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INTRODUCTION 
 

Squamous cell carcinomas (SCCs) are neoplasms of the 

squamous cells that compose most of the skin’s upper 

layers (epidermis). They may also occur in other tissues, 

including mouth, esophagus, bladder, prostate, lung, 

vagina and cervix. Studies [1–3] have suggested that 

regardless of the tissue of origin, SCC patients share 

some common molecular characteristics, which thus, 

may be clustered together. The statistical analyses were 

carried out using either an integrative analysis including 

several omics data types or a single analysis on mRNA 

expression profiles alone. For example, using the 

cluster-of-cluster-assignments method [4], an integrated 

dataset including 6 types of omics data for 12 human 

solid cancer types was analyzed. Results showed that 

one of the clusters (the squamous-like category) was 

dominated by lung squamous cell carcinoma and head 

and neck squamous cell carcinoma [2], in spite of both 

originating in distinct organs. Naturally, it is anticipated 

that a pan-gene signature that is commonly applicable to 

all SCCs may exist.  
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ABSTRACT 
 

Studies have demonstrated that both squamous cell carcinomas (SCCs) and adenocarcinomas (ACs) possess 
some common molecular characteristics. Evidence has accumulated to support the theory that long non-
coding RNAs (lncRNAs) serve as novel biomarkers and therapeutic targets in complex diseases such as 
cancer.  
In this study, we aimed to identify pan lncRNA signatures that are common to squamous cell carcinomas or 
adenocarcinomas with different tissues of origin. With the aid of elastic-net regularized regression models, a 35-
lncRNA pan discriminative signature and an 11-lncRNA pan prognostic signature were identified for squamous cell 
carcinomas, whereas a 6-lncRNA pan discriminative signature and a 5-lncRNA pan prognostic signature were 
identified for adenocarcinomas. Among them, many well-known cancer relevant genes such as MALAT1 and PVT1 
were included.  
The identified pan lncRNA lists can help experimental biologists generate research hypotheses and adopt existing 
treatments for less prevalent cancers. Therefore, these signatures warrant further investigation.  
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On the other hand, adenocarcinoma (AC) is a type of 

cancer that starts in the mucous glands inside of organs, 

including lungs, colon, esophagus, prostate or even 

breasts. The Cancer Genomic Atlas (TCGA) network [3] 

has demonstrated that esophageal adenocarcinoma 

resembles gastric adenocarcinoma more than it 

resembles esophageal squamous cell carcinoma (ESCC).  

 

Genome-wide transcriptome analysis has revealed that 

non-protein-coding genes, which once were regarded as 

evolutionary junk, account for about 98 % of the human 

transcripts.  Long non-coding RNAs (lncRNAs) are a 

major class of non-coding RNAs that have a length of 

more than 200 nucleotides [5]. Nowadays, significant 

evidence has accumulated to support the theory that 

lncRNAs can serve as novel biomarkers and therapeutic 

targets in complex diseases such as cancer [6]. 

According to Ching et al. [7], lncRNAs are more tissue 

specific than mRNAs. Nevertheless, in the literature it is 

easy to find many lncRNAs that are associated with 

several cancer types that start at different sites/organs. 

For example, metastasis associated lung adeno-

carcinoma transcript 1 (MALAT1), a well-known 

oncogene, has been linked with a variety of cancers 

such as pancreatic cancer [8–10], prostate cancer [11, 

12], hepatocellular carcinoma [13] and thyroid cancer 

[14]. Specifically for SCCs, MALAT1 has been verified 

experimentally to correlate with esophageal [15, 16] and 

oral SCC [17]. Similarly, HOTAIR has been validated 

by experiments to be correlated with lung adeno-

carcinoma [18, 19] and gastric carcinoma [20] in 

addition to other cancer types according to the 

lncRNAdisease2.0 knowledgebase [21]. Therefore, it is 

reasonable to speculate the existence of common 

lncRNAs that play essential roles in many cancer types 

including SCCs and ACs despite the fact that lncRNAs 

are more tissue specific than mRNAs. To the best of our 

knowledge, no study has yet explored the existence of 

lncRNA signatures for either a pan SCC type or a pan 

AC type. 

 

Similar to other high-dimensional omics data, feature 

selection is usually exploited when constructing 

lncRNA signatures. The goals of feature selection are 

to eliminate the curse of dimensionality issue, speed 

up the learning process, avoid over-fitting and thus 

generate more reliable discriminative or prognostic 

gene lists/signatures. The selection of relevant 

lncRNA lists can be realized by using a 

penalized/regularized regression model, which 

belongs to the family of embedded feature selection 

methods. As opposed to filter methods, the embedded 

methods take the joint effects of covariates into 
account, and thus can model gene dependencies and 

concordance. On the other hand, such methods have 

better computational complexity than the wrappers 

methods. Therefore, a penalized regression model has 

harnessed increasing attention from many statisticians 

and computational biologists [22].   

 

In this study, pan lncRNA signatures commonly 

applicable to SCCs or ACs with different tissues of 

origin were constructed with the aid of elastic-net 

regularized regression models. Specifically, an 

extensive investigation of potential discriminative 

and prognostic gene signatures was sought in TCGA, 

where both pieces of information are available. While 

a gene signature that can distinguish normal controls 

from tumors may provide insightful clues on 

initiation and development of the disease, a 

prognostic gene signature focuses more on the 

prediction of disease progression, thus facilitating 

more effective interventions for patients with poor 

prognosis to prolong their survival or cure the 

disease. Therefore, both types of signatures are of 

crucial importance.  

 

RESULTS 
 

Discriminative lncRNA signatures 

 

Squamous cell carcinomas 

Separate logistic elastic-net regression models were fit 

for the LUSC and HNSC studies (the CESC study 

were excluded due to the non-availability of normal 

tissues). A 173-lncRNA discriminative signature for 

HNSC and a 277-lncRNA signature for the LUSC 

study were identified. The gene lists for these two 

studies resulted in 35 overlapped lncRNAs (Table 1). 

Of those, 10 genes have been reported in the literature 

to correlate to one specific cancer type or more using 

real experiments (rather than being predicted using a 

computational method) according to the 

lncRNADisease 2.0 database.  

 

Adenocarcinomas 

Among the AC cohort, separate logistic elastic-net 

regression models identified a 185-lncRNA signature 

for the LUAD study, a 173-lncRNA signature for the 

STAD study and a 114-lncRNA signature for the PRAD 

study. The intersection of these three gene lists has 6 

lncRNAs: UBXN10-AS1, SNHG20, ADAMTS9-AS1, 

ADAMTS9-AS2, PVT1 and VPS9D1-AS1 (Table 2). 

Of note, both ADAMTS9-AS1 and ADAMTS9-AS2 

also belong to the 35-overlapped lncRNA list for SCC 

discriminative analysis.  

 

Furthermore, the number of overlaps between LUAD 

and STAD is 34; 18 between LUAD and PRAD and 11 

between STAD and PRAD. All these overlaps took 

substantial proportions of the identified lncRNA 

signatures.  
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Table 1. Pan discriminative lncRNAs for the squamous cell carcinoma type. 

Symbols 

 

 

Target mRNA  

 

 

Cancer types 

(experimentally 

validated) 

Recent publications recording associated 

cancer types  

WDFY3-AS2 

 

 

WDFY3 

 

  

Ovarian [23]; ESCC [24]; LUAD [25]; breast 

[26, 27]; HCC [28] 

 

CFAP99    

DUXAP8 

 

 

  

Stomach 

 

 

 

HCC [29–31]; colon [32, 33]; bladder [34, 

35]; pancreatic [36]; ESCC [37]; esophageal 

[38]; renal cell carcinoma [39, 40]; NSCLC 

[41] 

FIRRE 

   

Diffuse large B-cell lymphoma [42]; colon 

[43] 

HAGLR 

 

 

 

 

 

EVX2, HOXD13, 

HOXD12, HOXD11, 

HOXD10, HOXD9, 

HOXD8, HOXD3, 

AC009336.2, HOXD4, 

HOXD1, MTX2  

Stomach, cervical, NSCLC, 

neuroblastoma, glioma, 

ovarian, urinary bladder, 

HCC, prostate, thyroid 

 

Esophageal [44]; LUAD [45]; colon [46] 

 

 

 

 

 

LOC101929331    

DUXAP10 

  

Ovarian, colorectal  

 

Myeloid leukemia [47]; ESCC [48]; bladder 

[49] 

ABHD11-AS1 

 

 

 

VPS37D, DNAJC30, 

BUD23, STX1A, ABHD11, 

CLDN3, CLDN4, 

METTL27 

Urinary bladder, stomach  

 

 

 

Thyroid [50, 51]; pancreatic [52, 53]; 

endometrial carcinoma [54]; ovarian [55]; 

colon [56, 57] 

 

LOC101928118    

SLC16A1-AS1 

 

SLC16A1, LRIG2  

 Cervical, lung, astrocytoma  

NSCLC [58]; OSCC [59]; HCC [60] 

 

MFI2-AS1 MFI2   Colon [61]; glioma [62]; HCC [63] 

LINC00443 ARGLU1  Renal cell carcinoma [64] 

DLEU2 

 

 

 

SPRYD7,  

TRIM13,  

KCNRG 

 

Lymphoma, laryngeal, 

leukemia, pancreatic, 

astrocytoma  

 

Gastric [65]; NSCLC [66, 67]; pancreatic 

[68]; HCC [69]; esophageal [70] 

 

LOC101927596    

LOC105375401    

LOC100128164    

ADAMTS9-AS1 

 

ADAMTS9 

 

Ovarian epithelial cancer, 

malignant glioma  

Prostate [71]; COAD [72] 

  

ADAMTS9-AS2 

 

 

 

ADAMTS9 

 

 

 

Malignant glioma, renal, 

NSCLC 

 

 

Ovarian [73]; gastric [74–76]; glioblastoma 

[77]; breast [26, 78]; TSCC [79]; esophageal 

[80] 

 

LINC00996 

 

 

 

LRRC61, RARRES2, 

REPIN1, AC073111.3, 

ZNF775, AC073111.5, 

GIMAP8, GIMAP7   

LINC01296 

  

Prostate, stomach, urinary 

bladder, colorectal  
Osteosarcoma [81]; neuroblastoma [82]; 

ESCC [83, 84]; NSCLC [85]; HCC [86]; 
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  breast [87]; ovarian ([88]) 

LOC101929066    

LOC101929595    

LOC440028    

LOC101929340    

LINC00958 

 

 

   

Cervical [89, 90]; OSCC [91, 92]; NSCLC 

[93]; pancreatic [94]; nasopharyngeal [95]; 

HNSCC [96]; HCC [97]; gastric [98]  

LOC101927392    

RBPMS-AS1 RBPMS   

BBOX1-AS1 FIBIN, BBOX1   Colon [99]; cervical [100] 

TMPO-AS1 TMPO, SLC25A3, IKBIP  Astrocytoma   

GS1-120K12.4    

TTC39A-AS1 RNF11, TTC39A, EPS15    

LOC400568    

TMEM220-AS1 

MYH3, SCO1, ADPRM, 

TMEM220, TMEM238L, 

PIRT   

 

LDLRAD4-AS1    

LINC00551 EFNB2, ARGLU1    

* Cancer types (with experimental validations) to be associated with that specific lncRNA according to the lncRNAdisease2.0 
database.  
** Only a few examples are given since the number of relevant publications is large.  
COAD: colon adenocarcinoma; ESCC: esophageal squamous cell carcinoma; HCC: Hepatocellular carcinoma; HNSCC: head and 
neck squamous cell carcinoma; LUAD: lung adenocarcinoma; NSCLC: non-small cell lung cancer; OSCC: oral squamous cell 
carcinoma; TSCC: tongue squamous cell carcinoma. 

 

Prognostic lncRNA signatures 

 

Squamous cell carcinoma 

Cox elastic-net regression models selected a 462-

lncRNA list for the LUSC study, a 597-lncRNA list 

for the HNSC study and a 263-lncRNA list for the 

CESC study, respectively. Among the 3 lists were 11 

overlaps (Table 3), and 5 of them (CFLAR-AS1, 

SLC16A1-AS1, SIRPG-AS1, LOC389641 and 

LINC00593) were experimentally validated as cancer 

related genes according to the lncRNADisease 2.0 

database. In Table 3, the target mRNAs of these 11 

lncRNAs are given.  

 

Adenocarcinoma 

Cox elastic-net regression models identified a 53-

lncRNA set for the STAD study and a 95-lncRNA list 

for the LUAD study. The PRAD study was excluded 

from the prognosis analysis since the number of events 

(deaths) was too small to guarantee a valid analysis. The 

intersection set of the two gene lists includes 5 
lncRNAs (EIF1AX-AS1, LINC00115, LINC01237, 

MALAT1 and LINC00528), among which only 

LINC00115 and MALAT1 have been experimentally 

validated to correlate with cancers according to the 

lncRNADisease2.0 database. The associated cancer 

types of and the target mRNAs by these five lncRNAs 

given by the lncRNADisease 2.0 database are listed in 

Table 4. 

 

Performance evaluation 

Using ROC curves (Figure 1), the discriminative 

ability of identified pan-SCC and pan-AC lncRNA 

signatures was evaluated. The AUCs of these two 

signatures are 0.951 and 0.920 for the SCC type and 

the AC type, respectively. Overall, these two 

signatures perform well.  According to the log-rank 

tests (Figure 2), the identified pan-SCC and pan-AC 

prognostic lncRNA signatures have good prognostic 

values as well.  

 

Enriched pathways 

Using String software, pathway enrichment analysis 

was conducted.  The results showed that no pathway or 

GO biological process term was enriched by the AC 
prognostic signature. Enriched pathways/GO biological 

process terms for the SCC and AC discriminative 

signatures and the  SCC prognostic  signatures are given  
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Table 2. Pan discriminative lncRNAs for the adenocarcinoma type. 

Symbols 

 

 

Target mRNAs  

 

 

Cancer types 

(experimentally 

validated)*  

Recent publications recording associated 

cancer types  

UBXN10-AS1 

 

 

PLA2G5, PLA2G2D, 

PLA2G2F, PLA2G2C, 

UBXN10   

SNHG20 

 

 

SEC14L1  

 

 

HCC, ovarian, colorectal, 

NSLCL, stomach  

Breast [101]; cervical [102]; bladder [103]; 

prostate [104]; ESCC [105]; OSCC [106, 107]; 

nasopharyngeal [108] 

ADAMTS9-AS1 

 

ADAMTS9 

 

Ovarian epithelial cancer, 

glioma  

Prostate [32]; COAD [72] 

 

ADAMTS9-AS2 

 

 

 

ADAMTS9 

 

 

 

Glioma, renal, NSCLC 

 

 

 

Ovarian [73]; gastric [74–76]; clear cell renal 

cell carcinoma [109]; glioblastoma [77]; breast 

[26, 78]; TSCC[79]; esophageal [80]; NSCLC 

[110] 

PVT1 

 

 

 

MYC  

 

 

 

Colorectal, HCC, 

prostate, cervical, 

stomach, lung, 

esophageal and others  

EAC [111] **  

 

 

 

VPS9D1-AS1 

 

 

 

DPEP1, CHMP1A, 

SPATA33, CDK10, 

SPATA2L, VPS9D1, 

ZNF276, FANCA  

Stomach 

 

 

 

NSCLC [112, 113]; prostate [114, 115] 

 

 

 

*Cancer types (with experimental validations) to be associated with that specific lncRNA according to the lncRNAdisease2.0 
database.  
**Only one example is given since the number of relevant publications is large.  
COAD: colon adenocarcinoma; EAC: esophageal adenocarcinoma; ESCC: esophageal squamous cell carcinoma; HCC: 
Hepatocellular carcinoma; NSCLC: non-small cell lung cancer; OSCC: oral squamous cell carcinoma; TSCC: tongue squamous 
cell carcinoma.  

 

in Figure 3. As far as the enriched KEGG pathways are 

considered, there is one overlap – necroptosis between 

the AC discriminative category and the SCC prognostic 

category. Necroptosis is a programmed caspase-

independent cell death. Studies have shown that tumor 

undertakes necroptosis in vivo and the process has pro- 

or anti- tumor effects in cancer development and 

progression [116]. At the level of pathways, both SCCs 

and ACs may share some common features.  

 

The overlapped proportions/ratios of these prognostic 

lncRNAs are substantially less than those taken by the 

discriminative lncRNAs, which may be explained by two 

reasons. First, many studies in the literature have pointed out 

that prognosis is more difficult than discrimination/ 

diagnosis. For instance, for the LUAD patients at the same 

stage, distinct molecular subtypes with different prognoses 
exist. Correspondingly, prognostic gene signatures are 

anticipated to be more type-specific, while the sizes of these 

signatures are to be much larger.  Indeed, several studies 

suggested that possibly dozens of genes can make a perfect 

segmentation of tumors and controls or of different 

subtypes, but this is not so for the segmentation of patients 

with good prognosis versus poor prognosis. Second, the 

overall survival time may not be a good surrogate for 

prognosis. Also, these AC and SCC cohorts may not be 

followed up for a period long enough to develop adequate 

events/deaths for an accurate survival analysis. With these 

two disadvantages, many false positives may be produced 

and included in the resulting gene lists. 
 

DISCUSSION 
 

Discriminative lncRNAs with high biological relevance 

to cancer 
 

Overlapped lncRNAs by both types 

First, the focus is on the two overlapped lncRNAs – 

ADAMTS9-AS2 and ADAMTS9-AS1. According to the 

lncRNADisease 2.0 database [21], both lncRNAs are 
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Table 3. Pan prognostic lncRNAs for the squamous cell carcinoma type. 

Symbols 

 

 

Target mRNAs  

 

 

Cancer types 

(experimentally 

validated)*  

Recent publications recording associated 

cancer types with experimental validations  

SLC16A1-AS1 

 

SLC16A1, LRIG2  

 

Cervical, lung, 

astrocytoma  

NSCLC [58]; OSCC [59]; HCC [60] 

 

CFLAR-AS1 

 

FAM126B, NDUFB3  

CFLAR, CASP10, CASP8 

ESCC, astrocytoma 

  

SPATA13-AS1 

 

AL359736.1, SPATA13, 

C1QTNF9    

LINC00311 GSE1  Thyroid [117] 

LINC01305 OLA1, SP9, CIR1, SCRN3  Cervical [118]; NSCLC [119] 

LINC01399 ISX, HMGXB4, TOM1   

FGF14-AS1 FGF14   

SIRPG-AS1 

SIRPD, AL049634.2, 

SIRPB1, SIRPG  Astrocytoma   

LOC389641 

TNFRSF10D, TNFRSF10A, 

CHMP7, R3HCC1, LOXL2  PADA PDAC  [120] 

LINC00593  Astrocytoma   

MKNK1-AS1 

 

 

DMBX1, AL136373.1, 

KNCN, MKNK1, MOB3C, 

ATPAF1, TEX38   

*Cancer types (with experimental validations) to be associated with that specific lncRNA according to the lncRNAdisease2.0 
database.  
ESCC: esophageal squamous cell carcinoma; HCC: Hepatocellular carcinoma; NSCLC: non-small cell lung cancer; OSCC: oral 
squamous cell carcinoma; PDAC: pancreatic ductal adenocarcinoma. 

 

associated with several cancer types. In addition, a search 

of the PubMed database on recent investigation of the 

association between these two genes and cancer reveals 

that more studies concerned ADAMTS9-AS2. For 

example, a very recent study reported that the expression 

level of ADAMTS9-AS2 is lower in esophageal cancer 

tissues and over-expressing it can suppress the 

development of esophageal cancer via inducing CDHS 

promoter methylation [80]. The recently experimentally 

validated cancer types for this lncRNA included breast 

cancer [26] (using qRT-PCR), gastric cancer (by 

constructing a potential ceRNA network using 

bioinformatics tools and then validating the ADAMTS9-

AS2/miR-372/CADM2 axis using qRT-PCR and dual 

luciferase reporter assay) [75], tongue squamous cell 

carcinoma (constructing ADAMTS9-AS2/miR-

600/EZH2 ceRNA network) [79] and others. In contrast, 

only two recent studies on ADAMTS9-AS1 [71, 72] with 

experimental validations have been found. 

 
Pan-AC lncRNAs 

Of the pan-AC specific lncRNAs, all except UBXN10-

AS1 and VPS9D1-AS1 have been experimentally 

validated to be associated with a variety of cancer types 

according to the lncRNADisease 2.0 knowledgebase 

[21]. For example, both SNHG20 and PVT1 are related 

to stomach cancer. PVT1 is a well-known oncogene and 

correlated with a variety of cancers according to both 

the lncRNADisease 2.0 knowledgebase and the 

GeneCards database [121]. In our previous study [122], 

PVT1 was identified as a subtype-specific prognostic 

gene for esophageal adenocarcinoma using a feature 

selection algorithm called the Cox-filter method [123]. 

In this study, it was identified as a pan AC 

discriminative gene, which leads us to anticipate that 

PVT1 may be more relevant to the AC type than the 

SCC type, even though PVT1 has also been verified in 

the literature to associate with the SCC cancer type such 

as esophageal squamous cell carcinoma [124].  Another 

feasible explanation is that PVT1 may be a pan-gene 

commonly applicable for both SCCs and ACs. Further 

investigation is warranted. Also, SNHG20 is regarded 

as vital in many cancers [125] and identified as a 
subtype-specific prognostic gene for laryngeal 

squamous cell carcinoma in our previous study [36] 

using a computational method. Recent studies have 
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Table 4. Pan prognostic lncRNAs for the adenocarcinoma type. 

Symbols 

 

 

Target mRNAs  

 

 

Cancer types (experimentally 

validated)*  

Recent publications recording 

associated cancer types with 

experimental validations  

EIF1AX-AS1 

 

MAP7D2, EIF1AX, 

RPS6KA3    

LINC00115 

 

SAMD11  

 

Astrocytoma, lung 

adenocarcinoma  

Glioma [126]; breast [127] 

 

LINC01237 

 

GAL3ST2, NEU4, PDCD1, 

RTP5, AC131097.2   

LINC00528 BCL2L13, BID, MICAL3  LSCC [128] 

MALAT1 

 

 

 

FRMD8, SCYL1, LTBP3, 

SSSCA1, FAM89B, 

EHBP1L1, KCNK7, 

MAP3K11 

Pancreatic, prostate, breast, 

gallbladder, OSCC, stomach, 

NSCLC, ESCC, and others  

 

Breast [129]; ovarian [130]; glioblastoma 

[131] ** 

 

 

*Cancer types (with experimental validations) to be associated with that specific lncRNA according to the lncRNAdisease2.0 
database.  
**Only a few examples are given since the number of relevant publications is large. 
ESCC: esophageal squamous cell carcinoma; LSCC: laryngeal squamous cell carcinoma; LUAD: lung adenocarcinoma; OSCC: 
oral squamous cell carcinoma.   

 

experimentally validated that this gene is related to 

esophageal squamous cell carcinoma [105], nasopharyngeal 

carcinoma [108] and oral squamous cell carcinoma  

[106–107]. Again, the existence of pan-genes for both AC 

and SCC types may explain this to some extent. 

 

In addition to gastric cancer as indicated by the 

lncRNADisease 2.0 database, non-small cell lung 

cancer [112–115] and prostate cancer have been 

 linked to VPS9D1-AS1 by several recent experimental 

studies. 

 

Pan-SCC lncRNAs 

DUXAP8 was recently identified as a pan-cancer gene 

using meta-analysis and TCGA pan-cancer data [30]. 

Focusing on hepatocellular carcinoma, the authors did a

 

 
 

Figure 1. ROC curves showing the performance of identified discriminative lncRNA lists. AC: adenocarcinoma; AUC: area under 

the ROC curve; ROC: receiver characteristic operator; SCC: squamous cell carcinoma.  
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Figure 2. Kaplan-Meier curves showing if identified prognostic lncRNA lists are associated with survival rates for 
adenocarcinomas and squamous cell carcinomas. AC: adenocarcinoma; SCC: squamous cell carcinoma. p: the corresponding p-values 

of log-rank tests to test if the survival curves of high-risk group and low-risk group are same. Here, the ridge Cox regression models were used 
to estimate the coefficients of lncRNAs and then risk scores were calculated. Then the median value of risk scores was used as the cutoff to 
divide the AC/SCC patients into the high-risk group and the low-risk group.  

 

 
 

Figure 3. Dot plots showing the enriched gene ontology biological process terms and KEGG pathways. (A) Enriched GO 

biological process terms by SCC discriminative lncRNA signature. (B) Enriched GO biological process terms by AC discriminative lncRNA 
signature. (C) Enriched GO biological process terms by SCC prognostic lncRNA signature. (D) Enriched KEGG pathways by AC discriminative 
lncRNA signature. (E) Enriched KEGG pathways by SCC prognostic lncRNA signature. AC: adenocarcinoma; FDR: false discovery rate; GO: gene 
ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate; SCC: squamous cell carcinoma. 
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qRT-PCR experiment to verify the diagnostic and 

prognostic values of this gene for cancer patients. The 

results showed that the expression value of DUXAP8 

increased in tumor tissues when compared with their 

paired normal tissues. In the meantime, high 

expression of this gene is related to a poor prognosis. 

In addition to this study, this lncRNA has been linked 

to several other cancer types, renal cell carcinoma [40] 

and colon cancer [33], for example. For SCCs 

specifically, it is linked to esophageal squamous cell 

carcinoma [37]. 

 

Additionally, HAGLR was listed as being highly 

relevant to cancer. Specific for the SCC or AC cancer 

type, based on the data analysis of MTT assay, qRT-

PCR and western blot experiments, Lu et al. [132] 

showed that the expression levels of HAGLR were 

associated with non-small cell lung cancer tumor lymph 

node metastasis status, stage, and overall survival. With 

inhibition of HAGLR in non-small cell lung cancer 

cells, cell proliferation and invasion can be suppressed. 

Also, Yang et al. [133] showed that down-expression of 

HAGLR inhibited LAMP3 expression by sponging 

miR-143-5p and suppressed the progression of 

esophageal carcinoma.  

 

Prognostic lncRNAs with high biological relevance 

to cancer 

 

Pan-SCC lncRNAs 

Interestingly, SLC16A1-AS1 is deemed as both a 

prognostic gene and a discriminative gene for the pan-

SCC type. Some markers may play crucial roles in both 

diagnosis and prognosis of a disease, and in our opinion 

such markers deserve more attention since targeting 

them may not only prevent occurrence of the disease 

but also reverse the consequences of the disease after 

disease onset. 

 

A search of the PubMed database revealed several 

articles that describe the association between this 

lncRNA and cancer. For example, Liu et al. [58] 

demonstrated that SLC16A1-AS1 was under-expressed 

in non-small cell lung cancer tissues and cell lines with 

an in situ hybridization experiment. They also showed 

that SLC16A1-AS1 overexpression could functionally 

inhibit the viability and proliferation of lung cancer 

cells, block the cell cycle and promote cell apoptosis in 
vitro. 

 

It is worth pointing out that none of the 11 pan-SCC 

prognostic lncRNAs are under comprehensive 

investigation according to lncRNADisease 2.0. In the 
PubMed search for recent publications exploring the 

association of these lncRNAs with cancer, only several 

additional links were harnessed. For instance, one study 

indicated that LINC01305 was related to cervical cancer 

[118] and the other [119] associated it with non-small 

cell lung cancer.  

 

Pan-AC lncRNAs 

Of the pan-AC prognostic lncRNAs, MALAT1 is a 

well-known oncogene and has been linked to a variety 

of cancers so far, including non-small cell lung cancer, 

cervical cancer, tongue squamous cell carcinomas and 

gastric cancer. In our previous study [122], it was 

identified as a subtype-specific prognostic gene for 

laryngeal squamous cell carcinoma using the Cox-filter 

method [123], further implying its possibility of being a 

pan-cancer lncRNA.  

 

As far as LINC00115 is concerned, the 

lncRNADisease 2.0 database linked it to astrocytoma 

and lung adenocarcinoma. Two very recent studies 

[126, 127] have added breast cancer and glioma to 

this list. On the other hand, LINC00528 has recently 

been demonstrated to relate to laryngeal squamous 

cell carcinoma [128]. The respective recent 

publications exploring the association of these 

lncRNAs with cancer in the PubMed database are 

summarized in Tables 1–4.   

 

Given the promising results that a substantial proportion 

of pan-SCC/AC genes identified by the bioinformatics 

procedure are related to a variety of cancer types and 

thus have a good biological relevance, the overlapped 

discriminative- and prognostic- lncRNAs warrant 

further investigation.  

 

CONCLUSIONS 
 

In this study, discriminative and prognostic lncRNA 

lists for pan SCC and pan AC types were constructed 

using first elastic-net regression models to obtain 

individual lncRNA lists for each cancer study, and 

subsequently identifying the intersection of the resulting 

lists.  

 

Given the fact that the research on lncRNAs has been a 

hot topic in the past several years, the shortage of 

lncRNA markers for complex diseases such as cancer, 

especially prognostic ones (since the outcome is 

survival time which needs a long period of follow-up to 

collect) is still common. The identified lncRNA lists in 

this article may help experimental biologists generate 

research hypotheses and design their own experiments 

correspondingly.   

 

It is worth pointing out that pan cancer gene signatures 

are equal in importance to type-specific gene signatures. 

While with the type-specific signature a better 

prediction for progression and prognosis is possible, 
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Table 5. Clinical characteristics of squamous cell carcinoma studies and adenocarcinoma studies. 

 # of patients(stages I-IV)  # of deaths Missing of survival 

time/Missing of stage 

information/ No. of all 

zero expression  

# of normal tissues  

Squamous Cell Carcinoma  

Head and Neck 426 (24/63/73/200) 187 1/66/43 42 

Lung   220 (116/55/43/4) 105  4/2/17  17 

Cervical1 196 (--/--/--/--) 42 0/--/220  3 

Adenocarcinoma  

Lung  488 (262/112/81/23) 174 9/10/76 58 

Stomach  285 (39/99/103/23) 94 3/21/10 33 

Prostate2  374 (--/--/--/--)  6 0/--/53 52 

--: not available. 
1Since no stage information is available and there are only 3 normal tissues, this cohort was excluded from and discriminative 
analysis.  
2The prostate cohort was not included in the cancer-type specific analysis for survival analysis since the number of 
events/deaths is small.  In summary, 2 studies were used for SCC discriminative analysis and 3 for survival analysis, while for 
AC 3 studies were used for discriminative analysis and 2 for survival analysis.  

 

some existing drugs/therapies for other cancers may be 

adopted to treat a less prevalent cancer. Such adoption 

may help save resources and time for developing a brand-

new drug for one specific cancer type, and therefore may 

increase the chance of survival for cancer patients.   

 

MATERIALS AND METHODS 
 

Experimental data 

 

The Atlas of ncRNA in Cancer (Tanric) database [134] 

included lncRNA expression profiles (RNA-Seq data) for 

20 cancer types in the TCGA project. We identified 8 

cancers that are either the SCC type or AC type with 100 

% confidence: cervical squamous cell carcinoma 

(CESC), head and neck squamous cell carcinoma 

(HNSC) and lung squamous cell carcinoma (LUSC), 

lung adenocarcinoma (LUAD), prostate adenocarcinoma 

(PRAD), stomach adenocarcinoma (STAD), colon 

adenocarcinoma (COAD), and rectum adenocarcinoma 

(READ).  For the colon and rectum cohorts, no normal 

tissues were provided and the number of deaths was also 

very small, rendering both the discrimination and 

prognosis analyses less trustworthy or even impossible. 

Consequently, these two cohorts were excluded, and the 

final SCC study included cervical, head and neck, and 

lung SCC cohorts. The AC cohorts included lung, 

prostate and stomach.   

 

For the 6 cohorts, expression profiles were downloaded 

fromtheTanricwebpage(https://ibl.mdanderson.org/tanri

c/_design/basic/download.html). Corresponding clinical 

information such as overall survival time, American 

Joint Committee on Cancer staging status and age were 

downloaded from TCGA’s Genomic Data Commons 

(http://www.cbioportal.org/). Tanric [134] includes 

expression profiles of 12,727 lncRNAs quantified as the 

RPKM (fragments per kilo-bases per million) counts. 

Table 5 summarizes clinical characteristics of these six 

studies.  

 

Next, ensemble IDs were mapped into gene symbols 

and lncRNAs without a valid gene symbol were deleted, 

leaving 3,173 lncRNAs retained for further analysis. 

Lastly, the RPKM were logarithm transformed (base 2) 

after being added 1s (in order to avoid having log 

transformation on zeros), to make the distribution of 

resulting lncRNA expression values approximate to a 

normal one.   

 

Statistical methods 

 

Elastic-net regularized regression 

A logistic elastic-net regularized regression model and a 

Cox elastic-net regularized regression model were fit 

for each cohort to identify the respective discriminative 

lncRNA signature and prognostic lncRNA signature for 

the specific cancer type. Briefly, elastic-net penalty is a 

linear combination of L1 (LASSO) and L2 (ridge) 

penalties. It is well known that the L1 penalty 
introduces sparseness into the model by offsetting the 

coefficients of insignificant genes to zeros. In contrast, 

the L2 penalty introduces a grouping effect by 

smoothing the coefficients of correlated genes to a 

file:///C:/Users/OKrasnova/Desktop/IMPACT%20AGING/2021/January/202278/(https:/ibl.mdanderson.org/tanric/_design/basic/download.html
file:///C:/Users/OKrasnova/Desktop/IMPACT%20AGING/2021/January/202278/(https:/ibl.mdanderson.org/tanric/_design/basic/download.html
http://www.cbioportal.org/
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common value. In this sense, it can also penalize large β 

coefficients. Therefore, the elastic-net penalty 

incorporates the advantages of both L1 and L2 

penalties, i.e., being capable of feature selection and 

giving the grouping structure some consideration. The 

mathematical notation is,  
 

1 2( | | (1 ) || || )a   + −  

 

Here, the parameter controls the ratio of L1 penalty to 

L2 penalty. The tuning parameter λ determines the 

amount of regularization used, with a large value 

corresponding to a heavy penalization on β coefficients 

and a small value to a light one. Its optimal values were 

determined using 10-fold cross-validations. 

 

Depending on the type of outcome, it may be combined 

with the corresponding objective function to frame into a 

variety of regularized regression models such as a logistic 

elastic-net regression for a binary outcome and a Cox 

elastic-net regression for survival time.  
 

For individual cohorts, elastic-net regression models 

were fit. The respective intersections of identified 

lncRNA lists by the models were obtained and  

deemed as pan-AC discriminative lncRNAs, pan-SCC 

discriminative lncRNAs, pan-AC prognostic lncRNAs 

and pan-SCC prognostic lncRNAs. Their performance 

and biological relevance were investigated subsequently. 

Figure 4 shows how these four signatures were 

constructed.  

 

Pathway enrichment analysis 

Connectivity (gene-to-gene interaction) information 

was retrieved for the target mRNAs by identified 

lncRNAs from the lncRNADisease 2.0 database [21], 

and upon those target mRNAs Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [135] pathway/gene 

ontology (GO) [136] enrichment analysis was 

conducted using the String software [137]. A false 

discovery rate (FDR) of <0.05 was deemed to be 

statistically significant.  

 

Performance evaluation 

For discriminative values of identified lncRNAs, ridge 

logistic regression models were fit to estimate the 

coefficients of identified genes and then probabilities of 

having tumors were calculated. The receiver characteristic 

operator (ROC) curves were made, and the area under the 

ROC curve (AUC) statistics were calculated to evaluate 

the performance of these signatures.  

 

Multivariate Cox regression models with ridge penalty 

terms were fit to estimate the coefficients of identified 

prognostic lncRNAs and calculate the risk scores of death 

for all patients. The median expression value was used as 

 

 
 

Figure 4. Flowchart showing the procedure for identifying SCC- and AC-discriminative, and SCC- and AC-prognostic 
lncRNAs. 
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a cutoff to divide the patients into high-risk group and the 

low-risk groups. Lastly, log-rank tests were carried out to 

test if the survival curves of the two groups were the 

same. 

 

Statistical language and packages 

 

All statistical analysis was carried out in R version 3.5 

(https://www.r-project.org/). Specifically, the Bioconductor 

org.Hs.eg.db package was used to map ENSEMBL IDs to 

gene symbols. The glmnet package [138] was used to fit 

the elastic net and the ridge regression models. The survival 

and survminer packages were used for making Kaplan-

Meier curves and carrying out log-rank tests. ROCR and 

ggplot2 were used for making ROC curves and calculating 

AUC statistics.  

 

Availability of data and materials 

 

LncRNA expression profiles (RNA-Seq data) and the 

corresponding clinical information were downloaded 

from the Tanric (The Atlas of ncRNA in Cancer) 

webpage (https://ibl.mdanderson.org/tanric/_design/ 

basic/download.html) and the Genomic Data Commons 

(http://www.cbioportal.org/) of TCGA (The Cancer 

Genome Atlas) database. 
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