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ABSTRACT 
 

Aims: We have previously reported that nano-selenium quantum dots (SeQDs) prevented endothelial 
dysfunction in atherosclerosis. This study is to investigate whether amorphous SeQDs (A-SeQDs) increase 
endogenous tetrahydrobiopterin biosynthesis to alleviate pulmonary arterial hypertension.  
Results: Both A-SeQDs and C-SeQDs were stable under physiological conditions, while the size of A-SeQDs was 
smaller than C-SeQDs by high resolution-transmission electron microscopy scanning. In monocrotaline-injected 
mice, oral administration of A-SeQDs was more effective to decrease pulmonary arterial pressure, compared to 
C-SeQDs and organic selenium. Further, A-SeQDs increased both nitric oxide productions and intracellular BH4 
levels, upregulated dihydrofolate reductase activity in lungs, and improved pulmonary arterial remodeling. 
Gene deletion of dihydrofolate reductase abolished these effects produced by A-SeQDs in mice. Finally, the 
blood levels of tetrahydrobiopterin and selenium were decreased in patients with pulmonary arterial 
hypertension.  
Conclusion: A-SeQDs increase intracellular tetrahydrobiopterin to prevent pulmonary arterial hypertension 
through recoupling endothelial nitric oxide synthase. 
Methods: Two polymorphs of SeQDs and A-SeQDs, and a crystalline form of SeQDs (C-SeQDs) were prepared 
through self-redox decomposition of selenosulfate precursor. Mice were injected with monocrotaline to induce 
pulmonary arterial hypertension in vivo. Pulmonary arterial pressure was measured.  
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INTRODUCTION 
 

Pulmonary arterial hypertension (PAH) is a serious 

disease which is highlighted by pulmonary 

hypervasoconstriction [1]. Despite the high mortality, 

no efficient treatments have been established. The 

endothelial nitric oxide (NO) synthase (eNOS) plays a 

critical role in maintaining normal pulmonary vascular 

tension. Uncoupled eNOS is able to imbalance NO and 

reactive oxygen species (ROS) productions in the 

pulmonary artery, resulting in the pathogenesis of PAH. 

 

Tetrahydrobiopterin (BH4) is required for eNOS 

coupling to produce NO or ROS [2]. Mice deficient in 

the rate-limiting enzyme of BH4 biosynthesis, such as 

GTP cyclohydrolase 1 and dihydrofolate reductase 

(DHFR), develop the phenotype of PAH under normal 

conditions [3–5]. It has been reported that BH4 

supplementation therapy by L-sepiapterin recouples 

eNOS and ameliorates hypoxia-induced PAH in 

newborn pigs [6]. However, it is not suitable for 

chronic oral administration because BH4 is highly 

oxidized. A pharmacological approach that can 

effectively elevate intracellular BH4 level is currently 

lacking. 

 

Selenium is a vital component of the selenium-

dependent proteins that have several biological 

functions in human health [7]. Although it is very 

important for human health, selenium is not utilized  

as a free element in the human body. Selenium is 

relatively rare in nature, and so, it is very unevenly 

distributed in each organ of the body. Selenium is rich 

in the livers and kidneys, while it is very poor in the 

lungs [8]. Low level of serum selenium might cause 

lung cancer and affect the development of neonatal  

rat lungs [9, 10]. 

 

Nanomaterials have been widely used in nano-imaging, 

therapeutics, etc. Nano-selenium quantum dots 

(SeQDs) are expected to be a new therapeutic drug 

because of the unique and chemical physical properties 

[11, 12]. Though AK. Zamani Moghaddam et al 

improved the approach of selenium supplementation  

by nano-selenium to treat Broiler Chickens with  

PAH, the effects were minor and only to reverse  

right ventricle hypertrophy [13]. In this study, we  

made amorphous SeQDs (A-SeQDs) and crystalline 

SeQDs (C-SeQDs), and observed that A-SeQDs 

displayed more excellent effects on monocrotaline-

induced PAH than C-SeQDs or organic selenium. 

Mechanically, A-SeQDs, rather than C-SeQDs and 

organic selenium, were able to distribute into lung to 

activate DHFR. In pulmonary arterial endothelial cells, 

A-SeQDs increased DHFR-dependent BH4 salvage 

pathway. 

RESULTS 
 

The morphology of A-SeQDs was different to C-

SeQDs 

 

We firstly generated two polymorphs of SeQDs through 

self-redox decomposition of selenosulfate precursor in 

the presence of BSA and measured the chemical 

compositions of two SeQDs by using X-ray 

photoelectron spectroscopy. As indicated in Figure 1A, 

the binding energy of either C-SeQDs or A-SeQDs was 

approximately 55 eV, suggesting both C-SeQDs and A-

SeQDs consist of selenium element but not compound. 

While, X-ray diffraction pattern analysis revealed that 

the sample of A-SeQDs prepared at 25° C for 12 hours 

had no obvious diffraction peaks, while the sample of 

C-SeQDs prepared at 80° C for 36 hours revealed 

multiple diffraction peaks (Supplementary Figure 1C). 

Further, by using the analysis of the selected-area 

electron diffraction pattern (Figure 1B), A-SeQDs 

revealed a diffused halo ring, rather than any detectable 

rings or spots, indicating the formation of the 

amorphous product. Reversely, C-SeQDs exhibits the 

obvious diffraction spots, confirming the formation of 

the crystalline product. These data suggest that the 

morphology of A-SeQDs was amorphous but not 

crystalline, though both A-SeQDs and C-SeQDs are 

selenium element. 

 

The size of A-SeQDs was smaller than C-SeQDs 

 

We next examined the sizes of A-SeQDs and C-SeQDs 

by using high resolution-transmission electron 

microscopy. As shown in Figure 1C, the size of A-

SeQDs was smaller than C-SeQDs (2.25±0.19 VS 

4.10±0.04 nm, P<0.05). By calculating the frequency of 

SeQDs sizes, the diameter of C-SeQDs was in normal 

distribution, but the diameter of A-SeQDs was in 

abnormal distribution (Figure 1D). 

 

Both A-SeQDs and C-SeQDs were stable in different 

solutions 

 

The stabilities of A-SeQDs and C-SeQDs in different 

vehicles, such as ddH2O, PBS, and DMEM, were 

examined by performing ξ-potential measurement 

(Supplementary Figure 2 and Supplementary Table 1), 

indicating that both A-SeQDs and C-SeQDs were stable 

in solutions. 

 

Administration of organ selenium supplementation 

or C-SeQDs partially prevented the formation of 

PAH in monocrotaline-injected mice 

 

We then generated the PAH model by injecting 

monocrotaline into mice to investigate the effects of organ 
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selenium, A-SeQDs or C-SeQDs on PAH (Supplementary 

Figure 3A). As indicated in Figure 2A and 2B, after 3 

weeks’ injection of monocrotaline, PAP was increased 

from 18.3±0.2 mmHg to 34.7±0.3 mmHg. RVSP was also 

increased from 27.2±0.3 mmHg to 65.2±0.5 mmHg, 

demonstrating the PAH model was successfully 

established in mice. Treatments with either organic 

selenium supplementation or C-SeQDs in monocrotaline-

injected mice partially reduced RVSP and PAP. Systemic 

mean blood pressure was not affected by monocrotaline 

injection, selenium supplementation or C-SeQDs 

administration (Figure 2C). 

 

A-SeQDs were more effective to prevent PAH than 

selenium supplementation and C-SeQDs in mice 

 

We thought A-SeQDs might be more effective to 

improve PAH since the diameters of A-SeQDs were 

much smaller than C-SeQDs. Therefore, we compared 

the effects of A-SeQDs to selenium supplementation

 

 
 

Figure 1. Basic morphological characterizations of A-SeQDs and C-SeQDs. (A) The compositions of A-SeQDs and C-SeQDs were 

determined by the analysis of X-ray photoelectron spectroscopy. (B) The halo rings in A-SeQDs and C-SeQDs were observed by using electron 
diffraction pattern in the selected-area. (C) The diameters of A-SeQDs and C-SeQDs were observed by high resolution-transmission electron 
microscope. (D) The diameter’s distributions of both A-SeQDs and C-SeQDs were shown. 

 

 
 

Figure 2. Administration of A-SeQDs is more effective to prevent monocrotaline-induced PAH than C-SeQDs and selenium 
supplementation in mice. The experimental protocol was shown in Supplementary Figure 3A. C57B16 mice were given selenium 

supplementation, C-SeQDs, A-SeQDs in regular diet one week prior to a single intraperitoneal injection of 100 mg/kg monocrotaline or 
vehicle. Three weeks after injection, mean pulmonary arterial pressure (PAP) in (A), right ventricle systolic pressure (RVSP) in (B), and mean 
blood pressure (mBP) in (C) were measured by radio telemetry. All data were expressed as mean ± SEM. 10-15 mice were in each group. 
*P<0.05 VS Vehicle alone, #P < 0.05 VS monocrotaline alone. &P<0.05 VS monocrotaline plus Selenium or C-SeQDs. A one-way ANOVA 
followed by Tukey post-hoc tests was used to produce the P values. 
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and C-SeQDs. As expected, A-SeQDs did not only 

reduce both PAP and RVSP in monocrotaline-injected 

mice, but it was much stronger than either selenium 

supplementation or C-SeQDs to improve PAH in mice 

with PAH (Figure 2A and 2B). 

 

A-SeQDs improved right ventricle hypertrophy in 

hearts isolated from monocrotaline-injected mice 

 

One of the PAH outcomes is right ventricle 

hypertrophy [14]. We next checked the right ventricle 

remodeling in monocrotaline-injected mice. As shown 

in Figure 3A–3C, three kinds of selenium therapy 

improved right ventricle remodeling by reducing 

RV/(LV+S) the thickness and collagen depositions in 

pulmonary arterial walls in monocrotaline-injected 

mice. However, the inhibitions of right ventricle 

hypertrophy induced by A-SeQDs were much more 

obvious than either organic selenium supplementation 

or C-SeQDs in mice with PAH. Collectively, these 

data suggest that A-SeQDs were more effective to 

prevent PAH than organic selenium and crystalline 

selenium. 

A-SeQDs increased the levels of selenium in lungs in 

mice 

 

In normal condition, selenium is rarely distributed in 

lung [10]. We next examined if three kinds of selenium 

therapy elevated selenium concentration in lung tissue. 

Interestingly, the selenium concentration in lungs 

isolated from mice treated with A-SeQDs was 

dramatically increased (Figure 3D). Organic selenium 

supplementation and C-SeQDs slightly increased 

selenium levels in lung tissue. Their effects were much 

weaker than A-SeQDs. This may explain why A-SeQDs 

produce much stronger effects on PAH than organic 

selenium and C-SeQDs. 

 

A-SeQDs increased NO production and eNOS 

activity, but decreased ROS levels in pulmonary 

arteries isolated from mice with PAH 

 

PAH in early stage is characterized by endothelial 

dysfunction due to eNOS uncoupling, in which eNOS 

produces ROS but not NO, leading to pulmonary 

arterial vasoconstriction [15]. Therefore, we examined 

 

 
 

Figure 3. Administration of A-SeQDs improves pulmonary arterial remodeling in monocrotaline-injected mice. The 

experimental protocol was shown in Supplementary Figure 3A. At the end of experiment, mice were sacrificed under anesthesia. (A) The 
hearts were isolated to measure the ratio of right ventricle (RV) to left ventricle (LV) plus septum (S) weights  [RV/(LV+S)]. (B and C) 
Pulmonary arteries were subjected to perform HE staining and sirius red staining in B. The thickness of pulmonary artery was calculated in C. 
All data were expressed as mean ± SEM. 10-15 mice were in each group. *P<0.05 VS Vehicle alone, #P<0.05 VS monocrotaline alone. &P<0.05 
VS monocrotaline plus Selenium or C-SeQDs. (D) The content of selenium in lung tissue was determined. *P<0.05 VS Vehicle or 
monocrotaline alone, #P<0.05 VS. monocrotaline plus Selenium or C-SeQDs. A one-way ANOVA followed by Tukey post-hoc tests was used to 
produce the P values. 
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the effects of A-SeQDs on eNOS uncoupling by 

measuring NO production, ROS generation, and eNOS 

activity in pulmonary arterial walls. As represented in 

Figure 4A–4C, injection of monocrotaline decreased 

eNOS activity and NO production, but increased ROS 

generation in pulmonary artery. As a sequence, these 

detrimental effects induced by monocrotaline were 

bypassed by A-SeQDs. 

 

A-SeQDs increased BH4 salvage pathway in 

monocrotaline-injected mice 

 

BH4 is a critical factor for determining eNOS to 

produce NO or ROS in endothelial cells [16]. 

Intracellular BH4 levels may be influenced by 

oxidation, forming BH2. DHFR can regenerate BH4 

from BH2 via salvage pathway. As indicated in Figure 

5A and 5B, both BH4 concentration and DHFR activity 

were increased by A-SeQDs in monocrotaline-injected 

mice. Reversely, BH2 concentration was decreased in 

monocrotaline-injected mice if treated with A-SeQDs 

(Figure 5C). However, DHFR protein levels were not 

affected by organic selenium, C-SeQDs or A-SeQDs 

(Supplementary Figure 3B). These data indicate that A-

SeQDs prevent PAH, which is possibly associated with 

activation of BH4 salvage pathway. 

 

A-SeQDs-induced alleviation of PAH is DHFR 

dependent in mice 

 

To determine the role of DHFR in the improvement of 

PAH induced by A-SeQDs, we compared the effects of

 

 
 

Figure 4. A-SeQDs recouple eNOS in pulmonary arteries of monocrotaline-injected mice. The experimental protocol was shown in 
Supplementary Figure A. At the end of experiment, mice were sacrificed under anesthesia. Pulmonary artery isolated from mice were 
subjected to measure NO productions in (A), ROS productions in (B), and eNOS activity in (C). All data were expressed as mean ± SEM. 10-15 
mice were in each group. *P<0.05 VS Vehicle alone, #P < 0.05 VS monocrotaline alone. A one-way ANOVA followed by Tukey post-hoc tests 
was used to produce the P values. 

 

 
 

Figure 5. Administration of A-SeQDs activates BH4 salvage pathway in pulmonary arteries of monocrotaline-injected mice. 
The experimental protocol was shown in Supplementary Figure 3A. At the end of experiment, mice were sacrificed under anesthesia. 
Pulmonary artery isolated from mice were subjected to measure BH4 in (A), DHFR activity in (B), and BH2 in (C). All data were expressed as 
mean ± SEM. 10-15 mice were in each group. *P<0.05 VS Vehicle alone, #P < 0.05 VS monocrotaline alone. A one-way ANOVA followed by 
Tukey post-hoc tests was used to produce the P values. 
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A-SeQDs on PAH in WT and DHFR-/- mice 

(Supplementary Figure 3C). As shown in Figure 6A–

6D, though A-SeQDs prevented the formation of PAH 

in WT mice injected with monocrotaline, it did not 

reduce RVSP, RV/(LV+S), the thickness and collagen 

depositions in pulmonary arterial walls in DHFR-/- mice, 

suggesting that these beneficial effects of A-SeQDs on 

PAH depend on DHFR. 

 

Gene deletion of DHFR abolishes the effects of A-

SeQDs on BH4 salvage synthesis and eNOS 

recoupling in mice 

 

Since we have identified the crucial role of DHFR in A-

SeQDs-suppressed PAH formation, we next determined 

whether DHFR mediates the effects of A-SeQDs on 

BH4 salvage pathway and eNOS recoupling. As 

illustrated in Figure 7A–7D, A-SeQDs increased BH4 

content and NO production, and decreased BH2 level 

and ROS generation in pulmonary arterial walls isolated 

from monocrotaline-injected WT mice, but not reversed 

these abnormalities in monocrotaline-injected DHFR-/- 

mice. These data indicate that A-SeQDs-induced eNOS 

recoupling is mediated by DHFR-dependent activation 

of BH4 salvage pathway. 

Reduced levels of BH4, selenium, and DHFR activity 

in human subjects with PAH 

 

In order to establish the clinical association between 

selenium and PAH in human subjects, we determined 

the level of serum selenium in patients with PAH. We 

conducted a pilot experiment by collecting samples of 

blood from human subjects with or without PAH. The 

demographic data of human subjects were presented in 

Supplementary Table 2. As shown in Supplementary 

Figure 4A and 4B, the levels of BH4 and DHFR activity 

were significantly reduced in human subjects with PAH, 

compared to healthy humans. Importantly, serum 

selenium levels were also decreased in human subjects 

with PAH (Supplementary Figure 4C). Although the 

pilot experiment was unable to establish the cause-

effect relation between selenium and PAH in clinical 

investigations, it still implies the importance of 

selenium supplementation through amorphous 

nanoparticles in human PAH patients. 

 

DISCUSSION 
 

In this study, we reported that A-SeQDs rather than  

C-SeQDs are able to distribute to lung, resulting in 

 

 
 

Figure 6. A-SeQDs-induced alleviation of PAH is DHFR dependent in monocrotaline-injected mice. The experimental protocol 
was shown in Supplementary Figure 3A. Wildtype (WT) and DHFR-/- mice were given A-SeQDs administration in regular diet one week prior to 
a single intraperitoneal injection of 100 mg/kg monocrotaline. Three weeks after injection, right ventricle systolic pressure (RVSP) in (A) and 
the ratio of right ventricle (RV) to left ventricle (LV) plus septum (S) weights [RV/(LV+S)] in (B) were measured. Pulmonary arteries isolated 
from mice were subjected to perform HE staining and sirius red staining in (C) and the thickness of pulmonary artery was calculated in (D). All 
data were expressed as mean ± SEM. 10-15 mice were in each group. *P<0.05 VS WT alone. A one-way ANOVA followed by Tukey post-hoc 
tests was used to produce the P values. 
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DHFR-dependent upregulation of BH4 salvage 

synthesis in pulmonary arterial endothelial cells. Gene 

knockout of DHFR abolished A-SeQDs-increased 

intracellular BH4 levels and eNOS recoupling in mice. 

The present project is the first to indicate that 

administration of selenium therapy prevents PAH 

through the activation of BH4 salvage pathway. 

 

A big discovery of the present study is that we firstly 

developed a novel approach to supply selenium through 

amorphous nanoparticles to prevent PAH. Though the 

therapy of selenium supplementation has been 

recognized can prevent multiple diseases if it is 

optimally absorbed in body. The selenium speciation is 

crucial to determine the effects of selenium 

supplementation [7]. The security dose of selenium in 

human body is very narrow, which limits the wide 

application of traditional selenium compounds. Thus, it 

is essential to develop an efficient and safe form of 

selenium. Further, selenium is hardly distributed into 

lung, causing the lack of effects by selenium therapy in 

lung. In this study, by generating selenium in the form of 

amorphous nano quantum dots, selenium is able to 

distribute into lung to produce beneficial effects on 

PAH. Our studies are in line with an earlier report that 

selenium supplementation by nano-selenium lowers 

PAH in Broiler Chickens, but the effects were minor and 

only to reverse right ventricle hypertrophy [13]. Why A-

SeQDs, but not C-SeQDs and organic selenium, are able 

to penetrate lung tissue needs further observations. 

 

The other discovery is that selenium is an activator of 

DHFR to increase BH4 salvage pathway in endothelial 

cells. Selenium, an essential trace element, plays an 

important role in human health [17]. Many studies shows 

that organic selenium might inhibit atherosclerosis in 

animals, in which it is involved in lowering serum lipids, 

reducing oxidative stress, modulating inflammation, and 

protecting vascular cells [7, 18, 19]. In this study, 

supplementation of organic selenium or C-SeQDs 

partially reversed the formation of PAH, we thought their 

effects on PAH were due to these actions, in which these 

effects are produced in the whole body but not in lung 

because they did not increase selenium concentration in 

lung. While, A-SeQDs are able to distribute into lung to 

activate DHFR to increase BH4 salvage pathway in 

pulmonary arterial endothelial cells. In this way, A-

SeQDs recouple eNOS to lower PAP. 

 

An issue remained is how selenium activates DHFR 

activity in endothelial cells. Selenium is incorporated 

into selenoproteins to prevent some diseases [20]. 

Selenium, in the methylated form, is a good choice for 

selenium supplementation to correct a deficiency. In the 

present study, by using nanomaterials, we observed that 

A-SeQDs activated DHFR in monocrotaline-injected 

mice. We reasoned multiple pathways, such as Na+/H+ 

exchanger 1, AMP-activated protein kinase, Akt, and 

prostacyclin synthase in endothelial cell, may mediate 

this biological action of A-SeQDs on DHFR activation 

because these mediators are involved in endothelial 

dysfunction in cardiovascular diseases [21–25]. What 

selenium-dependent enzymes could be modulating the 

beneficial effects observed in this study. These 

possibilities warrant future investigation. 

 

The daily dose of intake is a critical issue for selenium 

therapeutics. There is no a standard of the official 

guideline for the use of selenium. The WHO has made 

recommendation on the dose of selenium for adults to

 

 
 

Figure 7. Gene deletion of DHFR abolishes the effects of A-SeQDs on BH4 salvage synthesis and eNOS recoupling in 
pulmonary arteries isolated from monocrotaline-injected mice. The experimental protocol was shown in Supplementary Figure 3A. 
Three weeks after monocrotaline injection, pulmonary artery isolated from mice were subject to measure BH4 in (A), BH2 in (B), NO 
productions in (C), and ROS productions in (D). All data were expressed as mean ± SEM. 10-15 mice were in each group. *P<0.05 VS WT 
alone. A one-way ANOVA followed by Tukey post-hoc tests was used to produce the P values. 
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be 30-40 μg/day and stated that daily intake up to 

400 μg selenium is safe [26]. Further, there are big 

differences of recommended dose of selenium among 

countries in consideration of differences in geographical 

and racial natures as well as in living styles of particular 

populations. The optimal doses of daily selenium 

supplementation are 31.5-200 μg in patients with 

metabolic diseases and 82.4-200 μg for patients with 

metabolic disorders [27]. The daily dose of A-SeQDs in 

patients will be investigated by us in future. 

 

In conclusions, this study supports that we have made a 

novel drug of A-SeQDs, which activate DHFR to 

increase BH4 salvage pathway in endothelial cells 

(Supplementary Figure 5). In this way, A-SeQDs 

delayed the progression of PAH in monocrotaline-

injected mice. The findings that A-SeQDs recouple 

eNOS may increase the applications because endothelial 

dysfunction is common at the initiation and in the 

progress in multiple cardiovascular diseases including 

atherosclerosis [28, 29], hypertension [16], vascular 

stiffness [30], and diabetic complications [31]. 

 

MATERIALS AND METHODS 
 

A full description of materials and methods used in this 

study can be found in the Supplementary Materials. 

 

Materials and animals 

 

Bovine serum albumin (BSA), Na2S2O3, diaminofluore- 

scein (DAF), dihydroethidium (DHE), monocrotaline, 

eNOS activity assay kit, and dihydrofolate reductase 

(DHFR) activity kit were purchased from Sigma chemical 

Co, USA. Primary antibodies against DHFR and 

GAPDH, and secondary antibody were obtained from 

Santa Cruz Biotechnology. Selenium lentils were grown 

on naturally selenium-rich soil in Inter Monggol, China. 

Male C57B16 wildtype (WT) mice (20-25 g, 8-12 weeks 

old) were purchased from the Laboratory Animal  

Center in Henan province, China. DHFR gene deletion 

(DHFR–/–) mice were generated from Sai-Ye Gene 

Company (Guangzhou, China) as described previously 

[5]. The animal protocol was reviewed and approved by 

Henan Normal University, Institute of Animal Care and 

Use Committee, which conformed to the NIH Guide for 

the Care and Use of Laboratory Animals. 

 

Patients and sample processing 

 

Eleven patients with PAH and twelve healthy persons 

were recruited into this study. PAH was diagnosed as 

the systolic PAP is over 35 mmHg. Blood was collected 

from human subjects. The procedures must be in 

accordance with the ethical standards of the responsible 

committee on human experimentation or with the 

Helsinki Declaration of 1975. The study protocol was 

approved by the Ethical Committee of Xinxiang 

Medical University, and informed written consent was 

given prior to the inclusion of subjects in the study. 

 

Preparations of A-SeQDs and C-SeQDs 

 

As described previously [32], BSA was added into the 

reaction system (pH=6.0) after selenium powder was 

added into aqueous solution of sodium sulfite 

(Supplementary Figure 1A). For A-SeQDs, the reaction 

system was incubated at 25° C for 12 hrs. For C-SeQDs, 

the reaction was performed at 80° C for 36 hrs. After 

reaction, the dispersion was centrifuged, washed by 

ddH2O, and freeze-dried (Supplementary Figure 1B). 

 

Establishment of PAH model and measurement of 

pulmonary arterial pressure (PAP) 

 

General anesthesia was maintained by sevoflurane 

inhalation (1.0-2.0%, with 100% oxygen). Body 

temperature was maintained by an electric heating table. 

Under anesthesia, mice were induced to PAH through a 

subcutaneous injection in a single dose of 

monocrotaline (100 mg/kg) as described previously 

[33]. PAP was monitored by implanting a radio 

telemetry (Dataquest A.R.T. 3.1; Data Sciences). Right 

ventricle systolic pressures (RVSP) were measured by a 

fluid-filled sensing catheter inserted into right ventricle 

(RV) through the jugular vein and connected to the 

transmitter (model TA11PA-40). The ratio of RV to left 

ventricle (LV) plus septum (S) weights  [RV/(LV+S)] 

were calculated. The animals were kept in separate 

cages, and subcutaneous injection of antibiotics (Baytril 

5%, 10–20 mg/kg) and analgesics (buprenorphine, 0.1 

mL/kg) were administered after measurement. 

 

Measurement of biopterins by high performance 

liquid chromatography (HPLC) 

 

The levels of biopterins, including BH4 and BH2, were 

determined as previously described with some 

modifications [34]. Quantifications of BH4 and BH2 

were done by comparison with authentic external 

standards and normalized to sample protein content. 

 

DHFR activity measured by HPLC 

 

To determine DHFR activity in tissues, we adapted  

a highly sensitive HPLC method as described 

previously [35]. 

 

Western blotting 

 

As described previously [36], lung tissues or cell lysates 

were homogenized on ice in cell-lysis buffer. Total 
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proteins of 20 µg were loaded to SDS-PAGE and then 

transferred to membrane. Membrane was incubated with 

a 1:1000 dilution of primary antibody, followed by a 

1:2000 dilution of horseradish peroxidase-conjugated 

secondary antibody. Protein bands were visualized by 

enhanced chemiluminescence (GE Healthcare). 

 

Detections of NO and ROS 

 

As described previously [37], NO was detected using 

the fluorescent probe DAF, and ROS was detected 

using the fluorescent probe DHE. 

 

Measurement of eNOS activity 

 

The activity of eNOS was monitored by L- [3H]-

citrulline production from L- [3H]-arginine as described 

previously [38]. 

 

Determination of selenium concentration 

 

Samples were immediately prepared and stored at  

-80° C until analysis. Selenium concentrations were 

determined by a Spectra AA 220Z (Varian) with 

carbon-furnace atomic-absorption spectrometry and 

Zeeman compensation [39]. The sensitivity of this 

method, defined as the quantity giving an absorbance 

of 1%, was 1 µg/l of selenium. Using a dilution  

of 1:11, therefore the sensitivity was 11 µg/l for 

measurement. 

 

Statistical analysis 

 

Data were reported as the mean ± S.E.M. Multiple 

comparisons over two groups were performed using a 

one-way ANOVA followed by Tukey post-hoc tests. 

Two-sided P-values < 0.05 were considered significant. 
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SUPPLEMENTARY MATERIALS 

 

 
Supplementary Materials and Methods 
 

Preparation of SeQDs 

 

As we described previously [1, 2], selenium powder 

was added into aqueous solution of sodium sulfite (50 

mM) at 95° C. Then bovine serum albumin (70 mg) was 

added into the reaction system and the pH value  

was adjusted to 6.0. The reaction system instantly 

changed to red color (Supplementary Figure 1A). 

Subsequently, the reaction system was incubated at 20° 

C for 12 h. Finally, the dispersion was centrifuged, 

washed, and freeze-dried (Supplementary Figure 1B). 

The procedures of C-SeQDs preparations were similar 

to A-SeQDs, except that the reaction system was 

incubated at 80° C for 24 h. The size and morphology of 

two SeQDs were characterized by HR-TEM (JEOL 

JEM-2100) with the acceleration voltage of 200 KV. 

The crystal phases were determined by XRD using a 

D8ADVANCE X-ray diffractometer (Bruker axs Com.) 

with graphite monochromatized Cu Kα radiation  

(λ = 0.15406 nm) in the 2θ range of 20-80°. EDX 

spectrum was recorded on a GENESIS system (EDAX 

Inc.) attached to the JEM-2100 microscope. The 

photoluminescence (PL) measurements were carried out 

on a HITACHI FP-6500 spectrophotometer. ζ potential 

was measured on a Nano-ZS instrument in triplicate in 

H2O, PBS, or DMEM. 

 

Materials and animals 

 

Bovine serum albumin (BSA), Na2S2O3, 

diaminofluorescein (DAF), dihydroethidium (DHE), 

monocrotaline, eNOS activity assay kit, and 

dihydrofolate reductase (DHFR) activity kit were 

purchased from Sigma chemical Co, USA. Primary 

antibody against DHFR and GAPDH, and secondary 

antibody were obtained from Santa Cruz Biotechnology. 

Selenium lentils were grown on naturally selenium-rich 

soil in Inter Monggol, China. C57B16 wildtype (WT) 

mice (20-25 g) were purchased from the Laboratory 

Animal Center in Henan province, China. DHFR gene 

deletion (DHFR–/–) mice were generated from Ji-Kai 

Gene Company (Guangzhou, China) as described 

previously [3]. They were housed in a temperature-

controlled environment (21±1° C) and humidity (40-

60%) with a 12 h light/dark cycle, and were provided free 

access to tap water. This animal study was carried out in 

strictly accordance with the recommendations in the 
Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health. The animal protocol was 

reviewed and approved by Henan Normal University, 

Institute of Animal Care and Use Committee. 

Establishment of PAH model 

 

General anesthesia was maintained by sevoflurane 

inhalation (1.0-2.0%, with 100% oxygen). Body 

temperature was maintained by an electric heating table. 

Under anaesthesia, mice were induced to PAH through a 

subcutaneous injection in a single dose of monocrotaline 

(100 mg/kg) based on the previous study [4]. Pulmonary 

arterial pressure (PAP) was monitored by implanting a 

radio telemetry (Dataquest A.R.T. 3.1; Data Sciences). 

RV pressures were measured by a fluid-filled sensing 

catheter inserted into the RV through the jugular vein and 

connected to the transmitter (model TA11PA-40), which 

sends the signal to a remote receiver (model RPC-1) and 

data exchanger connected to a computer. The pressure 

wave form was monitored online at 30-minute intervals. 

The animals were kept in separate cages, and 

subcutaneous injection of antibiotics (Baytril 5%, 10–20 

mg/kg) and analgesics (buprenorphine, 0.1 mL/kg) were 

administered after surgery. 

 

Protocols of animal studies 

 

As described in Supplementary Figure 3A, mice 

(C57B16 and DHFR–/–) were randomly classified into 

each groups. Mice were pretreated with organic 

selenium, A-SeQDs, and C-SeQDs for 4 weeks. The 

dose of selenium element was 30 mg/kg/day in organic 

selenium, A-SeQDs, and C-SeQDs. The PAH model 

was induced by a single injection of monocrotaline for 3 

weeks. Regular diet containing selenium lentils were 

produced by Te-Luo-Fei Company (Nantong, China). 

Other than selenium content, ingredients of all diets 

were the same as in commercial rodent chow, ensuring 

that all other nutrients met or exceeded the requirements 

for standard rodent nutrition. 

 

Histological examination 

 

After experiments, animals were then killed and tissues 

were collected, snap frozen, and stored at −80° C for 

biochemical measurements. Hearts were dissected and 

weighed, and the ratio of right ventricle (RV) to left 

ventricle plus the septum mass was used as an index of 

right ventricular hypertrophy. The left lung and RV 

were fixed with 10% formalin in phosphate-buffered 

saline and processed for elastic Van Gieson and 

hematoxylin and eosin (HE) staining. Vessels less than 

100 μm in peripheral lung were counted blindly under 

microscope, and pulmonary vascular remodeling was 

expressed as the proportion of vessels with double 

elastic lamina (>50%) to total vessels counted 

(percentage total muscularized vessels). Axio-Vision 
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software (Carl Zeiss) was used to quantifying RV 

cardiomyocyte cross section area and myocyte diameter 

from transversely cut cardiomyocytes using H&E 

sections. 

 

Measurement of Biopterins 

 

The levels of BH4 and total biopterins were determined 

as previously described with some modification [5–7]. 

Briefly, homogenates of aorta or cell lysates were 

suspended in distilled water containing 5 mM 

dithioerythrol, centrifuged at 12000g at 4° C for 10 min, 

and then subjected to oxidation in acid or base. To 100 

μl aliquot of supernatant, 20 μl of 0.5 M HCl and 0.05 

M iodine were added for acidic oxidation, and 20 μl of 

0.5 M NaOH plus 0.05 M iodine were added for basic 

oxidation. After incubation for 1h in the dark at room 

temperature, 20 μl HCl was added to the basic oxidation 

only. All mixtures received 20 μl 0.1 M ascorbic acid 

for the reduction of excess iodine. Samples were then 

centrifuged for 10 min at 12000g at 4° C. Biopterin 

concentrations were determined by HPLC with a PR-

C18 column. Elution was at a rate of 1.0 ml/min of 50 

mM potassium phosphate buffer, pH 3.0. Fluorescence 

was detected with an excitation at 350 nm and emission 

at 440 nm. Quantifications of BH4 and BH2 were done 

by comparison with authentic external standards and 

normalized to sample protein content. Total biopterin 

levels are expressed as the sum of detectable BH4 and 

BH2. 

 

Measurement of DHFR activity by HPLC 

 

To determine DHFR activity in tissues, we adapted a 

highly sensitive HPLC method as described previously 

[8]. Briefly, tissue homogenates were incubated with 

dihydrofolate (50 μM) for 20 min at 37° C, in a 0.1 M 

potassium phosphate assay buffer (pH 7.4) containing 

200 μM NADPH, 1 mM dithiothreitol (DTT), 0.5 mM 

KCl, 1 mM EDTA, and 20 mM sodium ascorbate. After 

30 min at 37° C, the reaction was terminated by the 

addition of 0.2 M trichloroacetic acid. A stabilization 

solution (200 mg of sodium ascorbate and 30 mg of 

DTT in 1 ml of water) was then added and samples 

were stored at −20° C until analysis. The accumulation 

of the reaction products, tetrahydrofolate (THF) and 

methyltetrahydrofolate (MeTHF), was then quantified 

by HPLC using fluorescence detection (295 nm for 

excitation and 365 nm for emission). Dihydrofolate 

(DHF) was detectable only at concentrations over 1000 

times more than those of both THF and MeTHF. 

 

Western blotting 

 

As described previously [9], aortic tissues were 

homogenized on ice in cell-lysis buffer (20 mM Tris-

HCl, pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM 

EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 

mM beta-glycerophosphate, 1 mM Na3VO4, 1 µg/ml 

leupeptin) and 1 mM PMSF. Cell was lysed with cell-

lysis buffer. The protein content was assayed by BCA 

protein assay reagent (Pierce, USA). 20 µg proteins 

were loaded to SDS-PAGE and then transferred to 

membrane. Membrane was incubated with a 1:1000 

dilution of primary antibody, followed by a 1:2000 

dilution of horseradish peroxidase- conjugated 

secondary antibody. Protein bands were visualized by 

ECL (GE Healthcare). The intensity (area X density) 

of the individual bands on Western blots was measured 

by densitometry (model GS-700, Imaging 

Densitometer; Bio-Rad). The background was 

subtracted from the calculated area. We used control 

as 100%. 

 

Detection of NO 

 

NO productions in tissues were detected using the 

fluorescent probe DAF as described previously [10]. 

Briefly, fresh tissue isolated from mice were incubated 

with 10 µM DAF for 30 min at 37° C immediately after 

isolation, then washing with PBS twice. The DAF 

fluorescent intensity was recorded by fluorescent reader 

at the wave of excitation (485 nm) and emission (545 

nm). Control was setup as 100%. 

 

Detection of ROS 

 

ROS productions in tissues were detected using the 

fluorescent probe DHE as described previously. [11] 

Briefly, fresh tissue isolated from mice were incubated 

with 10 µM DHE for 30 min at 37° C immediately after 

isolation, then washing with PBS twice. The DHE 

fluorescent intensity in cells was recorded by 

fluorescent reader at the wave of excitation (485 nm) 

and emission (645 nm). The DHE fluorescence intensity 

in homogenates of aorta was assayed by HPLC 

according to the method we used before. Control was 

setup as 100%. 

 

eNOS activity assay 

 

eNOS activity was monitored by L-[3H]-citrulline 

production from L-[3H]-arginine as described previously 

[12]. Briefly, protein samples were incubated in reaction 

buffer containing 1 mM L-arginine, 100 mM NADPH, 1 

mM tetrahydrobiopterin, 0.2 µCi of L-[3H]-arginine 

(>66 Ci/mmol), and Nω-hydroxy-nor-L-arginine (10 

µM). The reaction was performed at 37° C for 15 min 

and the mixture was separated by Dowex-50W ion-
exchange chromatography in 20 mM HEPES (pH 5.5), 

2 mM EDTA, and 2 mM EGTA, and the flow-through 

was used for liquid scintillation counting. 
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Patients and sample processing 

 

Eleven patients with PAH and twelve healthy persons 

were recruited into this study. The demographic data 

were presented in Supplementary Table 2. PAH was 

diagnosed as the systolic PAP is over 35 mmHg. Bloods 

were collected from human subjects to measure 

biopterins including BH4 and BH2, and DHFR activity 

in white blood cells. Serum NO level was also 

determined by Griess method. The procedures must be 

in accordance with the ethical standards of the 

responsible committee on human experimentation or 

with the Helsinki Declaration of 1975. The study 

protocol was approved by the Ethical Committee of 

Xinxiang Medical University, and informed consent 

was obtained from the human subjects. 

 

Statistical analysis 

 

Data are reported as the mean ± S.E.M. Multiple 

comparisons over two groups were performed using a 

one-way ANOVA followed by Tukey post-hoc tests or 

Bonferroni post-hoc analyses. Comparison between two 

groups was performed using student’s t test. Two-sided 

P-values < 0.05 were considered significant. 
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Supplementary Figures 
 

 

 

 

 

 
 

Supplementary Figure 1. The steps of SeQDs preparations. (A) The mixtures of Na2S2O3 and selenium were heated at 95° C 
for 6 hours to get Na2SeSO3. (B) Na2SeSO3 was treated with bovine serum albumin (BSA) under 25° C for 12 hours or under 80° C for 
36 hours at pH=6.0. Then the reaction mixture was centrifuged at 13500 rpm, followed by wash with ddH2O. Finally, let the mixture 
dry at room temperature. (C) The diffraction peaks of A-SeQDs and C-SeQDs were assayed by X-ray diffraction pattern. 

 

 
 

Supplementary Figure 2. The representative traces of ξ-potential in DMEM. The stabilities of A-SeQDs and C-SeQDs in 
DMEM were examined by performing ξ-potential measurement and the representative traces were shown. 
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Supplementary Figure 3. The protocols of animal experiments. (A) Mice were given treatments of selenium, C-SeQDs, A-

SeQDs in regular diet one week prior to a single intraperitoneal injection of 100 mg/kg monocrotaline or vehicle. Three weeks after 
injection, right ventricle systolic pressure (RVSP), mean pulmonary arterial pressure (PAP), systemic mean blood pressure, and the 
ratio of right ventricle (RV) to left ventricle (LV) plus septum (S) weights [RV/(LV+S)] were measured. (B) Pulmonary artery isolated 
from mice treated with selenium, C-SeQDs, and A-SeQDs were subjected to measure DHFR protein by Western blots. (C) Pulmonary 
artery isolated from WT and DHFR-/- mice were subjected to measure DHFR protein by Western blots. 10-15 mice were in each 
group. 

 

 
 

Supplementary Figure 4. Decreased BH4 and DHFR activity in human patients with PAH. The demographic data were 
presented in Supplementary Table 2. Bloods were collected from human patients and subjected to measure biopterins including 
BH4 and BH2 in (A), DHFR activity in (B) and serum NO levels in (C). All data were expressed as mean ± SEM. *P<0.05 VS Normal. A 
student’s t test was used to produce the P values. 
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Supplementary Figure 5. Proposed mechanisms of A-SeQDs treating PAH. Both C-SeQDs and A-SeQDs are able to be 

absorbed in body, while, A-SeQDs are distributed into lung. In pulmonary artery endothelial cells, A-SeQDs activate DHFR in 
increase BH4 salvage pathway to upregulate endogenous BH4 biosynthesis. BH4 recouples eNOS to produce NO but not ROS. NO 
induces the relaxation of vascular smooth muscle cell through cGMP-dependent signaling. In this way, A-SeQDs prevent endothelial 
dysfunction of pulmonary artery and alleviate PAH. 
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Supplementary Tables 
 

 

Supplementary Table 1. Zeta potential of C-SeQDs and A-SeQDs in different solutions. 

Solutions DMEM PBS ddH2O 

A-SeQDs -18.8mV -21.4mV -31.4mV 

C-SeQDs -19.3mV -20.2mV -30.3mV 

 

Supplementary Table 2. Demographic data for individuals with or without PAH. 

ID Gender Ages (years old) PAH 

1 Female 78 - 

2 Male 66 + 

3 Male 79 - 

4 Female 77 - 

5 Male 85 + 

6 Female 87 + 

7 Male 61 + 

8 Female 79 - 

9 Male 83 - 

10 Male 68 - 

11 Male 78 + 

12 Male 79 - 

13 Female 83 + 

14 Female 88 + 

15 Male 84 - 

16 Female 78 + 

17 Male 76 + 

18 Female 75 - 

19 Male 69 + 

20 Male 66 - 

21 Female 72 - 

22 Male 68 + 

23 Female 63 - 

 


