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INTRODUCTION 
 

Osteosarcoma (OS) is a frequent aggressive bone tumor 

that occurs in children and young people [1, 2]. OS 

patients often experience metastasis to the bone marrow, 

brain and liver, leading to a worse prognosis [3]. In 

addition, during chemotherapeutic treatments, OS 

patients develop drug resistance [4]. The molecular 

mechanism of OS development and progression has not 

been fully elucidated [5]. Thus, exploration of OS 

pathogenesis is pivotal for the development of new 

treatment strategies to effectively fight OS. The Notch 

signaling pathway participates in development, 

differentiation and tumorigenesis [6–8]. It is known that 

mammals have four Notch receptors (Notch-1, Notch-2, 

Notch-3 and Notch-4) and five ligands (DLL-1, DLL-3, 
DLL-4, Jagged-1 and Jagged-2) [9]. Notch signaling is 

activated when the Notch receptor binds with its ligand, 

and subsequently, three proteolytic cleavages occur via 

several enzymes, including γ-secretase complex, and 

eventually produce intracellular domain of Notch 

(NICD), which activates its downstream targets [10, 

11]. Therefore, gamma secretase inhibitors (GSIs) could 

inactivate Notch activation [12, 13].  

 

The expression of Notch-1, Jagged-1, Hes-1 and Hey-2 

was upregulated in OS tumor tissues [14]. Hes-4, a 

target of the Notch pathway, has been shown to be 

associated with poor survival in patients with high-

grade OS [15]. The expression of Notch receptors has 

been investigated in human SaOS-2 OS cells. Increased 

expression of Notch-1 and weak expression of Notch-2 

were observed in SaOS-2 cells [16]. Notch-3 was 

undetectable in SaOS-2 cells, while Notch-4 expression 

was detected after treatments with dexamethasone and 

vitamin D(3) in SaOS-2 cells [16]. This study indicated 

that Notch receptors were differentially expressed in OS 

cells, and Notch-1 might play a pivotal role in OS 

development [16]. However, Notch-2, Jagged-1, Hey-1, 

and Hey-2 were overexpressed in OS tumor biopsy 
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specimens, while Notch-1 and DLL1 were decreased in 

these specimens [17]. High expression of Notch-3 in OS 

patient tumors is associated with metastasis and poor 

prognosis [18]. 

 

GSI treatment reduced the proliferation of OS cells in 
vitro, and chemical and genetic suppression of Notch 

slowed tumor growth in nude mice [14]. Similarly, GSI 

treatment slowed cell proliferation and tumor growth 

both in vitro and in vivo in OS [17]. GSI treatment also 

induced cell cycle arrest at G1 phase in OS cells via a 

reduction in the expression of several cell cycle 

accelerators, such as cyclin D1, E1, and E2 and Skp2 

[17]. Conditional expression of NICD in immature 

osteoblasts in one mouse model led to bone tumors, 

including OS [19]. Moreover, the loss of p53 in 

combination with Notch activation accelerated OS 

occurrence in mice, indicating that Notch activation was 

a key driver of OS [19]. These reports reveal that the 

Notch pathway is critically involved in OS development. 

 

Although Notch-1 has been shown to exert its 

oncogenic effects in OS, the detailed underlying 

mechanism has not been fully understood.  Our 

previous studies have shown that cell division cycle 20 

(Cdc20) promotes cell proliferation and motility in OS 

cells [20]. Inhibition of Cdc20 by its inhibitor Apcin 

suppressed viability, migration and invasion in OS cells 

[21]. In the present study, we explored the effects of 

Notch-1 on viability, apoptosis, migration and invasion 

in OS cells. Moreover, we determined whether Notch-1 

exerts its biological effects via the upregulation of 

Cdc20 in OS cells. Our study might provide the 

rationale for a new therapeutic strategy by targeting the 

Notch-1 pathway in OS.   

 

RESULTS 
 

Inhibition of Notch-1 attenuates cell viability  

 

Evidence has shown that Notch-1 might participate in 

OS development and progression. To examine whether 

the modulation of Notch-1 expression levels affects the 

viability of OS cells, we performed MTT assays in 

U2OS and MG63 cells after Notch-1 shRNA 

transfection. Our MTT data showed that Notch-1 

shRNA infection repressed viability in both U2OS and 

MG63 cells at 48 hours and 72 hours (Figure 1A). This 

result revealed that the inhibition of Notch-1 by shRNA 

transfection impaired the viability of OS cells.  

 

Inhibition of Notch-1 stimulates apoptosis  

 

Since Notch-1 participates in the regulation of cell 

apoptosis, we examined whether the inhibition of 

Notch-1 affected apoptotic death in cells. OS cells were 

transfected with Notch-1 shRNA for 72 hours and then 

the PI-FITC-annexin assay was carried out to measure 

apoptosis rate in Notch-1 shRNA-transfected OS cells. 

We observed that the suppression of Notch-1 stimulated 

the apoptotic rate from 6% to 22.5% in U2OS cells after 

Notch-1 shRNA infection (Figure 1B). Similarly, 

Notch-1 shRNA transfection facilitated apoptosis from 

5.7% to 11.6% in MG63 cells in the Notch-1 

downregulation group (Figure 1B). Therefore, the 

inhibition of Notch-1 elevated OS cell apoptosis.   

 

Inhibition of Notch-1 represses migrative and 

invasive ability  

 

Notch-1 has been shown to regulate motility in cancer 

cells. Thus, we examined whether Notch-1 could 

modulate the cell migrative and invasive ability of OS 

cells. A Transwell chamber assay was performed to 

detect the invasive activity of OS cells after Notch-1 

shRNA transfection. We observed that the suppression 

of Notch-1 reduced the invasive ability of U2OS and 

MG63 cells (Figure 1C). Accordingly, a wound healing 

assay was employed to examine the migrative ability of 

OS cells after Notch-1 downregulation. Our data 

demonstrated that in OS cells, Notch-1 shRNA infection 

led to a reduction in wound closure compared with that 

of the control group (Figure 2A, 2B). In summary, 

Notch-1 inhibition reduced the migration and invasion 

of OS cells.     

 

Inhibition of Notch-1 reduces Cdc20 expression  

 

To explore the mechanism of Notch-1-mediated 

oncogenesis, the expression of Cdc20 in OS cells after 

Notch-1 shRNA transfection was evaluated using real-

time RT-PCR and western blotting. We found that the 

inhibition of Notch-1 reduced Cdc20 expression levels 

at mRNA and protein in U2OS and MG63 cells after 

Notch-1 shRNA transfection (Figure 2C, 2D). The 

expression of two downstream targets of Cdc20, Bim 

and p21, was alleviated in OS cells after Notch-1 

shRNA transfection (Figure 2C, 2D). These results 

indicate that Notch-1 exhibits its function partly through 

modulating Cdc20 and its downstream genes in OS cells. 

 

Notch-1 upregulation enhances viability and 

represses apoptosis  

 

To further investigate the biological function of Notch-1 

in OS cells, a Notch-1 cDNA vector was transfected 

into U2OS and MG63 cells. The MTT assay was 

employed to examine the viability of OS cells after 

Notch-1 cDNA vector transfection. Notch-1 up-
regulation led to the promotion of viability in U2OS and 

MG63 cells (Figure 3A). These MTT data suggest that 

Notch-1 overexpression facilitates the viability of 
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Figure 1. Notch-1 shRNA transfection diminishes viability and stimulates apoptosis. (A) Viability was evaluated by MTT assay. The 
MTT results demonstrated that the reduction in Notch-1 alleviated the viability of OS cells. *P < 0.05 vs control shRNA. (B) Apoptosis was 
examined by flow cytometry. Inhibition of Notch-1 led to increased apoptosis. (C) Transwell assays showed that Notch-1 shRNA treatment 
resulted in invasion retardation.  
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Figure 2. Notch-1 shRNA alleviated Cdc20 expression. (A) Wound healing assays showed that Notch-1 shRNA moderated wound 

closure. (B) Quantitative analysis f the migration data. *P < 0.05 vs control shRNA. (C) Real-time RT-PCR results showing Notch-1, Cdc20, Bim 
and p21 expression. (D) Western blot results showing Notch-1, Cdc20, Bim and p21 expression.  
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Figure 3. Notch-1 upregulation elevated viability and suppressed apoptosis. (A) Viability was elevated after Notch-1 upregulation, 

as determined by MTT assay. *P < 0.05 vs control cDNA. (B) Apoptosis was inhibited after Notch-1 upregulation. (C) Invasion was enhanced 
after Notch-1 upregulation, as determined by Transwell assay.  
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OS cells. In addition, the apoptosis rate of OS cells after 

Notch-1 cDNA vector transfection was determined by a 

PI-FITC-annexin assay. Notch-1 overexpression 

repressed apoptosis in both U2OS and MG63 cells 

(Figure 3B). Apoptosis was alleviated from 8% to 1% in 

U2OS cells in Notch-1 cDNA group (Figure 3B). A 

similar trend in apoptosis reduction was observed in 

MG63 cells (Figure 3B). Taken together, these results 

suggest that Notch-1 upregulation enhances cell 

viability and represses apoptosis.   

 

Upregulation of Notch-1 facilitates cell motility 

 

To further test the function of Notch-1 in governing 

the invasive ability of OS cells, a Transwell assay was 

carried out to analyze the invasiveness of U2OS and 

MG63 cells after Notch-1 overexpression. We found 

that the upregulation of Notch-1 increased the number 

of invading U2OS and MG63 cells (Figure 3C). The 

wound healing assay was applied for examining the 

migrative activity of OS cells overexpressing Notch-1. 

The data showed that Notch-1 overexpression 

facilitated the wound closure rate of MG63 and U2OS 

cells (Figure 4A, 4B). In summary, Notch-1 

upregulation facilitated the motility of OS cells. 

 

Notch-1 overexpression increases Cdc20 expression  

 

Western blotting analysis was utilized to examine 

Cdc20 expression in OS cells after Notch-1 

upregulation. Real-time PCR and Western blot data 

showed that Notch-1 overexpression elevated Cdc20 

expression levels in U2OS and MG63 cells (Figure 4C, 

4D). In line with Bim and p21 being downstream 

factors of Cdc20, we saw that the overexpression of 

Notch-1 diminished Bim and p21 protein levels in OS 

cells (Figure 4C, 4D). These results revealed that 

Notch-1 overexpression increased Cdc20 expression in 

OS cells and subsequently attenuated the expression of 

Bim and p21.     

 

Overexpression of Cdc20 rescues the impaired 

viability caused by Notch-1 downregulation   

 

To define whether Notch-1 performs its oncogenic 

function via the upregulation of Cdc20 in OS cells, 

rescue experiments were done. After OS cells were 

cotransfected with both Notch-1 shRNA and the 

Cdc20 cDNA vector, an MTT assay was employed to 

examine the viability of U2OS and MG63 cells. Our 

results revealed that Cdc20 upregulation facilitated 

the viability of OS cells (Figure 5A). Moreover, the 

overexpression of Cdc20 abrogated the reducing in 
viability induced by Notch-1 shRNA transfection 

(Figure 5A). Therefore, Notch-1 governs the viability 

of OS cells in part via the upregulation of Cdc20. 

Cdc20 overexpression abrogates apoptosis induced 

by Notch-1 downregulation 

 

Next, OS cell apoptosis was evaluated after Notch-1 

shRNA and Cdc20 cDNA cotransfection. Cdc20 

upregulation repressed apoptosis of MG63 and U2OS 

cells (Figure 5B). Notably, Cdc20 upregulation 

abrogated Notch-1 downregulation-induced apoptotic 

death (Figure 5B). Our results demonstrated that Notch-

1 inhibition promoted apoptosis via the reduction in 

Cdc20 in OS cells.   

 

Overexpression of Cdc20 blocks Notch-1 

downregulation-mediated migration.   

 

The migratory ability of OS cells was examined after 

Notch-1 shRNA and Cdc20 cDNA vector cotransfection. 

As expected, Cdc20 upregulation elevated the migration 

of OS cells (Figure 6A, 6B). Furthermore, Cdc20 

upregulation blocked Notch-1 downregulation-mediated 

inhibition of wound closure (Figure 6A, 6B). 

Mechanistically, increased Cdc20 expression abrogated 

the Notch-1 shRNA-mediated inhibition of Cdc20 

expression in OS cells (Figure 6C). Strikingly, the over-

expression of Cdc20 abrogated the upregulation of Bim 

and p21 triggered by Notch-1 shRNA transfection in OS 

cells (Figure 6C). In addition, Cdc20 overexpression did 

not change Notch-1 expression levels (Figure 6C), 

indicating that Notch-1 is an upstream factor of Cdc20.    

 

DISCUSSION 
 

A line of evidence has implicated a crucial role of Notch-

1 in OS development and progression. OS cells with 

increased expression of Notch-1, Notch-2, DLL1 and 

Hes-1 exhibited a high ability to metastasize [22]. 

Moreover, GSI treatments led to the suppression of the 

invasiveness of OS cells. Strikingly, DAPT inhibited 

ERK phosphorylation and alleviated proliferation and 

metastasis in OS cells [23]. Furthermore, Hes-1 

expression was inversely associated with survival in OS 

patients [22]. Interestingly, Hes-1 and Deltex1 also 

reciprocally inhibited Notch signaling to attenuate OS 

invasiveness [24]. These reports indicate that the Notch 

signaling pathway is involved in OS metastasis [22]. In 

the present study, we identified that Notch-1 plays an 

oncogenic role in OS, including promoting cell viability, 

migrative and invasive ability, and suppressing apoptosis.   

 

Several studies have revealed the molecular mechanism of 

the Notch pathway in OS tumorigenesis. For example, the 

Notch pathway activates OS progression via the 

upregulation of ephrinB1 [25]. Our study dissected that 

Notch-1 activates Cdc20 expression and inhibits Bim and 

p21 expression in OS cells. Moreover, Notch-1 gains its 

oncogenic function via the upregulation of Cdc20 in OS.  
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Figure 4. Notch-1 overexpression elevated Cdc20 expression. (A) The migratory ability was promoted by Notch-1 overexpression.  

(B) Quantification of the migration analysis results. *P < 0.05 vs control cDNA. (C) Real-time RT-PCR showing Notch-1, Cdc20, p21 and Bim 
expression in cells with Notch-1 upregulation. (D) Western blot results showing Notch-1, Cdc20, p21 and Bim expression in cells with Notch-1 
upregulation. 



 

www.aging-us.com 2675 AGING 

Therefore, targeting Notch-1 might be an effective 

treatment for OS patients with increased levels of Notch-

1. Multiple compounds have been identified that suppress 

the activation of Notch-1 in OS. For instance, curcumin, 

 a phenolic agent derived from Curcuma longa, repressed 

 

 the proliferation and invasion of OS cells by blocking 

Notch-1 signaling [26]. Diallyl trisulfide suppressed 

proliferation, invasion and angiogenesis via the 

inactivation of Notch-1 and activation of suppressor 

miRNAs in OS cells [27]. Oleanolic acid stimulated OS 

 

 

Figure 5. Cdc20 overexpression abrogated Notch-1 shRNA-mediated antineoplastic effects. (A) Viability was examined in cells 

cotransfected with Notch-1 shRNA and Cdc20 cDNA. *P < 0.05 vs control shRNA, # P < 0.05 vs Notch-1 shRNA or Cdc20 cDNA. (B) Apoptosis 
was examined in osteosarcoma cells after Notch-1 shRNA and Cdc20 cDNA cotransfection.     
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Figure 6. Cdc20 overexpression abolished shRNA-mediated Notch-1 suppression. (A) The wound healing assay showed that  
Cdc20 upregulation abolished Notch-1 downregulation-mediated suppression of viability. (B) Quantification of the migration analysis results. 
*P < 0.05 vs control shRNA, # P < 0.05 vs Notch-1 shRNA or Cdc20 cDNA. (C) Western blot results showing Notch-1, Cdc20, Bim and p21 
expression.  
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cell apoptosis via the suppression of the Notch 

signaling pathway [28]. Resveratrol inhibited OS 

progression via the upregulation of miR-139 and 

subsequent downregulation of Notch-1 in OS cells 

[29]. It is necessary to explore whether these natural 

agents could inhibit the expression of both Notch-1 

and Cdc20 in OS cells. 

 

Studies have also demonstrated that noncoding RNAs 

regulate Notch-1 in OS cells. One group reported that 

miR-34a repressed cell proliferation and metastasis in 

OS cells via targeting the Notch signaling pathway 

[30]. Moreover, miR-34a exerts a combinational effect 

with celecoxib in the regulation of the proliferation 

and invasiveness of OS cells by targeting Notch-1 [31]. 

Another study revealed that miR-199b-5p participated 

in osteosarcoma progression via the regulation of 

Notch pathways [32]. In addition, miR-135b elevated 

OS distant metastasis and recurrence via the activation 

of the Notch and WNT/β-catenin pathways [33]. The 

overexpression of miR-340 enhanced OS cell 

apoptosis, and inhibited proliferation and motility via 

the repression of the Notch signaling pathway [34]. 

Another study revealed that miR-1296-5p repressed 

the growth, migration and invasion of OS cells by 

targeting Notch-2 [35]. Moreover, miR-92a blocked 

OS progression and induced cisplatin sensitivity via 

the inhibition of Notch-1 [36].  

 

Recently, lncRNA MEG3 was shown to repress 

proliferation, stimulate apoptosis in OS cells and block 

metastasis by reducing Notch-1, Jagged-1, Hes-1 and 

NICD1 [37, 38]. Similarly, lncRNA CEBPA-AS1 

upregulation suppressed proliferation and motility and 

triggered apoptosis by diminishing the Notch pathway 

[39]. LncRNA CRNDE increased the proliferation and 

migrative and invasive ability of OS cells via the 

modulation of Notch-1 and EMT [40]. LncRNA 

SNHG7 facilitated tumor growth and EMT by 

targeting the miR-34a and Notch pathways in OS [41]. 

LncRNA NBR2 suppressed cell proliferation, invasion 

and migration and EMT via suppressing Notch-1 in 

OS cells [42]. Therefore, how Notch-1 is regulated by 

noncoding RNAs in OS cells needs to be further 

explored in the near future. In summary, Notch-1 

promoted the viability and motility of OS cells by 

upregulating Cdc20 in OS cells. 

 

MATERIALS AND METHODS 
 

Transfection 
 

MG63 and U2OS cells were grown in complete 

DMEM. OS cells were cultured overnight and 

transfected with Notch-1 cDNA, empty vector, control 

shRNA, Notch-1 shRNA or Cdc20 cDNA or a 

combination by Lipofectamine 2000 according to the 

instructions as previously described [20]. The CDC20 

shRNA plasmid DNA (SHCLND-NM-001255) was 

purchased from Sigma Aldrich Company, and Notch1 

shRNA plasmid (SC-36095-SH) was obtained from 

Santa Cruz Biotechnology Company. The transfected 

cells were further analyzed for biological functions.  

 

Cell viability  

 

The transfected OS cells were incubated in 96-well 

plates for 48 hours and 72 hours. The MTT assay was 

utilized to measure the viability of OS cells as 

previously described [21].  

 

Cell apoptosis  

 

The transfected OS cells were incubated in six-well plates 

for 72 hours. Cells were collected and resuspended in 

binding buffer with propidium iodide and FITC-

conjugated anti-Annexin V antibodies. The apoptosis rate 

was determined as described before [21]. 

 

Cell invasion assay 

 

The transfected OS cells were incubated in the top 

chamber of Transwell insert with serum-free medium. 

The bottom chamber was filled with complete medium. 

After 20 hours of incubation, calcein AM was employed 

to stain the invading cells for 1 hour. The invading cells 

were photographed by a microscope.  

 

Wound healing assays 

 

The transfected OS cells were incubated in 6-well plates 

until the cells covered the well. A yellow pipette tip was 

used to create a wound in the OS cells. After 16 hours 

and 20 hours, the wound area was photographed with a 

microscope.   

 

Real-time quantitative reverse transcription PCR 

(RT-qPCR) 

 

Total RNA from transfected cells was extracted using 

TRIzol reagent, and RT-PCR was performed as 

described previously [43]. 

 

Western blotting analysis 

 

The cells were lysed by protein lysis buffer after 72 

hours post-transfection with cDNA or shRNA. The 

protein levels were examined by western blotting. 

The primary antibodies were incubated with the 
membranes at 4° C overnight. The expression level  

of target proteins was evaluated as described 

previously [20]. 
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Statistical analysis  

 

All data were analyzed by GraphPad Prism 5.0. 

ANOVA was utilized to analyze statistical significance. 

Each experiment was performed in triplicate. A value of 

P < 0.05 was considered statistically significant. 
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