referred to low microsatellite instability 

(MSI-L), and no instability at any locus referred to 

stable microsatellites (MSS) [63]. 

 

Statistical analysis 
 

Survival analysis was carried out by the Kaplan-Meier 

method, and the difference between the groups was 

compared using the log-rank test. The hazard ratio and the 

95% confidence interval were estimated by the Cox 

model. The multivariate Cox model was performed to 

adjust for confounding factors. Fisher’s exact test was 

used to compare proportions. The Wilcoxon rank-sum test 

was used to compare continuous values. All statistical 

analyses were performed with R software 3.5.3. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Multivariate Cox model analysis, with age, gender, Lauren type, AJCC stage, and RRAP as confounding factors, 
performed on the TCGA training cohort (A), TCGA validation cohort (B), CGC cohort (C), and the overall cohort containing merged data from 
the three cohorts (D). 
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Supplementary Figure 2. Kaplan-Meier overall survival curves for patients with high and low expression of 39 differentially 
expressed genes of the 4 migration-related functions. P-values were estimated with the log-rank test, and hazard ratios were 
estimated with the Cox model. 
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Supplementary Figure 3. Diagram of the interaction of immune cells and tumor cells in the RRAP-mutant tumor 
microenvironment. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Genes contained in the RRAP biomarker gene set and their mutation frequency in the TCGA 
training, TCGA validation, and CGC cohorts, along with migration activity. 

 

Supplementary Table 2. The CLDN11, CLDN6, CLDN9, VTN, and F2 with cell migration activity. 

Symbol Conclusion 
Experiment 

model 
PMID 

CLDN6 
Higher CLDN6 expression promotes the cell proliferation and 

migration ability of gastric cancer. Increased expression of CLDN6 
predicts poor prognosis in gastric cancer patients. 

MKN28, AGS, 
MKN7, NUGC-3, 

xenograft 
subcutaneous 
tumor model 

31827075, 
20874001, 
27914788, 
31654186 

CLDN9 

CLDN9 overexpression in gastric adenocarcinoma cells has been 
reported to increase cell migration and proliferation. The expression of 
CLDN9 in gastric cancer correlates to poor prognosis. Higher CLDN9 
expression promotes invasiveness of several solid tumors in vitro and 

metastasis in vivo. 

AGS, HL7702, a 
spontaneous 

metastasis model 

20874001, 
29031421, 
31418417, 
26669782 

CLDN11 

Silencing of CLDN11 is associated with increased invasiveness, 
proliferation, and migration of gastric cancer cells. DNA 

hypermethylation is associated with the downregulation of CLDN11 in 
gastric cancer cells. 

MKN28, 
MKN74, AGS, 

HFE145 

32119960, 
28962204, 
19956721 

F2 
F2 is generated in the TME, promoting the migration and metastasis of 

tumor cells. 

B16, HT29-D4, 
SUM149, MC38 

cells 

30654498, 
15539922, 
12707033, 
23280128 

VTN 

Decreased expression of VTN promotes gastric cancer cell growth and 
metastasis. VTN is related to the migration and invasion of other solid 

tumors, such as ovarian adenocarcinoma, fibrosarcoma and 
nasopharyngeal carcinoma. 

AGS, IGROV1, 
HT-1080,5-8F, 
HNE2, HONE1 

cells 

25789040, 
9935212, 
16052409, 
29123267 
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Supplementary Table 3. Clinical characteristics in TCGA-training, TCGA-validation, and CGC cohorts.a 

Characteristic 
TCGA- training TCGA-validation CGC 

(N=160) (N=155) (N=109) 

Age, years 
 

  Mean (SD) 64.3 (10.8) 66.2 (9.9) 57.9 (13.0) 

Median (Q1 – Q3) 66 (57-72) 68 (58-73) 58 (51-67) 

Min – Max 30-84 43-90 25-83 

Gender - no. (%) 
 

  Male 107 (66.9%) 96 (61.9%) 77 (70.6%) 

Female 53 (33.1%) 59 (38.1%) 32 (29.4%) 

AJCC Stage - no. (%) 
 

  II 65 (40.6%) 65 (41.9%) 43 (39.4%) 

III 95 (59.4%) 90 (58.1%) 66 (60.6%) 

Lauren classification - no. (%) 
 

  Diffuse 27 (16.9%) 30 (19.4%) 61 (56.0%) 

Intestinal 72 (45.0%) 64 (41.3%) 48 (44.0%) 

Unknown 61 (38.1%) 61 (39.3%) — 

Tumor location - no. (%) 
 

  Gastroesophageal junction 33 (21.0%) 31 (20.0%) 34 (31.2%) 

Non-gastroesophageal junction 123 (76.9%) 121 (78.1%) 75 (68.8%) 

Unknown 4 (3.0%) 3 (2.0%) — 

Adjuvant chemotherapy - no. (%) 
 

  Yes 81 (50.6%) 70 (45.2%) 98 (90.0%) 

No — — 8 (7.3%) 

Unknown 79 (49.4%) 85 (54.8%) 3 (2.7%) 

aBecause of rounding, percentages may not total 100. 
 


