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INTRODUCTION 
 

Traditionally, in most common cancers, including breast 
cancer (BC), clinicopathological features (e.g., tumor 

size, lymph node status, TNM stage, histological grade, 

hormone receptor status, human epidermal growth 

factor receptor 2 [HER-2] amplification) are used to 

predict patient outcome [1]. Biomarkers such as tumor-

associated macrophages (TAMs), microRNAs, matrix 
metalloproteinases (MMPs), retinoic acid receptor a 

(RARA), and Ki-67 are also useful in predicting 

prognosis of certain cancers (e.g., colon cancer, gastric 
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ABSTRACT 
 

Dysregulation of α(1,6)-fucosyltransferase (FUT8) plays significant roles in development of a variety of malignant 
tumor types. We collected as many relevant articles and microarray datasets as possible to assess the prognostic 
value of FUT8 expression in malignant tumors. For this purpose, we systematically searched PubMed, Embase, 
Web of Science, Springer, Chinese National Knowledge Infrastructure (CNKI), and Wan Fang, and eventually 
identified 7 articles and 35 microarray datasets (involving 6124 patients and 10 tumor types) for inclusion in 
meta-analysis. In each tumor type, FUT8 expression showed significant (p< 0.05) correlation with one or more 
clinicopathological parameters; these included patient gender, molecular subgroup, histological grade, TNM 
stage, estrogen receptor, progesterone receptor, and recurrence status. In regard to survival prognosis, FUT8 
expression level was associated with overall survival in non-small cell lung cancer (NSCLC), breast cancer, diffuse 
large B cell lymphoma, gastric cancer, and glioma. FUT8 expression was also correlated with disease-free survival 
in NSCLC, breast cancer, and colorectal cancer, and with relapse-free survival in pancreatic ductal 
adenocarcinoma. For most tumor types, survival prognosis of patients with high FUT8 expression was related 
primarily to clinical features such as gender, tumor stage, age, and pathological category. Our systematic review 
and meta-analysis confirmed the association of FUT8 with clinicopathological features and patient survival rates 
for numerous malignant tumor types. Verification of prognostic value of FUT8 in these tumor types will require a 
large-scale study using standardized methods of detection and analysis. 
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cancer, acute promyelocytic leukemia) [2–6]. There has 

been increasing research focus on protein glycosylation 

and related glycosyltransferases as prognostic bio-

markers in various human cancers [7–9]. 

 

Glycosylation (attachment of glycans to proteins or 

other organic molecules) is a common posttranslational 

modification in all organisms. Aberrant glycosylation is 

a characteristic phenomenon in carcinogenesis, plays 

essential roles in specific steps of tumor development 

[10], and directly promotes tumor progression and 

metastasis [11–17]. Glycosylation is mediated by 

enzymatic activities of glycosyltransferases and 

glycosidases in glycoproteins and/or lipids. Alterations 

of glycosyltransferase expression are associated  

with both pro-metastatic and metastasis-suppressing 

functions [12]. 

 

Fucosyltransferase 8 (FUT8) is an α(1,6)-

fucosyltransferase responsible for addition of fucose to 

asparagine-linked N-acetylglucosamine (GlcNAc) 

moieties, a common feature of N-linked glycan core 

structures [18]. Aberrant fucosylated glycan structures 

and associated glycosyltransferases have been observed 

in development of various cancers [19]; e.g., increased 

core fucosylation in BC [20], non-small cell lung cancer 

(NSCLC) [21], ovarian cancer [22], colon cancer [23], 

prostate cancer [24], and melanoma [25]. A positive 

feedback mechanism of FUT8-mediated receptor core 

fucosylation was recently shown to enhance TGF-β 

signaling and epithelial-mesenchymal transition (EMT), 

thus promoting BC cell invasion and metastasis; such 

fucosylation in BC patients is a potential diagnostic/ 

prognostic biomarker, or therapeutic target [26]. In BC 

patients, high FUT8 protein expression is correlated 

with lymphatic metastasis and stage status, whereas 

reduced FUT8 expression is correlated with disease-free 

survival and overall survival [20]. 
 

FUT8 expression level has been linked to tumor clinical 

features and outcomes in numerous studies. However, 

few attempts have been made to systematically evaluate 

such associations. We performed a systematic review 

and meta-analysis based on collection of references and 

Gene Expression Omnibus (GEO) microarray data, to 

clarify the correlations between FUT8 expression and 

clinical pathology and patient survival in various 

common types of cancer. 

 

RESULTS 
 

Characteristics of studies included in the meta-

analysis 
 

A total of 366 articles were found through database 

mining and manual searches (see M&M); these 

comprised 152 articles directly related to FUT8, and 

214 articles that included microarray data and were 

indirectly related to FUT8. After screening out duplicate 

titles and abstracts, 27 full-text articles and 78 datasets 

remained; of these, 20 articles and 43 datasets were 

excluded on the basis of criteria described in M&M, 

finally leaving 7 articles and 35 microarray datasets 

(involving 6124 patients) for inclusion in the meta-

analysis. Characteristics and quality scores of the 

included studies are summarized in Table 1. Among 

these, the 35 datasets involved 7 types of malignant 

tumors and descriptions of 29 types of 

clinicopathological features related to FUT8, and the 7 

articles involved 5 types of malignant tumors and 

described correlations between FUT8 expression and 

patient survival. 

 

Association of FUT8 expression with 

clinicopathological features of various types of 

malignant tumors 

 

Seven malignant tumors (ependymoma, glioma, BC, 

colorectal cancer (CRC), medulloblastoma (MBL), 

neuroblastoma (NB), NSCLC) were included in meta-

analyses for clinicopathological features. Pooled results 

are presented in Supplementary Table 1. For BC, high 

FUT8 expression level was related to positive PR and 

positive ER status (odds ratio [OR]= 3.34, 95% 

confidence interval [CI]: 1.60-6.96, p= 0.001 and odds 

ratio [OR]= 7.42, 95% confidence interval [CI]: 2.94-

18.7, p< 0.0001). FUT8 expression level was also 

correlated with tumor histological grade (OR= 2.55, 

95% CI: 1.10-5.95, p= 0.03) (Figure 1A). For CRC, 

elevated FUT8 expression level was associated with 

TNM stage I-III (OR= 1.79, 95% CI: 1.09–2.95, p= 

0.02), and was also related to microsatellite instability 

(MSI) (OR= 4.37, 95% CI: 2.65-7.20, p< 0.00001) and 

female gender (OR= 0.65, 95% CI: 0.50-0.83, p= 

0.0007) (Figure 1B). For ependymoma, high FUT8 

expression level was related to patient age (≤10 years) 

(OR= 3.69, 95% CI: 2.28-5.99, p< 0.00001) and tumor 

recurrence status (OR= 2.29, 95% CI: 1.07-4.93, p= 

0.03) (Supplementary Figure 1A). For glioma, increased 

FUT8 level was associated with glioblastoma 

multiforme (GBM) (OR= 1.69, 95% CI: 1.07–2.66, p= 

0.02), and FUT8 level was inversely correlated with 

patient age (≤40 years) (OR= 0.58, 95% CI: 0.35-0.95, 

p= 0.03) (Supplementary Figure 1B). For MBL, high 

FUT8 expression level was related to Wingless (WNT) 

(OR= 4.72, 95% CI: 1.99-11.22, p= 0.0004) and Sonic 

Hedgehog (SHH) molecular subgroups (OR= 12.11, 

95% CI: 6.44-22.79, p< 0.00001). FUT8 level was 

inversely correlated with metastasis status (OR= 0.25, 
95% CI: 0.10-0.60, p= 0.002) and male gender (OR= 

0.60, 95% CI: 0.39-0.92, p= 0.02) (Figure 2A). For 

NSCLC, FUT8 expression level was inversely 
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Table 1. Characteristics of studies included in the meta-analysis. 

Tumor source First author and 

year 

Country Ethnicity Number 

of 

patients 

Sample 

Type 

Method GEO ID Cutoff Survival Follow-up 

(Months) 

Quality 

Score 

Reference 

Breast Cancer Lasham 2012 New 

Zealand 

Caucasian 107 tissue Microarray gse36771 average NR NR 7 [49] 

Chin 2006 America Caucasian 130 tissue Microarray gse69031 average NR NR 7 [50] 

Desmedt 2009 Belgium Caucasian 55 tissue Microarray gse16391 average NR NR 6 [51] 

EXPO 2005 America Caucasian 351 tissue Microarray gse2109 average NR NR 8 R2 platform 

Lu 2008 America Caucasian 123 tissue Microarray gse5460 average NR NR 6 [52] 

Concha 2011 Spain Caucasian 66 tissue Microarray gse29431 average NR NR 7 R2 platform 

Iwamoto 2011 America Caucasian 103 tissue Microarray gse22093 average NR NR 7 [53] 

Yue 2016 China Asian 189 tissue IHC  median OS, DFS 72 7 [20] 

Colorectal 

Cancer 

EXPO 2005 America Caucasian 315 tissue Microarray gse2109 average NR NR 7 R2 platform 

Laibe 2012 France Caucasian 130 tissue Microarray gse37892 average NR NR 7 [54] 

Jorissen 2009 Australia Caucasian 290 tissue Microarray gse14333 average NR NR 8 [55] 

Smith 2010 America Caucasian 232 tissue Microarray gse17538 average NR NR 7 [56] 

Watanabe 2006 Japan Asian 84 tissue Microarray gse4554 average NR NR 5 [57] 

Tsukamoto 2011 Japan Asian 148 tissue Microarray gse21510 average NR NR 7 [58] 

Jorissen 2008 Denmark Caucasian 155 tissue Microarray gse13294 average NR NR 6 [59] 

Schlicker 2012 United 

Kingdom 

Caucasian 62 tissue Microarray gse35896 average NR NR 5 [60] 

Barras 2017 Australia Caucasian 59 tissue Microarray gse75316 average NR NR 5 [61] 

Ependymoma Donson 2009 America Caucasian 19 tissue Microarray gse16155 average NR NR 7 [62] 

Johnson 2010 America Caucasian 83 tissue Microarray NR average NR NR 7 [63] 

Hoffman 2014 America Caucasian 65 tissue Microarray gse50385 average NR NR 7 [64] 

Vladoiu 2019 Germany Caucasian 209 tissue Microarray gse64415 average NR NR 8 [65] 

Glioma Freije 2004 America Caucasian 85 tissue Microarray gse4412 average NR NR 6 [66] 

Gravendeel 2009 Netherlands Caucasian 276 tissue Microarray gse16011 average OS 240 7 [67] 

Kawaguchi 2013 Japan Asian 50 tissue Microarray gse43378 average NR NR 6 [68] 

Zhang 2014 America Caucasian 21 tissue Microarray gse50774 average NR NR 6 [69] 

Non-Small Cell 

Cancer 

Tarca 2013 Switzerland Caucasian 150 tissue Microarray gse43580 average NR NR 7 [70] 

Muley 2014 Germany Caucasian 100 tissue Microarray gse33532 average NR NR 8 R2 platform 

Honma 2015 Japan Asian 129 tissue IHC  median OS 168 7 [71] 

Chen 2013 China Asian 140 tissue IHC  median OS, DFS 120 7 [21] 

Wu 2019 China Asian 135 tissue IHC  median OS, DFS 60 7 [72] 

Park 2020 Korea Asian 217 tissue Microarray gse31210 median DFS 120 8 [73] 

Medulloblastoma Robinson 2012 America Caucasian 76 tissue Microarray gse37418 average NR NR 6 [74] 

Northcott 2017 Germany Caucasian 223 tissue Microarray NR average NR NR 7 [75] 

Kool 2008 Netherlands Caucasian 62 tissue Microarray gse10327 average NR NR 7 [76] 

Delattre 2012 NR NR 57 tissue Microarray NR average NR NR 6 R2 platform 

Neuroblastoma Delattre 2009 France Caucasian 34 tissue Microarray gse14880 average NR NR 5 R2 platform 

Ohtaki 2010 Japan Asian 51 tissue Microarray gse16237 average NR NR 6 [77] 

Lastowska 2007 United 

Kingdom 

Caucasian 30 tissue Microarray gse13136 average NR NR 5 [78] 

Molenaar 2012 Netherlands Caucasian 88 tissue Microarray gse16476 average NR NR 7 [79] 

Pancreatic 

Ductal 

Adenocarcinoma 

Tada 2019 Japan Asian 62 tissue IHC  median RFS 120 7 [80] 

Diffuse Large B 

Cell Lymphoma 

Xiao 2008 America Caucasian 420 tissue Microarray gse10846 average OS 240 8 R2 platform 

Gastric Cancer Tan 2018 Switzerland Caucasian 192 tissue Microarray gse15459 average OS 60 7 R2 platform 

OS, overall survival; DFS, disease-free survival; RFS, relapse-free survival; IHC, immunohistochemistry; NR, not reported. 
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Figure 1. Forest plots of the significant associations between FUT8 expression and clinical features in two tumor types. (A) 

breast cancer; (B) colorectal cancer. 
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correlated with N0 status of TNM stage (OR= 0.58, 95% 

CI: 0.38-0.88, p= 0.01) and male gender (OR= 0.34, 95% 

CI: 0.18-0.68, p= 0.002) (Figure 2B). Clinicopathological 

features of malignant tumors related to FUT8 are 

summarized in Table 2. High FUT8 expression level in 

NB showed no association with any clinicopathological 

feature, including INSS stage, gender, or mycn amplified 

status (Supplementary Figure 2). 

 

 
 

Figure 2. Forest plots of significant associations between FUT8 expression and clinical features in two tumor types. (A) 
medulloblastoma; (B) non-small cell lung cancer. 
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Table 2. Clinicopathological features related to enhanced FUT8 expression level in various malignant tumors. 

Tumor source Clinicopathological features Reference 

Breast cancer ER status positive, PR status positive, histological grade (G1G2) 

histological grade (G1) 

[50], [51], [52], [53], R2 

platform 

Colorectal cancer Duke stage A, Duke stage AB, location (Left), gender (male) 

microsatellite instability (MSI) 

[54], [55], [56], [57], 

[58], [59], [60], [61], R2 

platform 

Glioma Age (≤40 years), glioblastoma multiforme (GBM) [66], [67], [68], [69] 

Medulloblastoma Molecular subgroups (G3), molecular subgroups (G4),  

molecular subgroups (SHH), molecular subgroups (WNT) 

Gender (male), metastasis 

[74], [75], [76], R2 

platform 

Non-small cell lung 

cancer 

Gender (male), TNM stage N0, TNM stage M1 [21], [70], [71], R2 

platform 

Ependymoma Age (≤10 years), recurrence [63], [64], [65] 

ER, estrogen receptor; PR, progesterone receptor. 

 

Prognostic value of FUT8 expression in survival of 

various types of malignant tumors 

 

Five types of malignant tumors (NSCLC, glioma, 

diffuse large B cell lymphoma (DLBCL), gastric cancer 

(GC), BC) were included in meta-analyses for survival. 

For NSCLC, elevated FUT8 expression level was 

associated with shorter disease-free survival (DFS) 

(hazard ratio [HR]= 2.32, 95% CI: 1.65-3.27, p< 

0.00001), and with lower overall survival (OS) (HR= 

2.24, 95% CI: 1.62-3.08, p< 0.00001) (Figure 3). 

 

FUT8 expression levels in the other 4 tumor types 

(glioma, DLBCL, GC, BC) were also correlated with 

OS (Figure 4). Among these, high FUT8 expression was 

associated with shorter OS in glioma (RR= 1.49, 95% 

CI: 1.13-1.96), DLBCL (RR= 1.76, 95% CI: 1.30-2.38), 

and BC (RR= 2.49, 95% CI: 1.15-5.38), but with longer 

OS in GC (RR= 0.60, 95% CI: 0.40-0.91). For glioma, 

upregulated FUT8 expression was associated with 

shorter OS in female patients (RR= 1.99, 95% CI: 1.15-

3.44). For DLBCL, high FUT8 expression was 

associated with shorter OS in Ann Arbor stages I-III 

(RR= 1.87, 95% CI: 1.24-2.81) and in patients aged >50 

years (RR= 1.42, 95% CI: 1.02-1.98). For GC, high 

FUT8 expression was associated with better OS in 

intestinal-type Lauren classification (RR= 0.50, 95% 

CI: 0.28-0.90), males (RR= 0.59, 95% CI: 0.35-0.99), 

and TNM stage I-III patients (RR= 0.53, 95% CI: 0.31-

0.90). Pooled survival results are presented in 

Supplementary Table 2. 

 

DISCUSSION 
 
FUT8 is clearly involved in tumor initiation and 

progression, and in various biological behaviors of 

cancer, including cell proliferation, apoptosis, 

migration, and metastasis [27]. Prognostic values of 

glycosylation or fucosylated antigens in many types of 

cancer have been documented in several previous 

reviews and meta-analyses [14, 15, 28–30]. However, 

very little meta-analysis of FUT8 has been performed, 

because of lack of sufficient studies and references. 

Many reports are based on use of microarrays to study 

cancer genomes; accordingly, we performed a 

systematic review after collecting GEO microarray data, 

and data from a large number of studies, focused on the 

prognostic value of FUT8 in cancer. This review / meta-

analysis is, to our knowledge, the first to 

comprehensively clarify the association of FUT8 

expression with specific clinicopathological features 

and survival data for various types of cancer. 

 

Our analyses demonstrated that FUT8 expression levels 

were most often associated with tumor stage (n=4: BC, 

CRC, MBL, NSCLC), molecular classification (n=2: 

BC, MBL), age (n=2: glioma, ependymoma), and 

gender (n=2: MBL, NSCLC), but less associated with 

histological grade (n=1: BC) and pathological typing 

(n=1: glioma). FUT8 expression showed no association 

with disease induction, location, or family history for 

any of the above cancer types. These findings suggest 

that FUT8 plays an intrinsic role mainly in tumor 

development, and is therefore a potentially important 

biomarker for malignant tumors. Previous studies have 

focused mainly on the relationship between FUT8 

expression and OS for survival. The majority of such 

studies (n=5: NSCLC, BC, DLBCL, GC, glioma) found 

significant correlations of FUT8 expression with OS of 

tumor, and also associations between survival and 

clinicopathological features, particularly tumor stage. A 

few studies focused on associations of FUT8 expression 

with other types of survival (DFS, RFS). For the 

research on pathways related to FUT8 and tumor 
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survival, many references indicate that FUT8 activates 

several related signaling pathways, including 

Ras/MAPKK signaling, c-Met signaling, Akt/mTOR 

signaling and Wnt/β‐catenin signaling, which ultimately 

lead to hepatocellular carcinoma or colorectal cancer 

affects the overall survival of patients [31–33]. Höti  

et al demonstrated that overexpression of FUT8 resulted 

in upregulation of epidermal growth factor receptor 

(EGFR) and corresponding downstream signaling, 

leading to increased prostate cancer cells survival [34]. 

In short, findings of these studies, taken together, 

demonstrate the strong prognostic value of FUT8 

expression in malignant tumors. 

 

NSCLC is the tumor type most frequently studied in 

regard to FUT8 expression status. High FUT8 

expression was inversely correlated with N0 status of 

TNM stage and with male gender. High FUT8 

expression was associated with shorter DFS, and with 

lower OS. Thus, FUT8 should be a useful survival 

prognostic predictor for female NSCLC patients with 

high FUT8 expression. Our analyses revealed an 

association of high FUT8 expression level with positive 

ER and PR status, and with shorter OS, in BC patients. 

FUT8 expression is therefore presumably enhanced in 

luminal A and B BC patients, and may be a useful 

survival prognostic predictor in such patients. A 2019 

study indicated that FUT8 is highly expressed in ER+ 

BC patients, is associated with metastasis, and is a 

potential therapeutic target in these patients [35].  

 

Microsatellite instability (MSI) is a molecular 

"fingerprint" of defective mismatch repair systems, and 

methods to detect MSI are well established and routinely 

incorporated into clinical practice. Prognosis for MSI 

tumors is better than that for microsatellite stable CRC 

[36]. In regard to CRC, we found that high FUT8 

expression was associated with MSI, female gender, and 

TNM stages I-III. E-cadherin, a Ca2+-dependent cell 

adhesion molecule, was found to be significantly 

 

 
 

Figure 3. Forest plots of associations between FUT8 expression and non-small cell lung cancer overall survival. 

 

 
 

Figure 4. Forest plots of associations between FUT8 expression and tumor overall survival in single clinical features studied. 
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enhanced in dense culture of FUT8-transfected colorectal 

adenocarcinoma cells, resulting in increased cell-cell 

adhesion [23]. In addition, E-cadherin truncation was 

significantly higher in low MSI as compared with high 

MSI tumors [37]. The inferred mechanism is that the low 

expression of FUT8 in TNM stages IV or microsatellite 

stable colorectal cancer may cause E-cadherin to decrease 

or be truncated, resulting in decreased tumor cell-cell 

adhesion and increased metastasis. 

 

Medulloblastoma, a common type of malignant brain 

cancer that accounts for 8-10% of childhood brain 

tumors [38], comprises four molecular subgroups 

(WNT, SHH, group 3, group 4) that have differing 

prognoses [39]. In general, subgroup WNT has very 

good prognosis and rare metastasis; subgroup SHH has 

good prognosis in infants and intermediate prognosis 

and uncommon metastasis in older children; subgroup 

G4 has intermediate prognosis and frequent metastasis; 

subgroup G3 has poor prognosis and very frequent 

metastasis [40–43]. Our analysis revealed association of 

high FUT8 expression with subgroups WNT and SHH, 

and inverse correlation with metastasis and male 

gender. High FUT8 expression in medulloblastoma 

therefore appears to be a positive prognostic indicator, 

particularly for female patients. In regard to NB, we did 

not find any notable relationship of high FUT8 

expression with clinicopathological features. On the 

other hand, another group reported aberrant expression 

of N-glycans and short O-glycans in NB cells, and 

regulation of their expression levels by associated 

glycosyltransferases [44]. GnT-V expression in NB 

patients was correlated with favorable prognosis and 

treatment outcome [45]. GALNT9 was expressed in 

neuroblasts derived from primary tumor [46] but not in 

those derived from metastatic bone marrow, and may be 

a useful prognostic marker for positive clinical outcome 

in NB patients [47]. 

 

Overall, our results are comprehensive and seemingly 

reliable in view of the high quality of included articles 

and microarray data. On the other hand, there are 

inherent limitations in our analysis. (i) Heterogeneity is 

present among studies of a given tumor type, and is 

difficult to address because of methodological 

differences (e.g., sample selection, detection method, 

determination of cutoff value, statistical analysis). (ii) 

Nearly all our included studies report a statistically 

significant result. Although a Begg’s funnel plot 

indicates absence of publication bias (Supplementary 

Figure 3), our experience suggests that selective 

reporting bias is common in the literature regarding 

FUT8 and tumor prognosis. (iii) Roughly half of our 
included studies had small sample size (<100), which is 

often associated with inflated estimates of effect size 

and with high heterogeneity.  

Results of our analyses – with due consideration of the 

above caveats – highlight the prognostic value of FUT8 

expression in a variety of malignant tumors, and the 

important biological function of FUT8 in tumor 

progression. FUT8 may exert its effects in such tumors 

by regulating functional protein core fucosylations 

involved in tumor development and metastasis (e.g., 

L1CAM, P53, TGF-β, EGFR) [25, 34, 48]. Thus, 

dysregulation of FUT8 would have effects on tumor 

development, and consequently on clinical prognosis of 

patients. The molecular mechanisms remain to be 

clarified, and are being addressed in ongoing studies. 

 

In conclusion, our systematic review and meta-analysis 

confirmed the association of FUT8 with 

clinicopathological features and patient survival rates 

for certain malignant tumor types. FUT8 expression is a 

significant predictor of prognosis for these tumors. The 

relative weight of FUT8 correlations with particular 

clinical features is currently difficult to evaluate because 

of the presence of many uncontrollable factors. Reliable 

verification of prognostic value of FUT8 in these tumor 

types will require a large-scale study using standardized 

methods of detection, analysis, and reporting. 

 

MATERIALS AND METHODS 
 

We performed this review based on PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-

Analyses) criteria. 

 

Search strategy 

 

The PubMed, Embase, Web of Science, Springer, 

Chinese National Knowledge Infrastructure (CNKI), 

and Wan Fang databases were searched systematically 

to identify and retrieve all pertinent publications 

through June 24, 2020. Keywords and search terms used 

were: FUT8 or Fut8 or Fucosyltransferase 8 or α1-6 

Fucosyltransferase or Core fucosylation or 

Fucosyltransferase; Malignant tumor or Cancer or 

Carcinoma or Neoplasm; and clinical or clinico-

pathological or clinicopathology or prognosis predictor 

or survival or Odds Ratio (OR) or Hazard Ratio (HR). 

References in retrieved articles were screened manually. 

Languages of retrieved articles were restricted to 

English and Chinese. 

 

Data extraction and analysis of GEO datasets 

 

Our first step was to read and screen articles related to 

tumor clinicopathological features and prognosis, and 

search for microarray datasets through the references. In 

this way, 96 datasets from 214 articles were extracted 

for preliminary screening. The second step was to re-

screen the 96 datasets in regard to presence of FUT8 
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data, an appropriate clinical pathology track, and 

sufficient number of samples. In this way, 35 malignant 

tumor microarray datasets were selected and 

downloaded from the Gene Expression Omnibus (GEO) 

database (https://www.ncbi.nlm.nih.gov/gds) and R2 

platform (http://r2.amc.nl). These datasets included a 

total of 4918 samples, from 7 types of malignant tumor: 

breast cancer (BC), colorectal cancer (CRC), 

ependymoma, glioma, non-small cell lung cancer 

(NSCLC), medulloblastoma (MBL), and neuroblastoma 

(NB). The datasets all used the Affymetrix Human 

Genome U133a or U133 Plus 2.0 expression arrays to 

detect expression value signals. Data were normalized 

using Microarray Suite (MAS) V. 5.0. In many cases, 

more than one probeset has been reported for FUT8 

gene. We selected a probeset with highest average 

 

 
 

Figure 5. Flow diagram of article selection process. 

https://www.ncbi.nlm.nih.gov/gds
http://r2.amc.nl/
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presence signal (APS) by default. mRNA expression of 

FUT8 was assigned to "low" or "high" category based 

on average expression value of each dataset. 

 

Inclusion and exclusion criteria 

 

Studies were included if they met the following criteria: 

(1) original study focused on human subjects; (2) 

presented FUT8 expression data and malignant tumor 

clinicopathological features and/or survival data; (3) 

reported an OR or HR with 95% confidence interval 

(CI), or sufficient data were presented so that we could 

calculate them; (4) full text was available. Exclusion 

criteria were as follows: (1) study lacked key 

information (e.g., clinical parameters, survival curves), 

or usable data; (2) APS of probeset was too low, or too 

many data were lost; (3) HRs applied to a combination 

of multiple FUTs; (4) article was a review, letter, single 

case report, or conference abstracts. In cases of multiple 

articles from the same group, reporting overlapping 

data, only the most complete one was included. The 

article selection process is shown in flow diagram form 

in Figure 5. 

 

Quality assessment and data extraction 

 

Two authors (MXM and GXH) reviewed potentially 

eligible articles independently. Quality of each study 

was assessed using the Newcastle-Ottawa Scale. The 

following information was extracted from each included 

study: 

 
(1) basic information: first author’s or uploaded dataset 

author’s name, publication year, country of origin, 

names of malignant tumors, sample size, FUT8 

expression levels, detection methods, sample type, 

outcome measurements, follow-up duration, cutoff 

value, survival analysis method; (2) p values for 

correlation between FUT8 expression and clinico-

pathological features of malignant tumors, and original 

data used for calculation of ORs and their 95% CIs; (3) 

HRs and their 95% CIs for survival analysis. If HRs 

were not directly accessible in the text, Kaplan-Meier 

survival curves were read using Engauge Digitizer (V. 

4.1) to obtain data. Different datasets for a particular 

malignant tumor were considered as separate studies, 

and respective HRs were extracted. In cases of possible 

discrepancy, a consensus was reached by discussion 

among all authors. 

 
Statistical analysis 

 
ORs and their 95% CIs were used to estimate 

associations of FUT8 with clinical features of malignant 

tumors. For purposes of comparison, patients were 

divided into paired categories (e.g., male vs. female; 

TNM stages I, II and III vs. IV; ER/PR status positive 

vs. negative). For survival rates, HRs with 

corresponding 95% CIs were used. All ORs and HRs 

were calculated for high FUT8 expression. When a 

given FUT8 was investigated in two or more different 

studies, a meta-analysis was performed to combine the 

effect size. Z test was used to determine significance of 

ORs or HRs. Heterogeneity between studies was tested 

using Q statistic and I2 test. When I2 value was >50% 

(indicating significant heterogeneity) a random-effects 

model was used. For I2 value ≤50%, a fixed-effects 

model was used. Statistical analyses were performed 

with software program Review Manager V. 5.3 

(Cochrane Collaboration; London, UK). Differences 

with p< 0.05 were considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Forest plots of the significant associations between FUT8 expression and clinical features in two 
tumors. (A, Ependymoma; B, Glioma). Footnote as for Figure 1. 
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Supplementary Figure 2. Forest plots of the significant associations between FUT8 expression and clinical features in 
neuroblastoma. Footnote as for Figure. 1. 
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Supplementary Figure 3. Begg’s funnel plot for publication bias on the associations between the expression of FUT8 and 
survival analysis and tumor clinical features. Each point represents a single study for the indicated association. (A) ER status in BC; (B) 

histological grade in BC; (C) PR status in BC; (D) gender in CRC; (E) MSI in CRC; (F) TNM stage in CRC; (G) age in ependymoma; (H) tumor 
recurrence in ependymoma; (I) age in glioma; (J) GBM in glioma; (K) gender in MBL; (L) metastasis in MBL; (M) SHH in MBL; (N) WNT in MBL; 
(O) gender in NSCLC; (P) TNM stage in NSCLC; (Q) OS in tumors ; (R) DFS in tumors. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

Supplementary Table 1. Meta-analysis results of the associations between the expression of FUT8 and 
clinicopathological features of tumors. 

 

Supplementary Table 2. Meta-analysis results of the associations between the expression of FUT8 and survival of 
tumors. 

Tumor Source Reference Subgroup Survival HR and 95% CI Analysis 

Non-Small Cell Lung 

Cancer 

Honma 2015  OS 1.93 (1.07-3.47) Univariate 

  OS 1.81 (1.01-3.25) Multivariate 

 TNM pStage I  OS 2.55 (1.08-6.03) Univariate 

Chen 2012  OS  2.29 (1.51-3.48) Univariate 

  OS 2.32 (1.51-3.58) Multivariate 

  DFS 2.41 (1.59-3.66) Univariate 

  DFS 2.68 (1.62-3.89) Multivariate 

Wu 2019  OS 2.97 (1.09-8.12) Univariate 

  DFS 1.87 (0.77-4.51) Univariate 

Park 2019  DFS 2.43 (1.08-5.50) Univariate 

Breast Cancer Yue 2016  OS 2.49 (1.15-5.37) Univariate 

  DFS 1.91 (1.01-3.61) Univariate 

Diffuse Large B Cell 

Lymphoma 

Xiao 2008  OS 1.76 (1.3-2.38) Univariate 

 Age (≥50 years)  OS 1.42 (1.02-1.98) Univariate 

 Ann Arbor Stage I-III OS 1.87 (1.24-2.81) Univariate 

Gastric Cancer Tan 2018  OS 0.60 (0.40-0.91) Univariate 

 Gender (Male) OS 0.59 (0.35-0.99) Univariate 

 TNM Stage I-III OS 0.53 (0.31-0.90) Univariate 

 Lauren_Intestinal OS 0.50 (0.28-0.90) Univariate 

Colorectal Cancer Noda 2018 TNM Stage II-III and  

p53 (-) 

DFS 0.28 (0.1-0.76) Univariate 

 TNM Stage II-III and  

p53 (+) 

DFS 1.25 (0.27-5.88) Univariate 

 TNM Stage II-III and  

p53 (wild-type) 

DFS 0.72 (0.41-1.28) Univariate 

 TNM Stage II-III and  

p53 (mutant) 

DFS 1.02 (0.64-1.64) Univariate 

 TNM Stage II-III and  

p53 (-) 

DFS 0.31 (0.11-0.88) Multivariate 

Pancreatic Ductal 

Adenocarcinoma 

Tada 2019  RFS 1.77 (1.06-2.95) Univariate 

Glioma Gravendeel 

2009 

 OS 1.49 (1.13-1.96) Univariate 

 Gender (Female) OS 1.99 (1.15-3.44) Univariate 

HR, hazard ratio; OS, overall survival; DFS, disease-free survival.  


