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INTRODUCTION 
 

Acute lung injury (ALI) is a disease of pulmonary 

edema and respiratory failure caused by the injury of 

capillary endothelial cells and alveolar epithelial cells. 

It is a critical clinical disease with high mortality [1]. 

So far, there is no effective treatment for ALI [2]. 

Thus, identification of effective therapeutic drugs is 

urgently needed for the treatment of patients with ALI. 

It has been reported that abnormal inflammatory 
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ABSTRACT 
 

Acute lung injury (ALI) is a critical clinical condition with a high mortality rate. It is believed that the inflammatory 
storm is a critical contributor to the occurrence of ALI. Fucoxanthin is a natural extract from marine seaweed with 
remarkable biological properties, including antioxidant, anti-tumor, and anti-obesity. However, the anti-
inflammatory activity of Fucoxanthin has not been extensively studied. The current study aimed to elucidate the 
effects and the molecular mechanism of Fucoxanthin on lipopolysaccharide-induced acute lung injury. In this study, 
Fucoxanthin efficiently reduced the mRNA expression of pro-inflammatory factors, including IL-10, IL-6, iNOS, and 
Cox-2, and down-regulated the NF-κB signaling pathway in Raw264.7 macrophages. Furthermore, based on the 
network pharmacological analysis, our results showed that anti-inflammation signaling pathways were screened as 
fundamental action mechanisms of Fucoxanthin on ALI. Fucoxanthin also significantly ameliorated the 
inflammatory responses in LPS-induced ALI mice. Interestingly, our results revealed that Fucoxanthin prevented the 
expression of TLR4/MyD88 in Raw264.7 macrophages. We further validated Fucoxanthin binds to the TLR4 pocket 
using molecular docking simulations. Altogether, these results suggest that Fucoxanthin suppresses the 
TLR4/MyD88 signaling axis by targeting TLR4, which inhibits LPS-induced ALI, and fucoxanthin inhibition may 
provide a novel strategy for controlling the initiation and progression of ALI. 
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factors are essential factors in the occurrence and 

development of ALI, such as tumor necrosis factor-α 

(TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-

1β) [3]. As such, removing the excessive production of 

those cytokines by anti-inflammatory agents, including 

corticosteroids, such as methylprednisolone [4], 

dexamethasone [5], prednisolone [6], represented a 

promising strategy to prevent and treat ALI [7]. 

However, most of these drugs have no beneficial effect 

on ALI patients because of their low efficacy and 

severe side effects. Therefore, the treatment of ALI 

urgently needs new anti-inflammatory drugs with 

better efficacy and safety. 

 

Lipopolysaccharide (LPS) is the main cell wall 

component of Gram-negative bacteria, which can cause 

the disorder of immune and inflammatory response. At 

present, it is widely used to induce the ALI model [8]. 

LPS initiates a variety of molecular intracellular 

signaling events, including the activation of nuclear 

factor kappa B (NF-κB) [9]. Macrophages are essential 

cells in the inflammatory process. LPS-activated 

macrophages, as the second level of the inflammatory 

cascade, release inflammatory cytokines, such as TNF-

α, IL-6, IL-1β, and cyclooxygenase (COX2) [10]. 

 

The uniqueness and diversity of the marine environment 

lead to the production of active substances with unique 

functions and structures [11, 12]. In recent years, 

marine compounds have become an essential source of 

drug development [13]. Fucoxanthin is a carotenoid and 

was first extracted from brown seaweed (i.e., Undaria 

pinnatifida, Saccharina japonica, Sargassum fulvellum), 

which contains functional groups. Fucoxanthin has been 

reported various biological activities, such as anti-

obesity, neuroprotective effect, and anti-cancer 

properties [14–17]. Recently, the anti-inflammatory 

effect of Fucoxanthin has been expanded [18]. 

Fucoxanthin reduced alcohol-induced inflammatory 

responses by activating the Nrf2-mediated pathway 

[19]. Fucoxanthin preventive anti-inflammatory effect 

in a mouse model of Sepsis is associated with the 

regulation of NF-κB signaling [20]. Fucoxanthin down-

regulates the DSS-induced expression of COX-2 and 

NF-κB in mice [21]. Fucoxanthin inhibited LPS-

induced overexpression of pro-inflammatory cytokines 

(IL-1β, IL-6, iNOS, COX-2, and TNF-α) via the 

AMPK/NF-κB signaling pathway [16]. Nevertheless, 

whether the Fucoxanthin has protective effects on ALI 

and the potential mechanisms remains to be unclear.  

 

In the current study, we assess the effects of Fucoxanthin 

on the LPS-induced ALI cell model and investigate the 
effect of Fucoxanthin on LPS-induced ALI mouse model, 

and the signal transduction mechanism of its anti-

inflammatory effect was also discussed. 

RESULTS 
 

Effect of fucoxanthin on RAW264.7 cells viability 

 

To assess the cytotoxic effect of Fucoxanthin on 

RAW264.7 cells, the cell viability was detected by 

CCK-8 assays, and the structure of Fucoxanthin was 

presented in Figure 1A. As shown in Figure 1B, 

RAW264.7 cells were treated with 0-20 μM 

Fucoxanthin for 24 hours had no cytotoxic effect, 

whereas cell viability was significantly reduced at the 

concentration of 40 μM.  

 

Fucoxanthin inhibits LPS-stimulated expression of 

COX-2 and iNOS in RAW264.7 cells 

 

iNOS is a pivotal downstream mediator of inflammation 

in various cell types [22]. Moreover, COX-2 is a critical 

inflammatory mediator [23]. Studies have shown that the 

expression of iNOS and cox-2 is significantly increased in 

LPS-induced macrophages [24]. We determined whether 

Fucoxanthin could modulate LPS-induced expression of 

COX-2 and iNOS in macrophages. As shown in Figure 

2A, Fucoxanthin distinctly suppressed expression of 

COX-2 and iNOS in RAW264.7 cells induced by LPS 

with immunofluorescence. Furthermore, Western blot 

analysis also showed that Fucoxanthin could dramatically 

reduce the protein expression of COX-2 and iNOS 

induced by LPS (Figure 2B), indicating that Fucoxanthin 

is a potential drug against inflammation in vitro. 

 

Fucoxanthin inhibits LPS-stimulated expression of 

pro-inflammatory cytokines in RAW264.7 cells 

 

In order to further evaluate the anti-inflammatory activity 

of Fucoxanthin on LPS-stimulated macrophages, we 

examined its effect on the expression of pro-inflammatory 

cytokines stimulated by LPS, such as COX-2, iNOS, IL-

10, IL-6, TNF-α, and IL-1β. We tested mRNA expression 

levels of these cytokines using the qRT-PCR method. Our 

results revealed that LPS dramatically increased the 

mRNA expression levels of COX-2, iNOS, IL-10, IL-6, 

TNF-α, and IL-1β in RAW264.7 cells compared with 

those in the control group, while pre-treatment with 

Fucoxanthin completely diminished the stimulatory effects 

of LPS in a dose-dependent manner (Figure 3A–3F). 
 

Fucoxanthin inhibits LPS-induced activation of NF-

κB signaling in RAW264.7 cells 
 

NF-κB is a crucial regulator and participated in the 

inflammatory process [25, 26]. Our results showed  

that Fucoxanthin significantly prevented activation of 
TLR4/MyD88 induced by LPS. Nevertheless, the 

activation of TLR4/MyD88 can directly affect the signal 

axis of NF-κB. As shown in Figure 4A, Fucoxanthin
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Figure 1. Effect of Fucoxanthin on RAW264.7 cell viability. (A) Chemical structure of Fucoxanthin. (B) The cells were stimulated with 

the indicated concentrations of Fucoxanthin (0,2.5,5,10,20,40uM) for 24h, and cell viability was determined using the MTT assay.  
***P <0.001. 
 

 

Figure 2. Fucoxanthin down-regulated the expression of COX-2 and iNOS in LPS-activated RAW 264.7 macrophages. (A) 

RAW264.7 cells were pretreated with the indicated concentrations of Fucoxanthin for 1 h before being stimulated with LPS for another 24 h. 
Cox-2 and iNOS were determined by immunofluorescence staining. DAPI-stained nuclei were indicated by blue fluorescence. Cox-2 and iNOS 
were indicated by green fluorescence. Scale Bar = 100 μm. (B) Cells were pretreated with the indicated concentrations of Fucoxanthin for 1 h 
before being stimulated with LPS (100ng/mL) for another 24 h. The expression levels of COX-2 and iNOS were determined by 
immunoblotting. *P < 0.05, **P < 0.01 compared with the LPS group. 
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Figure 3. Effects of Fucoxanthin on the mRNA level of pro-inflammatory cytokines in LPS-induced RAW264.7 cells. The cells were 

pretreated with Fucoxanthin (5, 10, and 20 μM) for 1 h and then stimulated with LPS (100ng/mL) for 24 h. Untreated cells served as control. The 
total RNA was prepared, and the mRNA expression levels of (A) Cox-2, (B) iNOS, (C) IL-1β, (D) il-10, (E) IL-6, and (F) TNF-α were determined by qRT-
PCR. The values presented are means ± SD. *P < 0.05, **P < 0.01 versus LPS. 

 

 

Figure 4. Fucoxanthin suppresses LPS-induced activation of NF-κB signaling in RAW 264.7 cells. (A) RAW264.7 cells were pretreated with 
the indicated concentrations of Fucoxanthin for 1 h before being stimulated with LPS for another 24 h. p-NF-κB was determined by 
immunofluorescence staining. DAPI-stained nuclei are indicated by blue fluorescence. NF-κB was indicated by red fluorescence, scale bar=200 μm. (B) 
The expression level of p-NF-κB p65 and NF-κB p65 was determined by immunoblotting. *P < 0.05, **P < 0.01 compared with the LPS alone group. 
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effectively blocked the nuclear translocation of NF-κB. 

To further confirm our results, we detected the effect of 

Fucoxanthin on the expression level of NF-κB by 

Western blotting. The results showed that Fucoxanthin 

only affected the expression level of p-NF-κB (p-p65), 

but not the expression level of total NF-κB (p65) 

(Figure 4B). These results indicate that Fucoxanthin 

prevents LPS-induced inflammatory responses by 

attenuating the release of pro-inflammatory cytokines 

through the inhibition of TLR4/MyD88/NF-κB 

activation. 

 

Potential anti-inflammatory mechanisms of 

fucoxanthin by network pharmacological analysis 

 

The targets of Fucoxanthin and ALI were screened by Z 

value and corrected by Uniprot. Eighty-four human 

protein gene symbols of Fucoxanthin and 5442 human 

protein gene symbols of ALI were obtained. One 

hundred sixty-three targets of Fucoxanthin against ALI 

proteins were obtained after the intersection. The 

MCODE plug-in was used to cluster, and the cluster 

was divided into 5 clusters, which meant that metabolic 

pathways were interlaced and regulated mutually. 

MAPK8 is the core target in cluster 1. HSP90AA1 is 

the core target in cluster2. PIK3R1, SRC, and EGFR are 

classified in the same cluster (Figure 5A). Through 

KEGG pathway enrichment analysis of common-target 

and PPI networks, 33 significant signaling pathways (P-

value ≤ 0.05) were screened as fundamental action 

mechanisms of Fucoxanthin on ALI. The signal 

pathways involved anti-inflammation, vascular 

endothelial function regulation, metabolic regulation, 

and cellular processes regulation. Among them, there 

are 3 related to vascular endothelial function regulation, 

7 related to metabolism, 19 related to inflammatory 

response, and 4 related to cellular processes (Figure 

5B). The molecular signal pathway of Fucoxanthin 

against inflammation was closely related to 

inflammation-based pathways, such as the TNF 

signaling pathway, PI3K-Akt signaling pathway, and 

Toll-like receptor signaling pathway. This evidence 

uncovers that the anti-inflammatory effect is the most 

robust in the Target-Function map, and it is the primary 

function of the anti-ALI related targets of Fucoxanthin. 

It is proved that the anti-inflammatory effect of 

Fucoxanthin is the strongest in the target function 

diagram, and is also the primary function of 

Fucoxanthin in anti-ALI related targets.  

 

Fucoxanthin directly binds to TLR4 and prevents 

the TLR4/MyD88/NF-κB signaling pathway 

 
Upon the stimulation of LPS, TLR4 initiates 

 series of inflammatory responses [27]. Here, we try to 

determine further whether Fucoxanthin influences the 

TLR4/MyD88 signaling pathway. As we expected, 

Fucoxanthin effectively suppressed the TLR4/MyD88 

signaling pathway (Figure 6A). In addition, previous 

studies have shown that inflammatory body-induced 

cytokines play a vital role in the occurrence and 

development of ALI, and inhibition of the NLRP3 

signal pathway can reduce LPS-induced ALI [28, 29]. 

We tried to detect the effects of Fucoxanthin on other 

inflammatory signaling pathways. The results showed 

that Fucoxanthin did not affect the NLRP3 signal 

pathway (Figure 6B). Based on the evidence, we 

speculated that a potential binding mode for 

Fucoxanthin is that it might disrupt the TLR4 signaling 

by interacting with MD-2, complex as TLR4 [30]. A 

molecule docking search was carried out to determine 

whether there is a required binding mode at the 

interface between Fucoxanthin and TLR4/MD-2 

protein. The result shows that Fucoxanthin may well 

bind to the TLR4/MD-2 complex and can form 

interaction with LYS-360, PHE-151, ARG-337, and 

PHE-119 (Figure 6C, 6D). Fucoxanthin can bind to an 

accessory protein MD-2 of the mouse TLR4/MD-2 

complex via hydrogen bonding and hydrophobic 

interactions. These results suggested that Fucoxanthin 

may be the interference factor of TLR4/MD-2 protein-

protein interaction. 

 

Fucoxanthin attenuates the inflammation in LPS-

treated ALI mouse model 

 

To further assess the anti-inflammatory effect of 

Fucoxanthin, the ALI inflammation mouse model was 

performed. As shown in Figure 7A, the protein 

concentration of BALF was significantly increased after 

LPS stimulation, whereas the pre-treatment of Fucoxanthin 

could reverse this increase. The LPS stimulation led to a 

significant increase in the number of cells in the BALF 

(Figure 7B), which was decreased by pre-treatment with 

Fucoxanthin. The lung wet/dry weight ratio was 

significantly increased after LPS-stimulation, compared 

with the vehicle. Nevertheless, pre-treatment with 

Fucoxanthin effectively decreased the lung wet/dry ratio 

(Figure 7C). We also found that LPS treatment 

dramatically increased the alveolar wall thickness, 

hemorrhage, alveolar collapse, and inflammatory 

infiltration in the lungs compared with the typical structure 

of mice lung tissues. As a comparison, the group pretreated 

with Fucoxanthin displayed very little histopathological 

changes (Figure 7D). We also detected the inhibitory effect 

of Fucoxanthin on macrophage lung infiltration marker 

CD68. Pre-treatment with Fucoxanthin significantly 

attenuated LPS-induced lung macrophage infiltration into 

the lung. Consistent with the results in vitro, Fucoxanthin 
significantly attenuated LPS-induced lung inflammation, 

as evidenced by COX-2 and iNOS expression in lung 

tissue (Figure 7E). These data indicate that Fucoxanthin 
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Figure 5. Potential anti-inflammatory mechanisms of Fucoxanthin by network pharmacological analysis. (A) Cluster analysis in 

MCODE. Different colors represent different clusters. (B) Target-pathway interaction diagram. The blue squares above represent fucoxanthin anti-
ALI target, yellow squares represent vascular endothelial function regulation, metabolism, and cellular processes-related pathways, and the purple 
squares represent inflammatory response-related pathways. 
 

 

Figure 6. Fucoxanthin directly binds TLR4 inhibiting the TLR4/MyD88/NF-κB signaling pathway. (A) Western blotting analysis of TLR4 

and MYD88 for RAW 264.7 cells pretreated with different concentrations of the Fucoxanthin for 1h followed by LPS treatment (100ng/ml) for 
another 24 h. (B) The expression level of NLRP3, Il-1β, and caspase-1 were determined by immunoblotting (C) Schematic representations 3D of the 
binding interactions between the mouse TLR4/MD-2 complex active site and Fucoxanthin. MD-2 was shown in a light green ribbon and TLR4 in a 
light orange ribbon (left) close-up view of the predicted interaction between Fucoxanthin and the MD-2-binding site TLR4-MD-2 complex. MD-2 
was shown in light green and TLR4 in light orange; moreover, the hydrogen bond is shown in green. (D) Schematic representations 2D of the 
binding interactions between the mouse TLR4/MD-2 complex active site and Fucoxanthin. 
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attenuates the inflammation in LPS-treated ALI mouse 

model. 
 

DISCUSSION 
 

In the present study, Fucoxanthin efficiently decreased 

reduced the expression of pro-inflammatory factors (COX-

2, iNOS, IL-10, IL-6, TNF-α, and IL-1β), Fucoxanthin 

was further demonstrated to not only be able to inhibit 

LPS-stimulated COX-2 and iNOS protein expression, and 

it also is shown to have inhibitory effects on LPS-induced 

activation of NF-κB signaling. More importantly, 

Fucoxanthin effectively attenuates LPS-induced ALI in 

mice through lung tissue-specific anti-inflammatory 

effects. Interestingly, Fucoxanthin has been further shown 

to inhibit the TLR4/MyD88 signal pathway. Molecular 

docking experiments further confirmed that Fucoxanthin 

binds to the hydrophobic pocket of TLR4, which partially 

overlaps with the LPS binding site on TLR4. Taken 

together, these results suggest that Fucoxanthin may be a 

new candidate compound for the treatment of ALI. 

 
ALI, characterized by increased excessive pulmonary 

inflammation [31]. Inflammation plays an essential role 

in the pathogenesis of ALI [32]. LPS is the main cell 

wall component of Gram-negative bacteria and is often 

used to induce the inflammatory model of ALI [33]. As 

the primary immune cells, macrophages are involved in 

the regulation of a variety of chronic inflammatory 

diseases, including ALI, by secreting a series of pro-

inflammatory cytokines [34]. In this study, LPS-

induced RAW264.7 cells were selected as an 

inflammatory model to evaluate the potential protective 

effects of drugs in vitro [35]. Previous studies have 

shown that LPS induces macrophages to release a large 

number of pro-inflammatory cytokines [34]. Our 

results show that Fucoxanthin can significantly inhibit 

LPS-induced inflammatory mediators. 

 

 

 

Figure 7. Fucoxanthin attenuated the LPS-induced ALI in mice. (A) The protein concentration in BALF. (B) The number of cells in BALF. 
(C) Wet/dry ratio. (D) Fucoxanthin attenuated the LPS-induced histopathological change in lung tissue (H&E staining). (E) Immunoblotting for 
COX-2, iNOS, and CD68 in the mice lung tissues. Data were presented as mean±SD. *P < 0.05, ***P < 0.01 v. s LPS group. 
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NF-kB is one of the main factors of pro-inflammatory 

cytokines related to LPS-induced signal pathway  

[36]. As an upstream signal molecule of NF-κB, 

TLR4 plays an important role [37]. LPS usually 

activates the TLR4/MyD88/NF-κB pathway, which 

leads to the release of inflammatory cytokines. 

Therefore, inhibition of TLR4 dimerization is a new 

strategy for the treatment of inflammatory diseases. 

Many previous studies have shown that inhibition of  

LPS-induced TLR4 expression is another strategy  

for discovering new anti-inflammatory drugs related 

to TLR4 [38–40]. Our results showed that 

Fucoxanthin was further showed to inhibit. Our 

results also showed that Fucoxanthin inhibits the 

TLR4/MyD88/NF-κB signaling pathway. We further 

used molecular docking to detect whether Fucoxanthin   

can be directly targeted to TLR4, thus inhibiting the 

TLR4 signaling pathway. Also, Fucoxanthin binds to 

the hydrophobic pocket of TLR4 and partially 

overlaps with the LPS binding site on TLR4, which 

further indicates that Fucoxanthin can directly target 

TLR4.  

 

To sum up, our study demonstrated that Fucoxanthin 

could protect LPS-induced ALI both in vivo and in 
vitro. The possible mechanism was illustrated in 

Figure 8. These results suggest that Fucoxanthin 

inhibits the TLR4/MyD88-mediated inflammatory 

signaling pathway by directly targeting TLR4, 

which suppresses LPS-induced inflammatory 

responses, and Fucoxanthin may be a candidate 

compound for the treatment of ALI. 

 

 

 

Figure 8. Schematic diagram of the signaling pathways related to the anti-inflammatory effects of Fucoxanthin on LPS-
induced ALI. 
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MATERIALS AND METHODS 
 

Materials 

 

Fucoxanthin (purity > 99% cat#F6932) and 

Lipopolysaccharides (Escherichia coli O111: B4 

cat#L2630) were purchased from Sigma-Aldrich (MO, 

USA).  

 

Cell culture 

 

RAW264.7 cells were purchased from the American 

Type Culture Collection (ATCC). Cells were cultured in 

DMEM medium containing 10% FBS, 100 U/ml 

penicillin, and 100 μg/ml streptomycin. Cells were 

maintained at 37° C in a humidified atmosphere 

containing 95% air and 5% CO2. 

 

CCK-8 assay 

 

RAW264.7 cells (1 × 104 cells/plate) were seeded in 96-

well plates and treated with Fucoxanthin at the indicated 

concentration for 24 h and then 10 μl CCK-8 reagent 

was added to each well, and the plates were incubated at 

37º C for another 4 h. Next, the optical density was 

measured at a wavelength of 450 nm with the Bio-Rad 

(CA, USA) microplate reader.  

 

Immunofluorescence 

 

Cells were cultured on glass slides and treated with LPS 

or Fucoxanthin for 24h. Cells were fixed by 4% 

formaldehyde for 10 minutes and followed by 0.3% 

Triton X-100 permeabilization for another 10 minutes, 

then blocked with 5% Goat Serum for 1 h. 

Subsequently, the cells were labeled with the primary 

antibody at 4° C overnight, washed with PBS three 

times, and labeled by Alexa Fluor 488 anti-rabbit at 

1:200 dilution (Invitrogen™ cat#A12379) for 1 h at RT. 

After washed with PBS three times, cells were stained 

with DAPI at 1:1000 (Cell Signaling Technology, 4083) 

for 10 min, washed three times with PBS, and then 

subjected to image acquisition by Cytation 5 High 

content screening system (BioTek, VT, USA). 

 

Immunoblotting 

 

The cells or tissues were lysed with RIPA lysis and 

extraction buffer on the ice for 10 min. The lysates were 

spun at 14,000g for 10 min at 4° C. BCA assay was 

used to quantify protein concentration. Samples with 20 

µg of total protein were separated by 10% SDS-PAGE 

gels and transferred to PVDF membranes. Membranes 

were blocked for 1 h in TBS-T containing 5% non-fat 

dry milk and incubated with antibodies at 4° C 

overnight. After washing, blots were incubated with 

secondary antibodies (HRP-conjugated) for 1 h. Target 

proteins were detected using the LI-COR system for 

enhanced chemiluminescence. The following antibodies 

were used: COX-2 (CST, cat#12282, 1:1000 dilution), 

iNOS (CST, cat#D6B6S, 1:1000 dilution), TLR4 (Santa 

Cruz, cat# sc-293072, 1:1000 dilution), MyD88 (Santa 

Cruz, cat# sc-74532, 1:1000 dilution), CD68 (CST, 

cat#76437,1:1000 dilution), p-NF-κB p65 (CST, 

cat#3033,1:1000 dilution), GAPDH (CST, 

cat#5174,1:1000 dilution), secondary anti-rabbit HPR 

conjugated antibody (CST, cat#7074, 1:3000 dilution) 

and secondary anti-mouse HPR conjugated antibody 

(CST, cat#5127, 1:3000 dilution) 

 

Acquisition of fucoxanthin anti-inflammation targets 

 

The structure of Fucoxanthin was searched from 

PubChem and imported into PharmMapper for the 

potential target using the pharmacophore mapping 

approach. The prediction target with Z value > 0.8 was 

retained, and the gene symbols were obtained and 

corrected as human protein by the Retrieve/ID mapping 

tool of Uniprot. We used the GeneCards database to 

identify the ALI-related targets with the phrase “acute 

lung injury” as a keyword. The potential targets of 

Fucoxanthin were compared with the related targets 

involved in ALI, and the prediction targets related to 

ALI were determined. 

 

Construction of PPI network and topological 

analysis in fucoxanthin against inflammation  

 

In this study, we use the clustering analysis algorithm 

MCODE plug-in in Cytoscape to cluster the core-target 

PPI network, then used the Database for Annotation 

Visualization and Integration Discovery (David, 

https://david.ncifcrf.gov/) for KEGG enrichment 

analysis, and the screening criterion was P ≤ 0.05. Then 

we use Cytoscape to visualize the results. 

 

Molecular docking 

 

The crystal structure of the ligand-free structure of the 

mouse TLR4/MD-2 complex was obtained from Protein 

Data Bank (PDB code: 5ijb), and the 3D structure of 

Fucoxanthin was obtained from PubChem (Compound 

CID: 5281239). Then, the molecular docking was based 

on the standard docking procedure for a flexible/rigid 

ligand with AutoDock 4. The result of docking is 

visualized by pymol software. 

 
Quantitative real-time PCR (qRT-PCR)  

 

Total RNA was extracted using a Trizol assay kit. 

Briefly, RNA (1 μg) was subjected to qRT-PCR using a 

qPCR master mix kit. PCR amplification was performed 

https://david.ncifcrf.gov/
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by incorporating SYBR green (Roche). The primers for 

mouse iNOS, COX-2, TNF-α, IL-6, IL-10, IL-1β, and 

GAPDH were synthesized by Sangon Biotech 

(Shanghai). The following primer sequences were used: 

iNOS-F: GAGACAGGGAAGTCTGAAGCAC, iNOS-

R: CCAGCAGTAGTTGCTCCTCTTC, COX-2-F: GC 

GACATACTCAAGCAGGAGCA, COX-2-R: AGTGG 

TAACCGCTCAGGTGTTG, TNF-α-F: GGTGCCTAT 

GTCTCAGCCTCTT, TNF-α-R: GCCATAGAACTGA 

TGAGAGGGAG, IL-6-F: TACCACTTCACAAGTCG 

GAGGC, IL-6-R: CTGCAAGTGCATCATCGTTGT 

TC, IL-1β-F: TGGACCTTCCAGGATGAGGACA, IL-

1β-R: GTTCATCTCGGAGCCTGTAGTG, GAPDH-F: 

CATCACTGCCACCCAGAAGACTG, and GAPDH-

R: ATGCCAGTGAGCTTCCCGTTCAG. 

 

ALI mouse model  

 

Fucoxanthin was dissolved in 2% DMSO, 30%PEG-

400, 2% Tween 80, and 66% PBS. Mice were 

randomized to the following three groups of seven 

mice: vehicle group, LPS group, Fucoxanthin + LPS 

group. Fucoxanthin + LPS group mice were pretreated 

with Fucoxanthin (10mg/kg) by i.v injection for 30 min 

before 5 mg/kg of LPS was administered by 

intratracheal instillation. The animals in the vehicle 

group received an equal volume of vehicles. After 6 h, 

mice were euthanized to collect the BALF, serum, and 

lung tissue samples. The BALF was collected by 

endotracheal intubation with normal saline for 3 times, 

and the maximum total amount of drip was 1ml. 

 

Lung wet/dry weight (W/D) ratio  

 

Parts of the lungs were recorded to obtain the wet 

weight. Subsequently, the lungs were placed in an 

incubator at 60° C for 72 h to obtain the dry weight. The 

ratio of wet weight and dry weight (W/D) was 

calculated. 

 
Determination total protein concentration in 

Bronchoalveolar lavage fluid (BALF)  

 

BALF was separated by centrifugal separation at 4° C 

and 3,000 rpm for 10 minutes. The total protein 

concentration of BALF was measured by a BCA assay 

kit. 

 
Histopathology  

 

The lung tissue was fixed with 10% formalin and 

embedded in paraffin to make a 5 μm thick section. 

These sections are dewaxed with xylene and dehydrated 
in a series of alcohol solutions. The slides were stained 

with hematoxylin for 5min, then soaked in 1% acid 

ethanol for the 30s, and then rinsed with distilled water. 

The sections were stained with eosin for 3min and 

dehydrated in a graded series of alcohol. The mounted 

slides were then examined and photographed using 

Cytation 5 High content screening system (BioTek).  

 

Statistical analysis 

 

The results were expressed as average ± SD. The 

statistical significance of the difference was evaluated 

by Student t-test or one-way ANOVA. The results 

shown represent at least three separate experiments. P < 

0.05 was considered to be statistically significant 

between the two groups. 
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