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INTRODUCTION 
 

Obesity, especially metabolically unhealthy obesity, has 

been reported to increase the level of glucose and lipids 

in circulation, resulting in various metabolic disorders, 

such as cardiovascular diseases, fatty liver and diabetes 

mellitus [1–4]. With aging populations, the prevalence 

of obesity has increased significantly worldwide over 

the past five decades [5–9]. Thus, obesity imposes 

enormous economic and heath burdens and has become 

a marked challenge for individuals and public health.  
 

Obesity is characterized by the excessive accumulation 

of adipose tissue and is associated with adipose 

oxidative stress [10, 11]. The expansion of adipose 

tissue is modulated via two distinct mechanisms [1]. On 

the one hand, adipocyte hyperplasia is characterized by 

the increase of number of adipocytes mediated by 

adipogenic differentiation. On the other hand, adipocyte 

hypertrophy is characterized by adipocyte enlargement  

[8]. To date, many studies have shown that adipogenic 

differentiation and subsequent adipocytes maturation play 

crucial roles in the etiology of obesity, as well as its 

metabolic complications [8, 12–15]. The expansion of 

white adipose tissues caused by excessive adipogenesis is 

found in mice and humans [16–18]. In addition, adipose 

tissue expansion either in mice induced by a high-fat  

diet or in leptin receptor-deficient db/db mice, was 

accompanied by increased adipogenic differentiation  

[19–21]. Mesenchymal stem cells (MSCs) are multipotent 

cells with the ability to differentiate into mature cells of 

several mesenchymal tissues, such as fat and bone  

[22, 23]. Previously, we identified several factors 

associated with the lineage commitment of MSCs that 

showed important impact on metabolic disorders during 

aging [6, 24–26]. During aging, age-related factors 

generally contribute to the accumulation of adipose tissue 
or metabolic dysfunction [6, 26–28]. However, the 

pathogenesis of obesity during aging mediated by MSCs-

associated adipogenesis remains unclear.  
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ABSTRACT 
 

Obesity is characterized by the expansion of adipose tissue which is partially modulated by adipogenesis. In the 
present study, we identified five differentially expressed genes by incorporating two adipogenesis-related 
datasets from the GEO database and their correlation with adipogenic markers. However, the role of scavenger 
receptor class A member 3 (SCARA3) in obesity-related disorders has been rarely reported. We found that 
Scara3 expression in old adipose tissue-derived mesenchymal stem cells (Ad-MSCs) was lower than it in young 
Ad-MSCs. Obese mice caused by deletion of the leptin receptor gene (db/db) or by a high-fat diet both showed 
reduced Scara3 expression in inguinal white adipose tissue. Moreover, hypermethylation of SCARA3 was 
observed in patients with type 2 diabetes and atherosclerosis. Data from the CTD database indicated that 
SCARA3 is a potential target for metabolic diseases. Mechanistically, JUN was predicted as a transcriptional 
factor of SCARA3 in different databases which is consistent with our further bioinformatics analysis. 
Collectively, our study suggested that SCARA3 is potentially associated with age-related metabolic dysfunction, 
which provided new insights into the pathogenesis and treatment of obesity as well as other obesity-associated 
metabolic complications. 
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In this study, we validated several potential genes (GHR 

(growth hormone receptor), GPX3 (glutathione 

peroxidase 3), SAA1 (serum amyloid A1), SCARA3 

(scavenger receptor class A member 3), and WFDC1 

(WAP four-disulfide core domain 1)) during adipogenesis 

through the selection of differentially expressed genes 

(DEGs) and weighted gene co-expression network 

analysis (WGCNA). Mechanistically, the downregulation 

of SCARA3 mediated by methylation is highly likely to 

promote adipogenesis by regulating JUN (Jun proto-

oncogene, AP-1 transcription factor subunit) involved 

transcription factors and peroxisome proliferator activated 

receptor (PPAR) signaling. Furthermore, SCARA3 was 

associated with metabolic dysfunction in both humans and 

animals in an age-dependent manner. Thus, the results of 

the present study suggested that SCARA3 is a potential 

new target for diagnosis and treatment of obesity, as well 

as other obesity-associated metabolic complications. 

 

RESULTS 
 

Identification of the key modules through WGCNA 

 

The workflow of the present study, comprising various 

bioinformatic data analyses and further validation in 

vivo is shown in Figure 1. To identify the key modules 

closely associated with adipogenesis, we firstly utilized 

WGCNA to analyze all genes from the adipogenesis-

related dataset (GEO100748), which comprised three 

different stages of adipogenesis in mesenchymal stem 

cells (MSCs), such as the undifferentiated stage, day 7 

of the differentiated stage and day 21 of the 

differentiated stage [29]. The sample correlation 

showed there was no obvious batch effect (Figure 2A, 

2B). This dataset has 37 samples, and we selected the 

soft-thresholding power as 14, according to the 

instructions of WGCNA (https://horvath.genetics.ucla. 

edu/html/CoexpressionNetwork/Rpackages/WGCNA/) 

(Figure 2C). Twenty-four modules were identified 

based on the average linkage hierarchical clustering and 

the soft-thresholding power (Figure 2D). The top four 

modules with most close association with adipogenic 

stages were grey 60, turquoise, green and red modules 

(Figure 2E). Thus, we selected these top four modules 

for further analysis. The four modules contain 276, 

1459, 853 and 835 genes, respectively (Supplementary 

Table 1–4). The grey 60 and turquoise modules were 

highly positively correlated with the stages of 

adipogenesis, while the modules of green and red are 

highly negatively correlated with the stages of 

 

 
 

Figure 1. Workflow of the present study.  

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
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Figure 2. Identification of key modules that correlate with adipogenesis in the GEO dataset through WGCNA. (A) Sample 
dendrogram and trait heatmap. (B) Sample correlations among three different stages. (C) Analysis of the scale-free fit index (left) and the 
mean connectivity (right) for various soft-thresholding powers based on a scale-free R2 (R2 = 0.686, power = 14). (D) Dendrogram of all genes 
clustered based on a dissimilarity measure (1-TOM). Each branch in the dendrogram represents one gene and each module color represents 
one co-expression module. (E) Heatmap of the correlation between epigengene module and traits of adipogenesis. Each group contains the 
correlation coefficient and P value. The digits in the brackets on the left side represent the number of genes in the corresponding epigengene 
module.  
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adipogenesis (Grey 60: r = -0.74, p = 4.2e-49; 

Turquoise: r = -0.9, p=1e-200; Green: r = 0.75, p = 

6.3e-155; Red: r = 0.99, p = 1e-200) (Figure 3A–3D). 

The enrichments for the genes in each module were 

evaluated through GO analysis (Figure 3E–3H).  

 

Identification of differentially expressed genes 

(DEGs) 

 

We selected two available adipogenic differentiation 

datasets from the Gene Expression Omnibus (GEO 

(GEO100748 and GSE80614) to identify DEGs  

[29, 30]. The data from GEO100748 showed 1905 

DEGs (Supplementary Table 5), and the data from 

GSE80614 showed 901 DEGs (Supplementary Table 

6) (Adjusted p-value ≤ 0.05, |logFC| ≥ 1). We kept 

retained 459 genes from GEO100748 and 225 genes 

from GSE80614 whose absolute logFC values were 

greater than 2 (Figure 4A–4D). The overlapping genes 

among the key modules analyzed by WGCNA, during 

adipogenic differentiation from undifferentiating stage 

to day 4 or day 21, which identified 12 shared DEGs 

(Figure 4E). KEGG analysis of 459 DEGs from 

GEO100748 or GSE80614 indicated that the DEGs 

are highly related to cell cycle or PPAR signaling 

(Figure 4F, 4G). CPA4 was removed because of its 

controversial expression in the two different datasets. 

The expression of the other 11 genes was 

demonstrated during the different stages of adipogenic 

differentiation. The results identified that five shared 

downregulated genes during adipogenesis including 

TK1, SCARA3, PRC1, CENPF and CDC20, as well as 

six shared upregulated genes SAA1, WFDC1, GPX3, 

GHR, DDIT4L and COMP (Figure 5A, 5B). 

 

 
 

Figure 3. Identification of functional annotation of the WGCNA module that correlated highly with adipogenesis. (A–D) 
Scatter plot of module Eigengenes in the grey 60 module (A), turquoise module (B), green module (C), and red module (D). (E–H) Biological 
process GO terms for genes in the grey 60 module (E), turquoise module (F), green module (G), and red module (H). P-value cutoff = 0.01; q-
value cutoff = 0.05. GO, Gene Ontology.  
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The selection of shared key genes during adipogenesis 

 

Based on the fact that PPARG, FABP4, LPL, and 
PPARA are crucial markers during adipogenesis [31, 

32], we observed the correlation between the retained 

eleven genes and these four adipogenic markers. We 

calculated their co-expression based on the adipose 

tissue data from GTEX and found that only five genes 

(GPX3, GHR, SAA1, SCARA3, and WFDC1) correlated 

significantly with these markers. Moreover, GPX3, 

 

 
 

Figure 4. Identification of shared genes during adipogenesis in two datasets. (A, B) Heatmap (A) and volcano plot (B) of the DEGs 
from GSE100748 (Adjusted p-value ≤ 0.05 and |logFC| ≥ 2). (C, D) Heatmap (C) and volcano plot (D) of the DEGs from GSE80614 (Adjust p-
value ≤ 0.05 and |logFC| ≥ 2). (E) Venn diagram for shared genes among DEGs and key modules of GSE100748 and DEGs of GSE80614. (F) 
KEGG analysis of DEGs from GSE100748. (G) KEGG analysis of DEGs from GSE80614.  
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GHR and SAA1 correlated positively with adipogenic 

differentiation, while SCARA3 and WFDC1 correlated 

negatively with adipogenic differentiation (Figure 6A–

6T). GPX3, GHR and SAA1 were removed from further 

study because they have been reported previously to be 

associated with obesity [33–35]. WFDC1 was filtered out 

because of the controversial result between its gradually 

increased expression during adipogenesis and its reverse 

correlation with adipogenic markers. The association of 

Scara3 with other four genes was showed in 

Supplementary Figure 1. During adipogenesis, although 

the deletion of Scara3 gene in AD-MSCs did not elevate 

the expression of Fabp4 compared to that in control 

group, it enhanced other adipogenic markers, such as 

Pparα, Pparγ, and Lpl (Figure 7A–7E). Together, these 

results verified the prediction that Scara3 inhibits 

adipogenesis. Thus, we focused on SCARA3 (included in 

turquoise model) for further analysis.  

The prediction of transcription factors of SCARA3 

 

To investigate the regulation of SCARA3, we 

constructed a Protein–protein interaction (PPI) network 

of adipogenic differentiation-associated DEGs 

(GSE100748) in the STRING database, and the top 10 

hub genes were calculated in Cytoscape (Figure 8A). 

The result showed that the hub genes are mostly related 

to the AP-1 complex and JUN was ranked top. The 

PROMO database identified 62 transcription factors for 

SCARA3 (Maximum matrix dissimilarity rate = 10%) 

(Supplementary Figure 2). The top five transcription 

factors for SCARA3 by QIAGEN company were AP-1, 

ATF-2, GATA-1, PPAR-α and PPAR-γ. AP-1 is 

a heterodimer composed of proteins belonging to the c-

FOS, c-Jun, ATF, and JDP families [36]. Thus, there 

were three shared transcription factors in PROMO 

database, including c-Jun, GATA-1, and PPAR-α 

 

 
 

Figure 5. Expression of 11 shared genes during adipogenesis. (A) Heatmap of the expression of 11 shared genes at different 
adipogenic stages including the undifferentiated stage, 1 hour, 2 hours, 3 hours, 5 hours, 6 hours, 12 hours, day 1, day 2, day 3, and day 4 
(GSE80614). (B) Heatmap of the expression of 11 shared genes at different adipogenic stages, including the undifferentiated stage, day 7, and 
day 21 (GSE100748). 
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(Figure 8B). Moreover, Gene Set Enrichment Analysis 

(GSEA) suggested that the signaling, “TNFA signaling 

via NFKB”, was inhibited during adipogenesis, and the 

key proteins identified in this signaling pathway also 

include various components of AP-1 (Figure 8C). We 

also found that SCARA3 correlated significantly and 

positively with JUN (Pearson r = 0.48, p value = 0.0) 

(Figure 8D). Negative correlations of JUN with PPARA 

 

 
 

Figure 6. Co-expression of four shared genes with adipogenic markers in adipose tissue. (A–D) Correlation of GHR with PPARA (A), 
PPARG (B), FABP4 (C), and LPL (D) expression in adipose tissue, based on data from the Genotype Tissue Expression (GTEx) databases, 
respectively. (E–H) Correlation of GPX3 with PPARA (E), PPARG (F), FABP4 (G), and LPL (H) expression in adipose tissue, based on data from 
the GTEx databases, respectively. (I–L) Correlation of SAA1 with PPARA (I), PPARG (J), FABP4 (K), and LPL (L) expression in adipose tissue, 
based on data from the GTEx databases, respectively. (M–P) Correlation of SCARA3 with PPARA (M), PPARG (N), FABP4 (O), and LPL (P) 
expression in adipose tissue, based on data from GTEx databases, respectively. (Q–T) Correlation of WFDC1 with PPARA (Q), PPARG (R), 
FABP4 (S), and LPL (T) expression in adipose tissue, based on data from the GTEx databases, respectively.  
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further supported its potential role in adipogenesis 

(Figure 8E). To further confirm the correlation between 

SCARA3 with other genes associated with the signaling 

regulation, we interfered the Scara3 gene in AD-MSCs 

(Figure 8F). Quantitative real-time reverse transcription 

PCR (qRT-PCR) results were in line with the predicted 

correlation. With the deficiency of Scara3, the 

expression of Jun and Ppara were both decreased 

(Figure 8G, 8H). 

 

The indications of SCARA3 for phenotypic traits 

 

It is well established that db/db mice and mice fed by a 

high-fat diet (HFD) presents obvious obesity [21, 31, 37–

39]. To determine the role of SCARA3 in vivo, we 

collected the inguinal white adipose tissue (iWAT) from 

db/db mice and mice fed a HFD or chow control. qRT-

PCR and Western-Blot indicated that the expression of 

Scara3 decreased considerably in the iWAT in db/db 

mice compared with that in the controls (Figure 9A–9C). 

The similar decrease was observed in mice fed by HFD 

(Figure 9D–9F). To investigate the role of adipose 

tissue-derived mesenchymal stem cells (Ad-MSCs) in 

obesity, we analyzed the expression of Scara3 in Ad-

MSCs from GSE115068. Compared with the expression 

of Scara3 in young Ad-MSCs, Scara3 expression was 

lower in old Ad-MSCs (Figure 9G). HFD stimulus 

contributed to the downregulation of Scara3 in young Ad-

MSCs (Figure 9H). A previous study reported increased 

methylation of SCARA3 in patients with type 2 diabetes 

mellitus [40]. Here, we also found that SCARA3 

methylation had some correlations with metabolic 

diseases, such as atherosclerotic lesions and type 2 

diabetes via a search on the DiseaseMeth version 2.0 

database (Figure 9I, 9J). Thus, we hypothesized that the 

decreased expression of SCARA3 during adipogenesis 

might be caused by its methylation. The Comparative 

Toxicogenomics Database (CTD; http://ctdbase.org/) 

provides information about interactions between 

environmental chemicals and gene products and their 

relationships to diseases (Figure 9K). We searched the top 

fifty relationships between SCARA3 with diseases. 

Intriguingly, the results implied that SCARA3 is associated 

with several metabolic disorders, such as weight loss, 

weight gain, glucose intolerance and insulin resistance 

(Figure 9K).  

 

DISCUSSION  
 

Obesity generally results in predisposition towards other 

metabolic diseases, which can all result in a decline of 

life quality and life expectancy [5, 41, 42]. Thus, 

researchers need to find some therapeutic targets to 

prevent the development of obesity. Based on the 

important effect of adipogenesis on obesity, we aimed 

to find the causes of obesity from the perspective of 

adipogenesis. Firstly, we identified the overlapping 

genes in two adipogenic differentiation-associated 

datasets by performing WGCNA and DEGs selection. 

We identified five DEGs: GHR, GPX3, SAA1, SCARA3, 

and WFDC1. Except for SCARA3, other the four genes 

have already been implicated in the regulation of the 

pathogenesis of obesity [33–35]. Through further 

functional analysis, we revealed more indications that 

SCARA3 is an important gene during adipogenesis. 

Combining data form several databases, we further 

confirmed the possible mechanism mediated by 

SCARA3 and potential therapeutic effect of SCARA3 for 

obese individuals.  

 
SCARA3 encodes a macrophage scavenger receptor-like 

protein. SCARA3 is ubiquitously expressed in human 

tissues, although it shows a relatively low expression in 

the liver and peripheral blood leukocytes [43]. Its 

ubiquitous expression was also revealed by the data 

from the GTEX database, which is a comprehensive 

public repository used to study tissue-specific gene 

expression and regulation. Cellular stress stimuli at low

 

 
 

Figure 7. The deficiency of Scara3 inhibits adipogenic differentiation in vitro. The Ad-MSCs were transfected with NC siRNA and 

Scara3 SiRNA followed by adipogenic differentiation. (A) qRT-PCR analysis of depletion of Scara3. (B–E) qRT-PCR analysis of the relative levels 
of Pparα (B), PPARγ (C), Fabp4 (D), and Lpl (E). Error bars show standard deviation. *P < 0.05, **P < 0.01. 

http://ctdbase.org/
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doses, such as UV radiation and hydrogen peroxide, 

both remarkably induced the expression of SCARA3 in 

human fibroblasts. However, excessive oxidative stress 

contributed to lower SCARA3 expression [43]. Thus, it 

has been reported to be a cellular stress response (CSR) 

gene with the role of protecting cells from oxidative 

stress by scavenging oxidative molecules or harmful 

products of oxidation [44, 45]. In addition, Yu et al. 

observed that SCARA3 might be a tumor suppressor-

related gene, because down-regulation of SCARA3 was 

found in prostate cancer tissues and it is involved in 

cancers metastases and progression [46]. Obesity and its 

related disorders, such as diabetes and atherosclerosis, 

are thought to be related to impaired oxidative defense 

[10, 47, 48]. A previous study indicated that elevated 

methylation of SCARA3 probably disturbed the 

oxidative stress protection in type 2 diabetes mellitus 

(T2DM) [40]. Consistent with these observations, our 

analysis showed that hypermethylation of SCARA3 was 

associated with metabolic disorders, including T2DM 

and atherosclerosis lesions. Considering obesity can 

result from the environmental stimulus except for 

inheritable factors, epigenetic alterations, such as 

methylation, are a considerable cause of obesity [49]. 

Furthermore, previous studies revealed that promoter 

methylation contributed to the down-regulation of 

SCARA3 in prostate cancer [46, 50]. Based on this 

evidence, we assumed that the downregulation of 

SCARA3 during adipogenesis probably resulted from its 

methylation. The deletion of Scara3 in Ad-MSCs 

caused the downregulated expression of adipogenic 

markers. Notably, we verified the lower expression of

 

 
 

Figure 8. Selection of the transcription factors of SCARA3. (A) PPI network of the DEGs from GSE100748. (B) Venn diagram for shared 

genes through the PROMO (a) and GENECARD (b) databases. (C) GSEA analysis of the DEGs from GSE100748. (D) Correlation of SCARA3 with 
JUN in expression in adipose tissue, based on data from GTEx databases. (E) Correlation of JUN with PPARA expression in adipose tissue, 
based on data from GTEx databases. (F) qRT-PCR analysis of depletion of Scara3. (G–H) qRT-PCR analysis of the relative levels of Pparα (G) 
and Jun (H). Error bars show standard deviation. **P < 0.01, ***P < 0.001. 
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Figure 9. Phenotypical traits of SCARA3. (A) mRNA expression of Scara3 in iWAT of db/db mice. 8 mice were included in each group. (B, 

C) Protein expression of Scara3 in iWAT of db/db mice. 8 mice were included in in each group. (D) mRNA expression of Scara3 in iWAT of mice 
fed by HFD. 9 mice were included in each group. (E, F) Protein expression of Scara3 in iWAT of mice fed by HFD. 8 mice were included in each 
group. (G) Expression of Scara3 in white adipose tissue-derived mesenchymal stem cells (Ad-MSCs) of young and old mice. Each group has 2 
mice, respectively. Data were obtained from GEO database (GSE115068). (H) Expression of Scara3 in Ad-MSCs of young mice fed a HFD. Each 
group has 2 mice, respectively. Data were obtained from GEO database (GSE115068). (I, J) Methylation of SCARA3 in metabolic disorders, 
including atherosclerotic lesions (I) and type 2 diabetes (J). (K) Relationship of weight-associated diseases with SCARA3 via a curated chemical 
interaction, based on the CTD database.  
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Scara3 in db/db mice and in HFD-fed mice compared 

with that in the control groups. Consistently, 

downregulated expression of Scara3 was tested in Ad-

MSCs isolated from young mice fed a HFD. Lower 

Scara3 expression was observed in young mice than in 

old mice. In addition, the data from the CTD database 

showed that SCARA3 is associated with several 

metabolic disorders, such as weight loss, weight gain, 

glucose intolerance and insulin resistance. Taken 

together, these results revealed the potentially important 

roles of SCARA3 in metabolic disorders.  

 

Previous studies showed that scavenger receptor A gene 

regulatory elements targeted gene expression to 

macrophages and foam cells of atherosclerotic lesions [51, 

52]. Furthermore, Horvai et al. demonstrated that 

scavenger receptor A gene regulatory elements contain 

binding sites for PU.1 and AP-1 in bone marrow 

progenitor cells [52]. In the present study, we predicted 

the transcription factors for SCARA3 using different 

databases and found the activator protein 1 (AP-1) was 

shared in the different databases. AP-1 is 

a heterodimer composed of proteins belonging to the c-

FOS, c-Jun, ATF, and JDP families, which is involved in 

various cellular processes, such as cell differentiation, 

proliferation and apoptosis [36, 53]. PPAR signaling and 

nuclear factor κB (NF-κB) pathway were both reported to 

be related to obesity [42, 54–56]. The filtered DEGs 

expressed during adipogenesis enriched in “TNFA 

signaling via NFKB” by GSEA, and several genes at the 

leading edge (FOS, JUN, JUNB and ATF3) mostly 

belonged to the AP-1 heterodimer. Moreover, the hub 

genes selected from the PPI network, such as JUN, FOS 

and ATF3, also suggested that the AP-1 heterodimer plays 

a major role in adipogenesis. C-Jun levels were observed 

to be decreased during adipogenic differentiation in 

MC3T3 cells and inhibited adipogenic differentiation  

[57, 58]. Based on this evidence, we supposed that 

SCARA3 could bind to c-Jun and AP-1, thereby 

controlling adipogenic differentiation.  

 

Collectively, we hypothesized that SCARA3 contributes 

to obesity and obesity-related metabolic complications in 

an age-dependent manner. Specifically, SCARA3 

downregulation was possibly a consequence of its 

methylation. Mechanistically, the dysfunction of 

adipogenic differentiation might be associated with 

impaired modulation between SCARA3 and JUN. Further 

studies will be worthy of being performed to validate the 

role of SCARA3, such as the phenotypical observation of 

Scara3 knock-out mice and the methylation of SCARA3 

promoter in mice with obesity. Other function studies, 

such as Chromatin Immunoprecipitation (ChIP)-PCR and 
luciferase reporter assay, can further verify SCARA3 gene 

regulates transcriptional factor JUN and PPAR signaling. 

Together, the present study combining bioinformatic 

analysis with the several biochemical functional analyses 

in vitro and in vivo, provided strong supports for the 

hypothesis that SCARA3 is a potential target for the 

treatment of obesity and other metabolic disorders.  

 

MATERIALS AND METHOD  
 

Identification of key genes using WGCNA method 

 

The R package “WGCNA” was used to find the key 

modules and genes related to adipogenesis [59]. Firstly, 

we input the raw expression of matrix from GSE100748 

and transformed it into the log2 format. Then, we tested 

the missing values and removed the data with low quality. 

After the genes with zero variance were filtered out, we 

generated the sampleTree to check the outliers. Secondly, 

we normalized the data through quantile normalization 

and generated a heatmap of sample correlations. Thirdly, 

we constructed the network and detected the modules 

using an automatic, one-step method. The adjacency 

matrix was transformed into topological overlap matrix 

(TOM). According to the TOM-based dissimilarity 

measure, we set the soft-thresholding power as 14 (scale 

free R2 = 0.686), the minimal module size as 30, and cut 

height as 0.25 to identify key modules. Although the scale 

free R2 did not reach 0.8 when the power was 14, we 

considered this was because of the obvious biological 

difference between different stages of adipogenesis. 

Based on the number of samples (37 samples in total), we 

finally set the power as 14. Finally, we calculated the 

correlation between modules and traits during 

adipogenesis. Further data analysis based on the top four 

modules (grey 60, turquoise, green and red modules) 

during adipogenesis was performed.  

 

Identification of DEGs 

 

The series matrix files of GSE100748 and GSE80614 

from GEO were downloaded. The data at different 

adipogenic stages from GSE100748 including the 

undifferentiated stage, day 7 and day 21 were retained. 

The data at different adipogenic stages from GSE80614 

including the undifferentiated stage, and hour 1-6, hour 

12 and day 1-4 were retained. To filter the DEGs, we 

only analyzed the expression at the undifferentiated 

stage and day 4. Firstly, we input the selected raw 

expression data of the matrix and transform it into the 

log2 format if needed. Secondly, we normalized data 

through quantile normalization. The R package “limma” 

[60] was applied to normalize the data and identify 

DEGs. The DEGs was retained if they had an adjust p-

value ≤ 0.05 and |logFC| ≥ 1. Further data analysis we 

used the DEGs with an adjust p-value ≤ 0.05 and 

|logFC| ≥ 2 except for the GSEA analysis. Then, we 

exported the heatmap and volcano plot of DEGs with 

adjusted p-value ≤ 0.05 and |logFC| ≥ 2.  
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Functional enrichment analyses 

 

Gene Ontology (GO) analyses and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway analyses were 

carried out using the R package “Clusterprofiler” [61]. 

We used DEGs (adjusted p-value <= 0.05 and |logFC| ≥ 

2) from GSE80614, and transformed them into the 

format of ENTREZ ID. Then we use the R package 

“Clusterprofiler” to evaluate the enriched signaling (P 

value Cutoff = 0.05, Show Category = 5). 

R/Bioconductor package “Pi” was used to perform 

xPierGSEA analysis to find the pathways most 

associated with the hub genes. Here, the DEGs with 

|logFC| ≤ 1 were selected as our targeted gene set. The 

range size was set from 20 to 5000. 

 

Construction of protein–protein interaction (PPI) 

networks of DEGs 

 

STRING (http://string-db.org/) is a database of known 

and predicted protein-protein interactions. It was 

applied to predict the interacting genes among the 

DGEs using the default settings. The associated file of 

the network was imported into the Cytoscape software 

to visualize the network. The hub genes were identified 

using the plug-in cytohubba by setting the top node as 

10 ranked by Degree.  

 

Co-expression calculation 

 

The raw expression data of genes and clinical 

phenotypes were downloaded from the GTEx program 

(https://www.gtexportal.org/). Then, we removed the 

data without associated clinical information. Further 

analysis then focused on correlations in adipose tissue. 

The Pearson correlation (r) and p-value were calculated.  

 

Methylation and gene expression analyses 

 

The human disease methylation database, DiseaseMeth 

version 2.0, is a web-based resource focusing on the 

aberrant methylomes of human diseases [62] 

(http://bioinfo.hrbmu.edu.cn/diseasemeth/). We utilized 

DiseaseMeth 2.0 to search the methylation levels of 

SCARA3 related to metabolic disorders. 

 

CTD 

 

The Comparative Toxicogenomics Database (CTD) 

illuminates how environmental chemicals affect human 

health [63] (http://ctdbase.org/). This database was used 

to validate SCARA3 associations with weight-related 

diseases and metabolic disorders. Here, we selected our 
diseases of interested only among the top 50 

relationships, such as weight loss, weight gain, glucose 

intolerance, and insulin resistance. 

Mice 

 

Male C57BL/6J mice at 3 months of age were fed a 

HFD or chow control for four months before the start of 

the experiment to induce obesity. Db/db mice were used 

in our experiments at 12 weeks of age. All mice were 

maintained in a standard, specific pathogen-free facility 

of the Laboratory Animal Research Center of Central 

South University. All procedures involving mice were 

approved by the Animal Ethics Committee of the 

Central South University.  

 

qRT-PCR analysis  

 

Total RNA from the iWAT of mice or cells was 

extracted using Trizol reagent (Takara) as described 

previously [6, 64]. RNA (1000 ng) was reverse-

transcribed into first-strand cDNA using a Reverse 

Transcription Kit (Takara). qPCR was then performed 

using SYBR Green PCR Master Mix (Takara) and 

mRNA expression was normalized to the expression of 

the reference gene Gapdh. 

 

Western blot  

 

1 mg adipose tissue was lysed in the mixture of RIPA 

(100 ul) and protease inhibitor (1:100). Western Blot 

was performed according to the previous described 

method [26]. The primary antibodies, Monoclonal Anti-

SCARA3 antibody produced in mouse (#WH00514 

35M1-100UG; Sigma-Aldrich, MO, USA), and 

GAPDH (TA802519; ORIGENE), were incubated 

overnight at 4° C, then incubated with appropriate 

secondary antibodies for 1 hour at room temperature. 

The blots were visualized using ECL detection reagents. 

 

Cell isolation and culture  

 

Ad-MSCs were isolated from iWAT of 1-month male 

C57BL/6J mice. Firstly, we isolated the iWAT from 

mice. Then, the tissue was cut and digested using 0.1% 

I type Collagenase (Gibco,17108-029), a mixture of the 

collagenases I in PBS. Then it was incubated in 37° C 

for 30 min and followed by centrifuge at 1000 rpm 5 

min. The cells were then cultured in DMEM containing 

10% fetal bovine serum, 100 U/mL penicillin, and 100 

μg/ mL streptomycin. Culture medium was changed 

every other day. Cells were collected for cell 

transfection, adipogenic differentiation or RNA 

extraction. 

 

Cell transfection 

 
The Scara3 siRNA and the negative control (NC) were 

purchased from Ribibio (Guangzhou, China). The 

siRNAs were transfected at the concentration of 100 nM 

http://string-db.org/
https://www.gtexportal.org/
http://bioinfo.hrbmu.edu.cn/diseasemeth/
http://ctdbase.org/
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using lipofectamine 2000 (Invitrogen, USA) according 

to manufacturer's recommendations.  

 

Adipogenic differentiation 

 

Adipogenic differentiation was conducted as described 

previously [25]. MSCs were treated with DMEM 

containing 10% fetal bovine serum, 100 U/mL 

penicillin, 100 μg/ mL streptomycin, 0.5 mM 3-

isobutyl-1-methylxanthine, 5 μg/ml insulin, and 1 μM 

dexamethasone for 4 days. The medium was changed 

every other day.  

 
Statistical analysis 

 

All data were analyzed using R and R studio software 

(Version 4.0.1) except for GSEA analysis (Version 

3.6.3). Key modules were selected with the power as 14 

(scale free R2 = 0.686), the minimal module size as 30, 

and the cut height as 0.25 using package “WGCNA”. 

DEGs were selected with adjusted P < 0.05 and |logFC| 

> 1 through the package “limma”. GO terms or KEGG 

pathways with adjusted P < 0.05 were considered 

statistically significant. GSEA was generated using the 

package “Pi”. Pearson correlation analysis was adopted 

to determine the linear relationship between the two 

groups. For the animal experiment, each group 

comprised ten mice. The animals were randomly 

divided into two groups including mice fed a HFD and 

those fed a control chow diet. qRT-PCR was performed 

independently three times and all results are expressed 

as means ± standard deviation (SD). Quantitative data 

from qRT-PCR, Western Blot or the expression of 

Scara3 in white adipose tissue derived mesenchymal 

stem cells (Ad-MSCs) from the GEO database were 

imported into a spreadsheet and scaled and normalized 

to their appropriate controls using R. Two-way, paired 

or unpaired t-tests were performed using the package 

“ggplot”. 

 
Availability of data and materials  

 

The raw data of the two adipogenesis-related 

microarray datasets are available in the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/. Accession number: 

GSE100748 and GSE80614.). The data for Scara3 
expression in Ad-MSCs are available in the GEO 

database (Accession number: GSE115068). The 

transcription factors were predicted in the PROMO 

database (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/ 

promoinit.cgi?dirDB=TF_8.3). Associations of SCARA3 

with metabolic disorders are available in CTD 

(http://ctdbase.org/). The methylation of SCARA3 in 

patients with metabolic disorders is available in 

DiseaseMeth version 2.0 (http://bio-bigdata.hrbmu.edu. 

cn/diseasemeth/).  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Co-expression of SCARA3 with four shared genes in adipose tissue. (A–D) Correlation of SCARA3 with 

GHR (A), GPX3 (B), SAA1 (C), and WFDC1 (D) expression in adipose tissue, based on data from the GTEx databases, respectively.  
 

 

 

Supplementary Figure 2. Predictions of transcriptional factors of SCARA3 in PROMO databases. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–6. 

 

Supplementary Table 1. Association with adipogenic stages in grey 60 model.  

Supplementary Table 2. Association with adipogenic stages in turquoise model.  

Supplementary Table 3. Association with adipogenic stages in green model.  

Supplementary Table 4. Association with adipogenic stages in red model.  

Supplementary Table 5. DEGs during adipogenesis from GEO100748. (Adjust p-value <=0.05, |logFC|>=1). 

Supplementary Table 6. DEGs during adipogenesis from GSE80614. (Adjust p-value <=0.05, |logFC|>=1). 

 

 


