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INTRODUCTION 
 

Melanoma is a highly aggressive skin cancer that causes 

about 55,500 deaths annually [1]. Metastatic melanoma 

represents the cause of death in the vast majority of 

cases and has a 5-year relative survival rate of 

approximately 25% [2, 3]. Based on clinical and 

pathological features, there are different therapeutic 

options for melanoma, including surgical treatment, 

chemotherapy, radiotherapy, immunotherapy, or 

targeted therapy [4, 5]. 

Previous studies have reported that the immune-

classification may have a more superior prognostic 

value compared to the AJCC/UICC TNM-classification, 

which reveals the importance of immunological 

biomarkers in melanoma [6–9]. Despite the encouraging 

clinical outcomes of immunotherapy over the past 

decade, a significant proportion of patients develop 

resistance, which is a major obstacle to successful 

immunotherapy [3, 10]. In spite of considerable 

advances in genetic approaches that provide diagnostic, 

prognostic, or therapeutic information, the gene-based 
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ABSTRACT 
 

Melanoma is a life-threatening form of skin cancer with an elevated risk of metastasis and high mortality 
rates. The prognosis and clinical outcomes of cancer immunotherapy in melanoma patients are influenced 
by immune cell infiltration in the tumor microenvironment (TME) and the expression of genetic factors. 
Despite reports suggesting that immune-classification may have a better prediction of prognosis compared 
to the American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) TNM-
classification, the definition of Immunoscore in melanoma is becoming a difficult challenge. In this study, 
we established and verified a 7-gene prognostic signature. Melanoma patients from the Cancer Genome 
Atlas (TCGA) were separated into a low-risk group and a high-risk group using the median risk score. 
Receiver operating characteristic (ROC) analysis for overall survival (OS) showed that the area under the 
curve (AUC) was 0.701 for 1 year, 0.726 for 3 years, and 0.745 for 5 years, respectively. Moreover, a 
nomogram was constructed as a practical prognostic tool, and the AUC was 0.829 for 3 years, and 0.803 for 
5 years, respectively. Furthermore, we validated the above results in two datasets from the Gene 
Expression Omnibus (GEO) database and the relationship between 7-gene prognostic signature and immune 
infiltration estimated. 
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biomarkers have not yet been used in routine clinical 

practice [1, 11, 12]. Therefore, it is imperative to 

explore the immune-related genomic signature to 

supplement conventional prognostic factors and to 

improve the effects of immunotherapeutic drugs. 

 

Increasing evidence shows that immune cell infiltration 

of the TME influences the prognosis and clinical 

outcome of cancer immunotherapy [13–16]. In 

melanoma, tumor-infiltrating lymphocytes are a 

favorable prognosticator and predictive biomarker for 

treatment response [17–19]. Moreover, increasing 

evidence suggests that an intense infiltration of B cells, 

activated T cells and mature dendritic cells could be 

associated with a positive prognosis, while an increased 

amount of macrophages, mast cells, and neutrophils 

predict worse survival in malignant melanoma [16, 20–

22]. However, due to the difficulties experienced in the 

evaluation and the complex intratumoral immune 

reactions, the definition of Immunoscore is becoming a 

difficult challenge in melanoma [9, 23]. Although 

programmed death-ligand 1 (PD-L1) expression in 

tumor-infiltrating immune cells (TIICs) is related to a 

better prognosis of cancer, PD-L1 expression does not 

influence treatment decisions [1, 24]. Therefore, we 

identified potential immune-related prognostic genes for 

melanoma prognosis and therapeutic evaluation. A 

series of immune-related genes as potential prognostic 

predictors from TCGA was used to establish a 7-gene 

prognostic signature in melanoma. Furthermore, we 

validated the results in two GEO datasets and estimated 

the relationship between the established prognostic 

signature and immune infiltration.  

 

RESULTS  
 

Construction and verification of immune-related 

groups 

 

A total of 471 melanoma samples from the TCGA 

dataset were classified into two immune-related groups 

using the single-sample gene set enrichment analysis 

(ssGSEA): 203 samples (43.1%) in the high immune 

cell infiltration group, and 268 samples (56.9%) in the 

low immune cell infiltration group (Figure 1A). 

 

Moreover, we verified the reliability of the two 

immune-related groups classified by the above method. 

Firstly, we compared the degree of immune cell 

infiltration between immune-related groups by the 

Estimation of Stromal and Immune cells in Malignant 

Tumor tissues using the Expression data (ESTIMATE) 

algorithm. As expected, the Tumor Purity was higher in 

the low immune cell infiltration group, while the 

ESTIMATE Score, Immune Score, and Stromal Score 

were higher in the high immune cell infiltration group 

(Figure 1A). Figure 1B shows the significant 

associations between the scores and the two immune-

related groups (P < 0.001). We further found 

significantly higher expression level of the human 

leukocyte antigen (HLA) family genes and PD-L1 

(Figure 1C, 1D, P < 0.001) and increased variety of 

immune cells among 22 TIICs subtypes in the high 

immune cell infiltration group compared with the other 

group (Figure 1E).  

 

Furthermore, the results of gene set enrichment analysis 

(GSEA) suggested an intensive immune phenotype in 

the high immune cell infiltration group. The top 5 Gene 

ontology (GO) terms are shown in Supplementary 

Figure 1A, including the MHC class II protein complex 

and immunoglobulin complex. Moreover, 5 immune-

related Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways were selected and shown in 

Supplementary Figure 1B, such as B cell and T cell 

receptor signaling pathway. As previously reported, we 

also confirmed that the immune cell infiltration was a 

favorable prognosticator in melanoma (Supplementary 

Figure 2), and was closely associated with the above 

results. Therefore, our immune cell infiltration groups 

could be used as immune-related groups for further 

analysis.  

 
Screening of differentially expressed genes (DEGs) 

and functional analysis 

 

A total of 659 DEGs were identified from a comparison 

of high vs. low immune cell infiltration groups in the 

TCGA dataset, and comprised of 607 up-regulated 

genes and 52 down-regulated genes. Functional analysis 

was performed using Metascape. The top GO terms and 

KEGG included lymphocyte activation and cytokine-

cytokine receptor interaction (Figure 2A, 2B). The 

network of GO and KEGG enriched terms is shown in 

Figure 2C. Moreover, the 659 DEGs were analyzed 

using the Search Tool for the Retrieval of Interacting 

Genes database (STRING) and were used to construct 

the protein-protein interaction (PPI) network. Several 

central modules were established by Molecular 

Complex Detection (MCODE) software (Figure 2D, 

Module 1). Furthermore, we determined the prognostic 

value of the 659 DEGs in TCGA and obtained 509 

DEGs associated with OS (Supplementary Table 1). 

 

Identification of immunity-related module and 

intersecting DEGs  

 

The weighted gene co-expression network analysis 

(WGCNA) detected 7 co-expression modules and their 

association with immune-related groups were analyzed. 

The cluster dendrogram was established (Figure 3A) 

and the blue module was the most correlated module of 
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Figure 1. Construction and verification of immune-related groups in melanoma samples. (A) The high and low immune cell 

infiltration groups (Immunity_H and Immunity_L) were constructed by ssGSEA and further verified by the ESTIMATE algorithm. (B) The 
correlation between the scores calculated by the ESTIMATE algorithm and the two immune cell infiltration groups (P < 0.001). (C) The 
expression of HLA family genes. (D) The expression of PD-L1. (E) The difference of TIIC subtypes between the two immune cell infiltration 
groups.   
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Figure 2. Screening of DEGs and functional analysis. (A) Heatmap of the GO enriched terms. (B) Heatmap of the KEGG enriched terms. 

(C) A network of GO and KEGG enriched terms. (D) The top one module. The color of nodes represents the log (FC) value and the size reflects 
the number of interacting proteins with the designated protein. 
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the immune cell infiltration groups (|r| = 0.74, P = 5e-

83) (Figure 3B). A total of 841 genes in the selected 

module were extracted for further study (Supplementary 

Table 2), and 333 intersecting DEGs were obtained 

from the module with the highest correlation coefficient 

and 509 DEGs with prognostic value (Figure 3C). 

 

Functional analysis of the 333 DEGs was carried out by 

the clusterProfiler package. Top GO terms included T 

cell activation in biological processes (BP), T cell 

receptor complex in cellular components (CC), and 

cytokine binding in molecular functions (MF) 

(Figure 3D). Moreover, the top 10 enriched pathways 

are shown in Figure 3E, including cytokine-cytokine 

receptor interaction and B cell receptor signaling 

pathway. 

 

Establishment and validation of the 7-gene 

prognostic signature 
 

The 333 DEGs were subjected to univariate Cox 

regression analysis and 294 DEGs were selected (P < 

0.05) for further study. Using the Least Absolute 

Shrinkage and Selection Operator (Lasso) Cox 

regression analysis, 16 genes were filtered for stepwise 

multivariate Cox regression analysis (Figure 4A, 4B). 

Finally, 7 key genes (CYTL1, CCL8, FCGR2C, OAS1, 

HAPLN3, WIPF1, CLIC2) were used to construct the 

prognostic signature (Supplementary Figure 3): Risk 

score = 0.007* CYTL1 - 0.033* CCL8 - 0.021* 

FCGR2C - 0.015* OAS1 - 0.037* HAPLN3 - 0.014* 

WIPF1 - 0.023* CLIC2 (Supplementary Table 3). The 

distribution of the risk score, survival status, and gene 

expression profiles between the two groups are 

displayed in Figure 4C–4E. 

 

Melanoma patients from TCGA were separated into a 

low-risk group (n = 224) and a high-risk group 

(n = 223) based on the median risk score as a cutoff 

value. The Kaplan-Meier analysis showed that the high-

risk group had a poorer OS compared with the low-risk 

group (Figure 5A). Moreover, the time-dependent ROC 

analysis showed that the AUC was 0.701 for 1 year, 

0.726 for 3 years, and 0.745 for 5 years, respectively, 

indicating that our prognostic signature had a strong 

predictive capacity (Figure 5B). Similar results were 

observed for DSS and PFS. The high-risk group had 

worse DSS (Figure 5C) and PFS (Figure 5E) compared 

with the low-risk group. The AUCs for 1-year, 3-year, 

and 5-year DSS rates using the 7-gene prognostic 

signature were 0.733, 0.757, and 0.766, respectively 

(Figure 5D). The AUCs for predicting 1-year, 3-year, 

and 5-year PFS were 0.588, 0.619, and 0.634, 
respectively (Figure 5F). These results demonstrated 

that the 7-gene prognostic signature was an effective 

prognostic indicator of OS, DSS, and PFS. 

Furthermore, GSE54467 (n = 79) and GSE65904 (n = 

207) were utilized to validate the predictive value of OS 

and DSS. Based on the median risk score, the high-risk 

group (n=39) and low-risk group (n=40) were identified 

in the GSE54467 dataset. Likewise, patients in the high-

risk group had a shorter OS (Supplementary Figure 4A). 

The AUC of our prognostic signature was 0.555 at 1 

year, 0.682 at 3 years, and 0.761 at 5 years 

(Supplementary Figure 4B). In the GSE65904 dataset, 

the Kaplan-Meier analysis also showed that the high-

risk group (n=103) had a worse DSS compared with the 

low-risk group (n=104) (Supplementary Figure 4C). 

The time-dependent ROC analysis also showed that our 

prognostic signature had a good predictive capacity in 

predicting 1-year, 3-year, and 5-year DSS (AUC = 

0.641, 0.629, 0.590, respectively) (Supplementary 

Figure 4D). 

 

Further, we performed a stratification analysis for OS to 

determine the prognostic power of our prognostic 

signature in subgroups of melanoma. The high-risk 

patients had a worse prognosis compared with the low-

risk patients in each stratum (Figure 6A–6J). Moreover, 

the prognostic signature had a better predictive ability 

compared with other clinical factors (Supplementary 

Figure 5A–5C). The pathologic T stage, N stage, and 

risk score were identified as independent prognostic 

factors (P < 0.001) (Supplementary Figure 5D, 5E). 

Eventually, we incorporated these prognostic factors to 

formulate an OS nomogram (Figure 6K). The ROC 

curves and calibration curves showed a favorable 

predictive capacity and stability in predicting the 3-year 

(AUC = 0.829) or 5-year (AUC = 0.803) OS 

(Supplementary Figure 6). 

 

Immune infiltration score and immune cells 

infiltration analysis 

 

The box chart showed that there were higher immune 

and stromal scores in the high-risk group compared with 

the low-risk group (Figure 7A and Supplementary 

Figure 7A, P < 0.001). The results in GSE54467, an 

independent dataset, also confirmed a similar 

correlation (Figure 7B and Supplementary Figure 7B, P 

< 0.001). Additionally, the expression of each gene 

(CCL8, FCGR2C, OAS1, HAPLN3, WIPF1, CLIC2) 

was significantly positively correlated to the immune 

score (Figure 7D–7I) and stromal score (Supplementary 

Figure 7D–7I). But CYTL1 had the opposite result in 

the immune score (Figure 7C) and had no relevance to 

the stromal score (Supplementary Figure 7C).  

 

Furthermore, the risk score was significantly negatively 
correlated to B cells (Cor = -0.279), CD4+ T cells  

(Cor = - 0.332), CD8+ T cells (Cor = - 0.507), dendritic 

cells (Cor = - 0.549), macrophages (Cor = - 0.315), and 
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Figure 3. Identification of highly immune-related DEGs with prognostic value and functional analysis. (A) A hierarchical 
clustering dendrogram is built to detect co-expressed genes in modules in the TCGA dataset of melanoma. (B) A heatmap showing the 
relationships of consensus module‐trait in different modules under the low and high immune cell infiltration groups. (C) Identification of 333 
common DEGs from 509 DEGs with prognostic value and the blue module using the Venn diagram software. (D) Top 15 GO terms. (E) Top 10 
KEGG pathways.  
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neutrophils (Cor = - 0.619) (Figure 8, P < 0.001). 

Meanwhile, 6 prognostic genes (CCL8, FCGR2C, 

OAS1, HAPLN3, WIPF1, CLIC2) were associated with 

the abundance of B cell, CD4+T cell, CD8+T cell, 

dendritic cells, neutrophils and macrophages 

(Supplementary Figure 8B–8G, P < 0.05). The only 

gene (CYTL1) was unrelated to the 6 types of immune 

cell infiltration (Supplementary Figure 8A, P > 0.05). 

 

 
 

Figure 4. Establishment and assessment of immune-related prognostic signature. (A, B) 294 DGEs determined using (A) LASSO 
regression analysis and (B) 10-fold cross-validation. (C–E) The distribution of (C) risk score, (D) survival status, and (E) immune-related gene 
expression profiles. 
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GSEA analysis 

 

The GSEA analysis was performed for functional 

annotation of the 7-gene prognostic signature. We found 

that more than 10 immune-related GO terms and KEGG 

pathways were visibly enriched in the low-risk group, 

while there were few enriched in the high-risk group. 

The top 5 immune-related GO terms are shown in 

Figure 9A, such as positive regulation of cytokine 

production. Besides, the top 5 immune-related pathways 

 

 
 

Figure 5. Kaplan–Meier survival analysis and time-dependent ROC analysis of the 7-gene prognostic signature in the TCGA 
dataset. Kaplan-Meier survival curves and ROC curves of (A, B) OS, (C, D) DSS, and (E, F) PFS in patients with melanoma. 
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are displayed in Figure 9B, such as natural killer cell 

mediated cytotoxicity. 

 

DISCUSSION  
 

In this work, two immune-related groups were classified 

based on the degree of immune cell infiltration in the 

TCGA dataset of melanoma. A total of 333 DEGs with 

prognostic value were obtained by WGCNA. A novel 7-

gene prognostic signature in melanoma was established 

and its predictive value and accuracy validated in 

GSE54467 and GSE65904 datasets. Finally, 

the interaction between the immune and 7-gene 

prognostic signature was explored using the 

ESTIMATE algorithm, TIMER database and GSEA. 

Figure 10 displays a detailed flowchart of the current 

study. 

 

Although studies have reported that the immune-

classification may have a better prognostic value than 

the AJCC/UICC TNM-classification, the definition of 

Immunoscore is a challenge in melanoma [23]. Previous 

studies suggest that the immune infiltration of the TME 

can be used to evaluate melanoma survival [25–27]. 

Therefore, we identified potential immune-related 

prognostic genes for melanoma prognosis. In our study, 

we established immune-related groups by ssGSEA and 

identified them using the ESTIMATE algorithm. We 

verified the reliability of the two immune-related groups 

by comparing different expressions of HLA family 

genes and PD-L1, which influence the human immune 

system and immunotherapy [28, 29], and using the 

CIBERSORT algorithm. Furthermore, the results of 

GSEA also showed different immune phenotypes in 

immune-related groups.  

 

Based on the high heterogeneity of melanoma, there are 

more than 51,000 biomarkers, including tissue- 

based tumor cell and TME biomarkers [30, 31]. In this 

study, we obtained 659 DEGs, and 333 DEGs with 

prognostic value were identified and validated in the 

TCGA dataset by WGCNA. Functional analysis was 

performed and PPI networks for these genes were 

constructed. The results of the GO analysis in both 659 

 

 
 

Figure 6. Stratification analysis and construction of a prognostic nomogram in patients. (A–J) Kaplan–Meier analysis of the 

subgroups including (A) ≤ 60 years, (B) > 60 years, (C) female, (D) male, (E) stage I-II, (F) stage III-IV, (G) N0, (H) N1-3, (I) T1-2, and (J) T3-4. (K) 

OS predictive nomogram.  
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DEGs and 333 DEGs were closely related to the TME 

and immune function, such as lymphocyte activation 

and T cell activation. Besides, KEGG analysis showed 

that the B cell receptor signaling pathway was the 

overlapping enriched pathways. In the top one PPI 

module of the 659 DEGs, the main hub nodes were 

reported to affect the TME and immunotherapy, 

including HLA and guanine-binding protein (GBP) 

family induced by interferon and C-X-C motif 

chemokine ligand, like HLA-A [32] and GBP4 [33]. 

In this study, 7 genes (CYTL1, CCL8, FCGR2C, 

OAS1, HAPLN3, WIPF1, CLIC2) were identified as 

prognostic signatures for melanoma. CYTL1 was found 

to be highly expressed in neuroblastoma and a potential 

therapeutic target and diagnosis biomarker [34]. The 

expression of CCL8 in nude mice has been reported to 

inhibit human cervical cancer [35]. Moreover, in 

melanoma, previous research suggests that a local 

CCL8-rich environment promotes the selection of 

metastatic tumor cells, while a high CCL8 concentration 

 

 
 

Figure 7. Relationship between the prognostic signature and immune score. (A, B) The high-risk group has lower immune scores 

compared with the low-risk group in (A) the TCGA dataset and (B) GSE54467. (C–I) The association between immune score and the 
expression of each gene in a 7-gene prognostic signature: (C) CYTL1, (D) CCL8, (E) FCGR2C, (F) OAS1, (G) HAPLN3, (H) WIPF1, (I) CLIC2.   
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inhibits their migration [36]. OAS1 induced by 

interferons is reported to be one gene in prognostic 

signature for patients with bladder cancer, despite a lack 

of sufficient experimental studies [37]. A previous study 

showed that WIPF1 knockdown inhibited natural killer 

cell cytotoxicity [38, 39]. CLIC2 is identified as a novel 

gene related to immune checkpoint proteins based on 

TCGA gene expression data [40], while another study 

suggests that it inhibits the hematogenous spread of 

tumor cells [41]. However, there is a need for further 

research to understand the function of FCGR2C and 

HAPLN3 in cancer. The role of the 7 genes in 

melanoma also requires more in-depth investigation. 

 

Additionally, our prognostic signature was found to be 

an effective and stable prognostic indicator, since it 

demonstrated favorable prognostic value in predicting 

OS, DSS, and PFS outcomes in the TCGA dataset of 

melanoma. Two GEO datasets were used to validate the 

OS and DSS results. Moreover, stratification analysis in 

different subgroups was performed and a nomogram 

was constructed by integrating each independent 

clinical prognostic factor. Both ROC curves and 

calibration plots showed a robust and reliable predictive 

ability of the nomogram for OS. Therefore, our 

prognostic signature could predict more clinical 

prognostic factors and provide a useful tool to 

supplement the traditional clinical prognostic factors 

and improve the therapeutic effect. Nevertheless, the 

limitations of this study included that some risk factors 

for melanoma like a family history of melanoma could 

not be collected in the TCGA dataset, and the two 

selected GEO datasets lacked some corresponding 

clinical features data. 

 

As for the interaction between the immune and the 

established 7-gene prognostic signature, we found that 

the low-risk group had higher immune and stromal 

scores. Previous studies demonstrated that intense 

infiltration of activated T cells, B cells, or mature 

dendritic cells could be positive prognosis factors [16, 

20, 21]. Infiltrating CD8 lymphocytes are also reported 

to be a good prognostic factor for melanoma [42]. We 

observed a significantly negative correlation between 

the abundance of six immune cell subtypes and the risk 

score. Initially, neutrophils showed the strongest 

negative correlation with the risk score. However, it 

could be explained that the prognostic signature is

 

 
 

Figure 8. Relationship between the prognostic signature and the TIICs subtypes. Association between risk score and six subtypes of 
TIICs: (A) B cells. (B) CD4+ T cell. (C) CD8+ T cell. (D) Dendritic cells. (E) Macrophage. (F) Neutrophil. 
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mainly related to T cell activity and cytokine function: on 

one hand, CD8+ plays a major anti-tumor function, while 

on the other hand, some related cytokines may recruit 

anti-neoplastic neutrophils in the early stage [43]. 

Besides, the proportion of various immune infiltrating 

cells need to be considered for specific risk grouping. 

Moreover, except for CYTL1, the expression of each 

gene in the 7-gene prognostic signature was also found to 

be significantly related to immunization, such as immune 

score, stromal score and immune cell subtypes. Finally, 

GSEA analysis showed that many immune-related GO 

terms and KEGG pathways were enriched in the low-risk 

group. Due to the limitations associated with many 

current experiments on finite cell lines or samples, we 

carried out a comprehensive and systematical analysis of 

the TME in melanoma using a larger volume of data. 

However, despite the high heterogeneity of cancer or the 

lack of computer algorithms, continued exploration of 

these findings are likely to lead to novel insights into the 

molecular mechanisms. 

 

 
 

Figure 9. GSEA analysis based on the risk value. (A) The significant enrichment of the top 5 GO terms in the high-risk group and the top 
5 immune-related GO terms in the low-risk group. (B) The significant enrichment of the top 5 pathways in the high-risk group and the top 5 
immune-related pathways in the low-risk group. 
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In conclusion, this study identified and validated 333 

immune infiltration related genes as potential immune 

predictors for melanoma. Furthermore, we constructed 

and verified a 7-gene prognostic signature associated 

with the TME as a prognostic indicator. Although 

previous studies have studied immune infiltration-

related prognostic models, especially those on 

melanoma [25, 26, 44, 45], in contrast, we first 

established reliable immune-related groups and 

obtained core immune infiltration related genes with 

prognostic value. We then constructed a favorable 

prognostic model for use in predicting more clinical 

prognostic factors and established a nomogram  

as a practical prognostic tool. Finally, we explored the 

relationship between the model, including its genes, 

immune infiltration score, and immune cell 

infiltration. Taken together, this study provides a 

series of novel immune-related biomarkers for 

prognosis of melanoma and establishes a 7-gene 

prognostic signature to supplement traditional  

clinical prognostic factors and improve the therapeutic 

effect.  

 

 
 

Figure 10. The flowchart of the current study. 
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MATERIALS AND METHODS 

 

Database 

 

The HTSeq-FPKM data and clinical information of 

melanoma were acquired from the TCGA database 

(https://portal.gdc.cancer.gov). The cohort of 

melanoma for identifying immune-related genes 

consisted of 471 samples in TCGA. DSS and PFS data 

for melanoma was obtained from cBioportal 

(https://www.cbioportal.org/). Two GEO datasets 

(GSE54467, GSE65904) were gained from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/). Only 

patients with overall survival days ≥ 30 days were 

included in the study. 

 

Construction of immune-related groups  

 

The infiltration levels of immune cells in 471 melanoma 

samples were estimated by ssGSEA [46], and the 

immune-related groups were constructed using the 

hclust function in R software. The ssGSEA analysis was 

carried out in the R package Gene Set Variation 

Analysis (GSVA) [47]. 

 

Verification of immune-related groups 

 

The related scores for individual samples were 

determined by the ESTIMATE algorithm in R software. 

Then, the different gene expression levels of the HLA 

family genes and PD-L1 were analyzed between the 

immune-related groups. Moreover, the composition of 

22 immune cell subtypes was determined by the 

CIBERSORT package [48]. The immune-related 

functional annotation and signaling pathways that were 

differentially activated in the two groups were validated 

by GSEA. 

 

Screening of differentially expressed genes  

 

The overlapping genes and normalized gene expression 

profile data in the TCGA dataset and the two GEO 

datasets were identified for further analysis. The 

comparison of high vs. low immune cell infiltration 

groups was executed in R package limma [49]. |logFC| 

> 0.5 and false discovery rate (FDR) < 0.05 were 

considered as the cut-off criteria.  

 

Functional analysis  

 

Functional analysis was carried out by Metascape 

(http://metascape.org) [50] or R package clusterProfiler. 

The PPI network with the confidence score > 0.9 was 

established using the STRING website (https://string-

db.org/) [51] and Cytoscape software [52], and proteins 

with degree > 1 were selected. 

Survival analysis 

 

The Kaplan-Meier survival analysis was carried out to 

evaluate the correlation between the survival probability 

of patients and different groups characterized by 

different levels of immune cell infiltration, expression 

of individual gene, or risk score. 

 

WGCNA of immune-related groups 

 

The WGCNA was used to determine the relationship 

between co-expression gene modules and immune-

related groups in the WGCNA package [53]. The 

WGCNA network and the co-expressed gene modules 

were established and detected using the soft threshold 

power of β = 5, topological overlap matrix (TOM), and 

minimal module size of 50. 841 genes in the blue 

module with the highest correlation coefficient were 

selected for further analyses. A total of 333 DEGs with 

prognostic value in the TCGA dataset were obtained 

using the Venn diagram software. 

 

Identification of immune-related gene prognostic 

signature  

 

A total of 294 DEGs (P < 0.05) were selected by univariate 

Cox regression analysis. Out of these, 16 genes were 

identified by LASSO Cox analysis with 10-round cross-

validation. The prognostic signature was selected and 

optimized by stepwise multiple Cox regression analysis. 

The formula for the risk score was as follows [54]: 

Risk core =  ∑ Coef𝑖 ∗ Exp𝑖;
𝑛
𝑖=1  n, Coefi, Expi 

represented the number of signature genes, the coefficient, 

and the gene expression level, respectively. Univariate and 

multivariate Cox regression analysis were performed to 

evaluate the independence of the prognostic signature from 

clinical factors. The time-dependent ROC analysis was 

performed using the survival package. The nomogram and 

calibration curves were plotted by R package rms. 

 

TIMER database analysis 

 

The deconvolution algorithm provided by Tumor 

Immune Estimation Resource (TIMER) database 

(https://cistrome.shinyapps.io/timer/) [55] was used to 

determine the relationship between risk scores and 

TIICs using Pearson correlation. Additionally, the 

association between the expression of 7 genes and 

TIICs was also analyzed. 

 

Statistical analysis 

 

Statistical analyses were carried out in R version 3.6.3 

(Package: limma, sva, pheatmap, ggpubr, org.Hs.eg.db, 

clusterProfiler, enrichplot, survival, glmnet, survminer, 

survivalROC, beeswarm, rms, etc).  

https://portal.gdc.cancer.gov/
https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/
http://metascape.org/
https://string-db.org/
https://string-db.org/
https://cistrome.shinyapps.io/timer/
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. GSEA analysis comparing the immune phenotype between the two immune-related groups. (A, B) In 
high immune cell infiltration group, (A) the significant enrichment of top 5 GO terms, and (B) the significant enrichment of 5 immune-related 
KEGG pathways. 
 

 
 

Supplementary Figure 2. Association between two immune-related groups and OS for melanoma patients. 
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Supplementary Figure 3. The forest plot for the 7-gene prognostic signature. 

 

 
 

Supplementary Figure 4. Validation of the 7-gene prognostic signature. (A, B) Kaplan-Meier survival curves and ROC curves of OS in 

GSE54467. (C, D) Kaplan-Meier survival curves and ROC curves of DSS in GSE65904. 
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Supplementary Figure 5. Assessment of the independent prognostic value of the prognostic signature. The (A) 1-year ROC 
curves, (B) 3-year ROC curves, and (C) 5-years ROC curves for the signature and clinical features. (D) The univariate Cox regression analysis. 
(E) The multivariate Cox regression analysis.  

 

 
 

Supplementary Figure 6. Evaluation of the OS nomogram. (A, B) The (A) 3-year and (B) 5-year ROC curves. (C, D) The calibration 
curves for the probability of (C) 3-year and (D) 5-year OS. 
 



 

www.aging-us.com 3480 AGING 

 
 

Supplementary Figure 7. Relationship between the prognostic signature and stromal score. (A, B) The high-risk group has lower 

stromal scores compared with the low-risk group in (A) the TCGA dataset and (B) GSE54467. (C–I) The association between stromal score and 
the expression of each gene in the 7-gene prognostic signature: (C) CYTL1, (D) CCL8, (E) FCGR2C, (F) OAS1, (G) HAPLN3, (H) WIPF1, (I) CLIC2.   
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Supplementary Figure 8. Association between the gene expression level and six subtypes of TIICs. (A) CYTL1, (B) CCL8, (C) 
FCGR2C, (D) OAS1, (E) HAPLN3, (F) WIPF1, (G) CLIC2. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. Kaplan-Meier survival analysis. 

 

Supplementary Table 2. The genes in the selected module identified by WGCNA. 

 

Supplementary Table 3. Multivariate Cox regression analysis. 

ID Coef HR HR.95L HR.95H p-Value 

CYTL1 0.007408 1.007435 1.002858 1.012033 0.00143 

CCL8 -0.033 0.967543 0.929431 1.007217 0.107561 

FCGR2C -0.02117 0.979052 0.960903 0.997543 0.026581 

OAS1 -0.0147 0.985407 0.968316 1.0028 0.099617 

HAPLN3 -0.03669 0.963978 0.937684 0.991009 0.009321 

WIPF1 -0.01375 0.98634 0.975503 0.997297 0.01468 

CLIC2 -0.02314 0.97713 0.949366 1.005705 0.115682 

Coef: Coefficient; HR: hazard ratio. 

 


