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INTRODUCTION 
 

Colorectal cancer (CRC) is the third most prevalent 

cancer with nearly 1.3 million new patients and more 

than 0.6 million deaths across the world every year [1]. 

Although notable advances in the early diagnosis and 

intervention have been made in recent years, the 

prognosis of CRC remains dismal as over half of the 

patients with advanced-stage cancer die due to 

recurrence and metastasis [2]. Therefore, the potential 

mechanisms involved in the development and 

progression of CRCs need to be identified. 

 

Long noncoding RNAs (lncRNAs) belong to a 

subgroup of transcripts with lengths that exceed 200  

nucleotides. Despite the presence of a protein-coding 

deficiency, lncRNAs are known to be versatile 

molecules that participate in various diseases, especially 

in the development and progression of tumours [3–5]. 

The mechanism of action of lncRNAs is extremely 

complicated and is mainly reflected in the regulation of 

the expression of the gene at the transcriptional and 

post-transcriptional levels and during epigenetic 

modification [6–8]. Numerous studies have verified that 

lncRNAs contribute to tumour progression, metastasis 

and recurrence in CRCs. For example, lncRNA CASC9 
may enhances TGFβ2 mRNA stability and elevates the 

expression levels of TGFβ2 and TERT, leading to an 

increase in SMAD3 phosphorylation and TGF-β 

pathway activation and ultimately promoting CRC cell 
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ABSTRACT 
 

Tumour protein translationally controlled 1 (TPT1) antisense RNA 1 (TPT1-AS1) is known to be involved in the 
development and metastasis of cervical and ovarian cancers; however, its biological role in colorectal cancer (CRC) 
remains unknown. This study aimed to determine the function and mechanism of action of TPT1-AS1 in the 
progression and metastasis of CRC. Elevated TPT1-AS1 levels were observed in CRC tissues. Furthermore, the high 
expression levels were found to be correlated with unfavourable clinicopathological characteristics in CRC. Cell 
function experiments demonstrated that TPT1-AS1 depletion impeded cell proliferation, migration and invasion 
and enhanced cell adhesion; it also attenuated tumorigenesis and metastasis in vivo. Additionally, TPT1-AS1 was 
predominately located in the nuclei of the cells and could upregulate the expression of TPT1 by recruiting mixed 
lineage leukaemia protein-1 (MLL1), which increased the trimethylation of H3K4 me3 in the TPT1 promoter region 
and subsequently activated FAK and JAK-STAT3 signalling cascades. The inhibition of FAK activation by PF573228 
significantly attenuated the oncogenic effect of TPT1-AS1. These findings indicated that TPT1-AS1 promoted 
tumour progression and metastasis in CRC by upregulating TPT1 levels and activating the FAK and JAK-STAT3 
signalling pathways. Thus, TPT1-AS1 may be considered as a potential therapeutic target for CRC.  
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growth [9]. SNHG14 was found to contribute to CRC 

growth and metastasis by recruiting methyltransferase 

enhancer of zeste homolog 2 (EZH2), which could 

repress EPHA7 transcription via methylated 

modification [10]. GLCC1 was reported to be 

upregulated in CRC cells that were under glucose 

starvation, which might have contributed to cell survival 

by enhancing glycolysis [11]. Hence, exploring the 

potential mechanisms of action of lncRNAs in CRC 

might prove valuable in providing new strategies for the 

diagnosis and treatment of cancer. 

 

Tumour protein translationally controlled 1 (TPT1) 

antisense RNA 1 (TPT1-AS1) is the transcript of the 

TPT1 gene located at the human locus of 13q14.13. 

Previous studies have reported the dysregulation of 

TPT1-AS1 in anaplastic glioma, cervical cancer and 

ovarian cancer [12–14]. In glioma, the expression level 

of TPT1-AS1 was downregulated with tumour grade; in 

addition, it was found to have a prognostic value for 

anaplastic gliomas [12]. On the contrary, TPT1-AS1 

was upregulated in cervical and ovarian cancers and 

contributed to both tumorigenesis and metastasis [13, 

14]. Nonetheless, this transcript has not been well 

characterised in malignancies, particularly CRC. Hence, 

this study aims to determine the function and 

mechanism of action of TPT1-AS1 in the development 

and progression of CRCs. 

 

Here, we found that TPT1-AS1 was elevated in CRC 

tissues and cell lines, and the high expression level was 

associated with the clinicopathological features and 

poor prognosis in CRC patients. Based on the results of 

the in vivo and in vitro experiments, TPT1-AS1 was 

confirmed to facilitate cell proliferation, migration and 

invasion. Furthermore, TPT1-AS1 was found to 

upregulate TPT1 expression by recruiting the histone 

methyltransferase MLL1 to its promoter and increasing 

the trimethylation of H3K4 me3. TPT1 is required for 

the oncogenic effect of TPT1-AS1 in CRC. Our 

findings suggested that TPT1-AS1 promoted the 

proliferation, migration and invasion of the CRC cells 

via the activation of the focal adhesion kinase (FAK) 

and JAK-STAT3 signalling pathways. This study 

unearthed novel insights into the mechanism of action 

of TPT1-AS1, thus indicating its potential as an 

effective therapeutic target for CRC. 

 

RESULTS 
 

TPT1-AS1 is elevated in CRC tissues and its 

upregualtion predicts poor survival of CRC patients 

 

Firstly, we examined TPT1-AS1 expression in 72 CRC 

and 36 adjacent normal tissues by qRT-PCR method. The 

result showed that TPT1-AS1 was upregulated in CRC 

tissues (Figure 1A). Moreover, The level of TPT1-AS1 in 

metastasis CRC tissues was significantly higher than 

nonmetastatic tumor tissues (Figure 1B). Base on the 

median value of TPT1-AS1 expression in tumor tissues, 

the CRC patients were assigned high expression group 

(n=42) and low expression group (n=30) (Figure 1C). The 

correlation of TPT1-AS1 expression and CRC clinical 

pathologic features were investigated by χ2 tests. As 

shown in Table 1, TPT1-AS1 expression was significantly 

correlated with tumor invasion depth (P=0.038), TNM 

stage (P=0.025) and distant metastasis (P=0.031). 

Additionally, the high TPT1-AS1 expression in CRC 

patients was implied the poor overall survival  

(Figure 1D). Besides, our result was consistent with the 

GEO data (GSE95423) which demonstrated TPT1-AS1 

upregulation in CRC tissue with liver metastasis 

comparing to CRC tissue without metastasis (Figure 1E). 

 

TPT1-AS1 promotes CRC cell proliferation, 

migration and invasion in vitro and in vivo 

 

To explore the role of TPT1-AS1 in CRC cells, the 

endogenous expression of this transcript in CRC cell 

lines (HCT116, HT-29, SW620 and LoVo) and a 

normal colonic cell line (NCM460) was detected by 

qRT-PCR. The result showed that the level of TPT1-

AS1 was significantly elevated in the tumour cell lines, 

particularly HCT116 and LoVo cells, compared to that 

in the NCM460 cells (Figure 2A). Subsequently, TPT1-

AS1 was knocked down in the HCT116 and LoVo  

cells and enhanced in the SW620 cells, and the levels 

were confirmed by qRT-PCR assay (Figure 2B, 2C, 

respectively). MTT and clone formation assays showed 

that TPT1-AS1 knockdown suppressed cell 

proliferation and growth, whereas TPT1-AS1 over-

expression demonstrated promoting effects  

(Figure 2D, 2E). Importantly, the silencing of TPT1-

AS1 significantly reduced tumour volume and weight 

(Figure 2F). This difference was further confirmed 

following the examination of the xenograft by H&E, the 

tumours that developed from TPT1-AS1-depleted cells 

displayed lower Ki-67 staining than those in the control 

group (Supplementary Figure 1). These results indicated 

that TPT1-AS1 exerted a significant promotive effect 

on the tumorigenesis of CRC in vitro and in vivo. 

 

As shown in Figure 3A, TPT1-AS1 knockdown 

significantly enhanced the cell adhesion ability, 

whereas TPT1-AS1 overexpression had the opposite 

effect. The migration and invasion assays 

demonstrated that TPT1-AS1 depletion significantly 

impaired cell migration and invasion, but the opposite 

was observed when TPT1-AS1 was overexpressed in 
the SW620 cells (Figure 3B, 3C). Furthermore, we 

investigated the effect of TPT1-AS1 on liver 

metastasis in vivo. As shown in Figure 3D–3F, the 
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TPT1-AS1 knockdown group displayed a reduction in 

the number of metastatic modules in the liver when 

compared to the control group, indicating that TPT1-

AS1 could promote cell migration and metastasis in 

vitro and in vivo. 

 

TPT1-AS1 upregulated the expression of TPT1 by 

H3K4 me3 modification 

 

Subcellular fractionation analysis showed that TPT1-

AS1 was mainly enriched in the nucleus of the 

HCT116, LoVo and SW620 cells (Figure 4A). The 

FISH analysis confirmed a similar subcellular 

localisation of TPT1-AS1 in the tissues (Figure 4B); 

moreover, the percentage of positive signals in the CRC 

tissues was higher than that in the adjacent tissues. 

Antisense lncRNA tends to modulate the expression of 

its sense mRNA; therefore, we speculated that TPT1-

AS1 may regulate the level of TPT1 in CRC. Firstly, the 

expression level of TPT1 was elevated in the CRC 

specimens as detected by qRT-PCR, which was 

consistent with the expression level of TPT1-AS1 in 

CRC samples (Figure 4C). Additionally, a positive 

correlation between TPT1 and TPT1-AS1 expression 

levels were observed in the CRC tissues (Figure 4D). 

Similarly, the result of the Western blot analysis 

showed that the expression level of TPT1 was 

significantly increased in the CRC specimens when 

compared to that in the adjacent normal tissues  

(Figure 4E). Furthermore, the mRNA and protein 

expression levels of TPT1 were significantly reduced in 

the TPT1-AS1-silenced cells and increased in the cells 

 

 
 

Figure 1. TPT1-AS1 is elevated in CRC tissues and its upregualtion predicts poor survival of CRC patients. (A) qRT-PCR detected 

TPT1-AS1 expression in 72 CRC and 36 adjacent normal tissues; (B) Expression of TPT1-AS1 was detected in metastatic CRC (CRC-M) and 
nonmetastatic tumor tissues (CRC-NM); (C) TPT1-AS1 expression in CRC patients was divided into high expression and low expression groups 
according to the median value; (D) The overall survival of CRC patients was evaluated by Kaplan-Meier analysis; (E) TPT1-AS1 expression was 
analyzed in metastatic CRC (CRC-M) and nonmetastatic tumor tissues from GEO data (GSE95423). *P<0.05. 
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Table 1. The association between TPT1-AS1 expression and clinical pathology features. 

Variable 
Cases TPT1-AS1 expression 

P Value χ2 Value 
 Low High 

Age    0.194 1.264 

<60 22 7 15   

≥60 50 23 27   

Gender    0.237 0.914 

Male 36 17 19   

Female 36 13 23   

Tumor location    0101 2.299 

Rectum 34 11 23   

Colon 38 19 19   

Tumor Size    0.149 1.646 

<5 32 16 16   

≥5 40 14 26   

Tumor invasion depth    0.038 4.114 

T1-2 24 14 10   

T3-4 48 16 32   

TNM stage    0.025 4.761 

I+II 42 22 20   

III+IV 30 8 22   

Distance Metastasis    0.031 4.404 

No 45 23 22   

Yes 27 7 20   

 

that overexpressed TPT1-AS1 (Figure 4F). These 

findings suggested that TPT1-AS1 could upregulate 

TPT1 expression. 

 

To further investigate the potential mechanism of 

TPT1-AS1 in upregulating the expression of TPT1 in 

CRC, we analysed the extent of histone modification 

in the ENCODE data. The activated histone 

modification H3K4 m3 was enriched around the TPT1 

promoter region (Supplementary Figure 2). Whether 

TPT1-AS1 could recruit methyltransferase MLL1, the 

charge of H3K4 trimethylation modification. RNA-

Protein Interaction Prediction analysis displayed an 

interaction between TPT1-AS1 and MLL1 

(Supplementary Figure 3). The ChIP assay was applied 

to verify the interacting by using the anti-H3K4 me3 

and MLL1 antibodies. As shown in Figure 4G, the 

amplification of the TPT1 promoter fragment (TPT1-

pro) was reduced in the precipitates of the TPT1-AS1-

silenced cells, implying that TPT1-AS1 mediated the 

H3K4 me3 modification in the TPT1 transcription 

region. The ChIP assay using the MLL1 antibody 

displayed a similar reduction in TPT1-pro (Figure 4H), 

indicating that MLL1 participated in TPT1-AS1 

regulation TPT1 transcription. In addition, it 

demonstrated that the level of H3K4 me3 was reduced 

in the TPT1 promoter region after MLL1 depletion 

(Figure 4I). The RIP assays confirmed that TPT1-AS1 

could physically bind to MLL1 (Figure 4J). TPT1 

expression was impeded following the knockdown of 

MLL1 by siRNA (Figure 4K). Taken together, these 

results indicated that TPT1-AS1 recruited MLL1 to the 

promoter region of TPT1 and enhanced the H3K4 me3 

level, resulting in the upregulation of TPT1. 

 

TPT1-AS1 promotes CRC progression via TPT1 

 

To evaluate the role of TPT1 on the TPT1-AS1-

mediated increase in cell proliferation, migration and 

invasion in the CRC cells, rescue experiments were 

performed. The expression level of TPT1 was elevated 

in the TPT1-AS1-silenced cells by transfecting them 

with a pcDNA3.1-TPT1 plasmid and verified by qRT-

PCR (Figure 5A). As shown in the functional 

experiments, the ectopic expression of TPT1 

significantly reduced the suppressive effects on cell 

proliferation, migration and invasion and attenuated the 

promotive effects on cell adhesion mediated by TPT1-

AS1 knockdown (Figure 5B–5F). 

 

TPT1-AS1 promoted CRC progression via 

TPT1/FAK/JAK-STAT3 signalling 

 

To investigate the underlying mechanisms of TPT1-

AS1/TPT1 in CRC progression, we performed  

the GSEA analysis using the TCGA CRC datasets  

and found that TPT1 expression was positively 

correlated with FA and JAK-STAT3 signalling 
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(Supplementary Figure 4). Interestingly, the positive 

correlation between TPT1- AS1 and FAK, JAK1, JAK2 

and STAT3 expression levels were observed in the CRC 

tissues (Supplementary Figure 5). Western blot 

detection showed that the expression levels of p-FAK, 

p-JAK1, p-JAK2 and p-STAT3 were significantly 

reduced following TPT1-AS1 knockdown in the 

HCT116 and LoVo cells; however, this decrease was 

effectively mitigated when TPT1 was ectopically 

overexpressed. Alternatively, the levels of p-FAK, p-

JAK1, p-JAK2 and p-STAT3 were increased in the 

TPT1-AS1-overexpressed SW620 cells (Figure 6A). 

Importantly, this increase was effectively attenuated 

when the cells were treated with the FAK inhibitor 

(PF573228). Furthermore, the FAK inhibitor 

significantly attenuated the promotional effects on cell

 

 
 

Figure 2. TPT1-AS1 promotes CRC cell proliferation in vitro and vivo. (A) TPT1-AS1 endogenous level in CRC cell lines and normal 
colonic cell line NCM460 was detected by qRT-PCR. TPT1-AS1 expression was examined in TPT1-AS1 silencing HCT116 and LoVo cells (B) and 
overexpressing SW620cells (C). MTT (D) and clone formation assays (E) were applied to assess the effect of TPT1-AS1 on CRC cell proliferation 
and growth. (F) TPT1-AS1 knockdown inhibited the tumor volume and weight in nude mice tumorigenicity assay. *P<0.05, **P<0.01. 
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Figure 3. TPT1-AS1 promotes CRC cell migration and invasion in vitro and vivo. (A) Cell adhesion assay was applied to determine 
the effect of TPT1-AS1 on CRC cell adhesion (magnification 200x). Wound scratch (magnification 100x) (B) and Transwell assays 
(magnification 200x) (C) were performed to examine the effect of TPT1-AS1 on CRC cell invasion and migration. (D) TPT1-AS1 knockdown 
suppressed CRC liver metastasis in vivo, the gross specimen images of liver metastases. (E) The metastatic nodules in liver tissue were 
detected by HE staining (magnification 100x). (F) The statistical analysis of number of liver metastatic nodules. *P<0.05, **P <0.01. 
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Figure 4. TPT1-AS1 upregulated the expression of TPT1 by H3K4me3 modification. (A) Subcellular fractionation analysis showed 
that TPT1-AS1was mainly enriched in the nucleus of CRC cells. (B) FISH analysis the subcellular localization of TPT1-AS1 in tissues 
(magnification 100x). (C) qRT-PCR detected TPT1 expression in 72 CRC and 36 adjacent normal tissues. (D) The correlation between TPT1-AS1 
and TPT1 expression was analyzed in 72 CRC tissues. (E) Western blot showed that our CRC specimen had a obviously increased TPT1 level 
compared with adjacent normal tissues. (F) TPT1 mRNA (upper)and protein (down) level were examined in TPT1-AS1 overexpression and 
knockdown cells. (G) ChIP assay showed that TPT1-AS1 depletion reduced the H3K4me3 modification in TPT1 transcription region. (H) ChIP 
analysis reveals that MLL1 mediated TPT1-AS1 regulation TPT1 transcription. (I) ChIP analysis demonstrated that H3K4me3 level was reduced 
in the TPT1 promoter region after MLL1 depletion. (J) RIP assays confirmed that TPT1-AS1 could physically bind to MLL1. (K) TPT1 expression 
was impeded when MLL1 was silenced by siRNA. 1,3 stand for Lv-con group; 2,4 stand for Lv-sh-TPT1-AS1 group; 5 stand for vector group; 6 
stand for TPT1 overexpression group. *P<0.05. 
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Figure 5. TPT1-AS1 promotes CRC progression via TPT1. (A) TPT1 expression was restored in TPT1-AS1 depletion cells via transfecting 
the pcDNA3.1-TPT1 plasmid. MTT (B) and clone formation assays (C) showed that ectopic expression of TPT1 could remarkably relieved the 
suppressive effects on cell viability and proliferation causing by TPT1-AS1 knockdown. (D) Restoring TPT1 expression could obviously 
attenuated the promotive effects on cell adhesion inducing by TPT1-AS1 depletion (magnification 200x). Wound scratch (magnification 100x) 
(E) and Transwell assays (magnification 200x) (F) showed that ectopic expression of TPT1 could obviously relieved the suppressive effects on 
cell migration and invasion causing by TPT1-AS1 knockdown. *P<0.05. 
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proliferation, migration and invasion and enhanced the 

adhesion ability in the TPT1-AS1-overexpressed 

SW620 cells (Figure 6B–6F). These results indicated 

that TPT1-AS1 promoted CRC progression via the 

TPT1/FAK/JAK-STAT3 signalling pathway (Figure 7). 

 

DISCUSSION 
 

Emerging studies have confirmed that numerous 

dysregulated lncRNAs are involved in the development 

and progression of CRC [15–17]. Therefore, exploring 

the function and molecular mechanisms of lncRNAs 

may aid in the identification of novel and valuable 

targets for the treatment of CRC. In this study, we 

demonstrated that the lncRNA TPT1-AS1 was 

upregulated in the CRC tissues and cell lines. The high 

expression of TPT1-AS1 was associated with 

unfavourable CRC clinicopathological characteristics 

such as advanced stage, lymph node metastasis and 

poor prognosis. Furthermore, TPT1-AS1 knockdown 

significantly inhibited cell proliferation, migration and 

invasion and enhanced cell adhesion. Moreover, TPT1-

AS1 could upregulate TPT1 expression by recruiting 

MLL1 to the promoter region of TPT1 and enhances the 

H3K4 me3 level. The oncogenic effect of TPT1-AS1 on 

CRC cells and tissues was dependent on TPT1. In 

addition, TPT1-AS1 was found to promote the 

development and progression of CRC via the FAK and 

JAK-STAT3 signalling cascades. 

 

The dysregulation of TPT1-AS1 has been reported in 

anaplastic glioma [12], cervical cancer [13] and ovarian 

cancer [14]; however, the expression and function of 

this lncRNA vary among these three tumour types. The 

expression level of TPT1-AS1 was decreased with the 

tumour grade and had prognostic value in anaplastic 

glioma. By predicting the target genes from the CLIP-

seq data, it was speculated that TPT1-AS1 might act as 

a tumour suppressor [12]. However, in cervical cancer, 

the expression level of TPT1-AS1 was upregulated and 

associated with poor prognosis and overall survival 

[13]. Moreover, TPT1-AS1 was mainly distributed in 

the cytoplasm and promoted cell proliferation as well as 

metastasis by serving as a miR-324-5p sponge, thus 

implying its role as an oncogenic lncRNA in cervical 

cancer [13]. Similar results were observed in epithelial 

ovarian cancer (EOC), where TPT1-AS1 was up-

regulated in metastatic the tissues, and related to the 

adverse prognostic characteristics. The difference was 

that TPT1-AS1 was preferentially localised in the nuclei 

of the EOC cell, and the oncogenic roles of this lncRNA 

in tumour growth and metastasis were exerted via the 

positive regulation of both TPT1 and the downstream 

PI3K/AKT pathway [14]. In the present study, we 

confirmed that TPT1-AS1 facilitated cell proliferation, 

migration and invasion in CRC and a high expression 

level of TPT1-AS1 indicated poor prognosis and overall 

survival. These results were consistent with those 

observed in cervical and ovarian cancers. 

 

Accumulated evidence has confirmed that a part of the 

lncRNAs take part in epigenetic regulation via DNA 

methylation and histone modifications (such as 

methylation and acetylation) [18]. Histone methylation 

usually occurs on the different lysine residues of histone 

H3/H4 and is mediated by histone methylases or 

demethylases [19]. LncRNAs act as decoys that recruit 

and bind with these relevant enzymes during histone 

modifications. The EZH2 is a subunit of the polycomb 

repressive complex 2 (PRC2) and has a catalytic 

activity, which can increase histone H3 lysine 27 

trimethylation (H3K27 me3), resulting in chromatin 

compression and disturbances in gene transcription [20, 

21]. Lysine-specific demethylase 1 (LSD1) is a 

demethylase that can erase mono- and dimethylated 

residues of histone H3 lysine 4 (H3K4 me1, H3K4 me2) 

and mono-residues of histone H3 lysine 9 (H3K9 me1), 

leading to the inhibition of the transcription [22]. 

Moreover, LSD1 was found to promote transcription 

following the demethylation of H3K9 me2 [23]. MLL1 

can specifically induce H3K4 me3 and activate 

transcription [24, 25]. For instance, lncRNA HOXD-

AS1, the antisense RNA 1 of the HOXD cluster, 

recruits PRC2, resulting in an increase in the level of 

H3K27 me3 and the suppression of HOXD3 

transcription in CRC [26]. LncRNA CASC9 was 

reported to recruit EZH2 to the PDCD4 promoter and 

increase the H3K27 me3 level, causing a decrease in the 

expression level of PDCD4 in oesophageal squamous 

cell carcinoma [27]. In hepatocellular carcinoma 

(HCC), GAS8 antisense RNA 1 (GAS8-AS1) recruited 

H3K4 methyltransferase MLL1 to the promoter of 

GAS8 and enhanced the H3K4 m3 level, thereby 

upregulating the expression level of GAS8 [28]. In 

another study, FEZF1 antisense RNA 1 (FEZF1-AS1) 

recruited demethylase LSD1 to the promoter of p21 and 

reduced the H3K4 m2 level, resulting in the repression 

of p21 expression in gastric cancer [19]. In our study, 

the expression levels of TPT1-AS1 and TPT1 were 

positively correlated, and TPT1 expression was 

regulated by TPT1-AS1. Most importantly, TPT1-AS1 

enhanced the H3K4 m3 level in the TPT1 promoter 

region by recruiting and binding to MLL1, thus altering 

the chromatin status from inactive to active and 

ultimately promoting TPT1 transcription. We first 

elucidated TPT1-AS1 regulating TPT1 expression from 

an epigenetic perspective. 

 

TPT1 is a highly conservative multifunctional protein 
and is involved in multiple physiological activities such 

as cell growth, cell proliferation and metabolism [29]. 

Moreover, TPT1 was verified as a crucial factor in 
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Figure 6. TPT1-AS1 promoted CRC progression via the TPT1/FAK/JAK-STAT3 signaling. (A) Western blot was conducted to examine 
p-FAK, FAK, p-JAK1, JAK1, p-JAK2, JAK2, p-STAT3 and STAT3 expression in TPT1-AS1 knockdown and overexpression cells. FAK inhibitor 
(PF573228) could remarkably attenuated the promotional effects on cell viability (B), colony formation (C), migration (magnification 100x) (D) 
and invasion (magnification 200x) (E), and inhibited adhesion ability (magnification 200x) (F) in TPT1-AS1-overexpressing SW620 cells. 1 stand 
for Lv-con group; 2 stand for Lv-sh-TPT1-AS1 group; 3 stand for Lv-sh-TPT1-AS1+TPT1 group; 4 stand for vector group; 5 stand for TPT1 
overexpression group; 6 stand for TPT1+ FAK inhibitor group. *P<0.05, **P<0.01. 
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cancer reversion [30]. It was found to be upregulated in 

various cancers, including breast cancer, pancreatic 

cancer, HCC and EOC [14, 31–33]; furthermore, the 

high expression of TPT1 was significantly associated 

with the malignant behaviour of the tumour and the 

prognosis of the patient. In CRC, TPT1 was a potential 

diagnostic marker involved in the progression and 

metastasis of the disease. The high expression of the 

lncRNA was associated with the unfavourable 

clinicopathological characteristics of CRC. Moreover, 

TPT1 facilitated the migration and invasion of the cells 

and distant metastasis in the liver [34]. TPT1 

significantly relieved the inhibitory effects of TPT1-

AS1 knockdown on cell proliferation, colony formation, 

migration and invasion in CRC, thus indicating the 

oncogenic TPT1-dependent role of TPT1-AS1 on 

tumorigenesis and progression of CRC. These results 

were consistent with that reported in EOCs. 

 

Metastasis is one of the causes of the high rates of 

tumour mortality. Cell migration and invasion are 

considered as the critical steps for cancer metastasis, 

and these processes are characterised by rearrangement 

of the cytoskeleton and abnormal cell adhesion [35]. 

Focal adhesions (FAs) are large, dynamic protein 

complexes that link the cytoskeleton to the extracellular 

matrix and play a pivotal role in cell migration [36]. 

FAK is a non-receptor tyrosine kinase that is localised 

within the cellular focal adhesions and mediated FA 

turnover [37]. Previous studies have shown that 

repression of FAK activity may contribute to CRC 

therapy [38, 39]. JAK/STAT3 is a well-characterised 

oncogenic signalling pathway and is pivotal in  

 

 
 

Figure 7. A proposed model for illustrating the function 
and mechanism of TPT1-AS1 in CRC growth and 
metastasis. 

promoting carcinogenesis [40]. Numerous studies have 

confirmed that the JAK/STAT3 pathway is aberrantly 

activated in CRC [41–43]. Our GSEA analysis 

displayed that the high expression of TPT1 was 

associated with FA and JAK-STAT3 signalling 

pathway. FAK phosphorylation was reported to 

promote STAT3 activation and MMP-2 activity in 

gliomas [44]. In the current study, TPT1-AS1/TPT1 

promoted cell migration and invasion by activating the 

FAK/STAT3 signalling cascades. In addition, the 

repression of FAK activation remarkably impeded 

JAK/STAT3 signalling and mitigated the promoting 

effects on CRC cell proliferation, colony formation, 

migration and invasion caused by TPT1-AS1 

overexpression. These findings suggested that TPT1-

AS1/TPT1 promotes tumorigenesis and progression of 

CRC via the FAK and JAK-STAT signalling cascades. 

 

CONCLUSIONS 
 

The present study demonstrated that TPT1-AS1 

promotes the progression and metastasis of CRC by 

upregulating the TPT1 expression and activating the 

FAK and JAK-STAT3 signalling pathways. Thus, 

TPT1-AS1 might be used as a potential therapeutic 

target for CRC. 

 

MATERIALS AND METHODS 
 

Clinical specimens 

 

A total of 72 CRC tissues and 36 adjacent tissues were 

enrolled from the second Xiangya Hospital, Central 

South University, from March 2012 to April 2016. No 

patient was administered to preoperative chemotherapy 

and radiotherapy. The fresh tissues were fast frozen in 

liquid nitrogen and kept at -80° C. All of the patients 

were followed-up regularly intervals after surgery. This 

study was approved by the Ethics Committee of the 

Second Xiangya Hospital of Central South University 

and informed consent have signed by all patients. The 

pathological features were acquired from patients’ 

medical records.  

 

Cell culture and transfection 

 

The CRC cell lines (HCT116, LoVo, SW620 and HT-29) 

and normal colonic epithelial cell line NCM460 were 

purchased from American Typer Culture Collection 

(ATCC) and cultured according to the instructions. 

 

TPT1-AS1 siRNAs specially targeting TPT1-AS1 were 

designed and synthesized by GenePharma (Shanghai, 
China). The most interference effectiveness of target 

sequence was chosen to be packaged lentiviruses by 

GenePharma (Shanghai, China). A scrambled was used 
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as negative control. To construct TPT1-AS1 

downregulated cells model, HCT116 or LoVo (1×105 

cells) were mixed with polybrene (5 µg/ml), and Lv-sh-

TPT1-AS1(4×108 TU/ml, 5 μL), or Lv-con(2×108 

TU/ml, 10 μL). 48 hours later, transfected cells were 

selected by 20 µg/ml puromycin (Thermo Fisher, USA). 

 

For overexpressional plasmids construction, the TPT1-

AS1 sequence and TPT1 cDNA ORF were synthesized 

and subcloned into the pcDNA3.1 vector (General 

Biosystems, Chuzhou, China). Plasmids were transfected 

into cells using Lipofectamine 2000 (Thermo Fisher, 

USA) following the manufacturers’ instructions. Cells 

were harvested at 48 h after transfection.   

 

qRT-PCR 

 

Total RNAs were isolated with Trizol (Thermo Fisher, 

USA). cDNA was reversely transcribed with RevertAid 

First Strand cDNA Synthesis Kit (Thermo Fisher, USA) 

following the instructions. qRT-PCR was conducted 

with SYBR Green I (TOYOBO, Japan) and detected by 

7500 Real-Time PCR System (ABI, USA). Internal 

control was chosen β-actin gene for normalizing. qRT-

PCR primers sequences were listed as following: TPT1-

AS1 forward: 5’- GGTCAGCTCCAAGGAGGCTAT-

3’, TPT1-AS1 reverse: 5’- GCCAGTGCTCTGAAGGA 

AAAC’; TPT1 forward: 5’- CGAGTTTCAGGCTCG 

TGCTA -3’, TPT1 reverse: 5’-TTCCTTCCTGGGCAT 

GGAGTC-3’; β-actin forward: 5’-TGGCATCCAC 

GAAACTACCT-3’, β-actin reverse: 5’-TCTTCATTG 

TGCTGGGTGCC-3’. 

 

MTT and Clone formation assays 

 

Cell viability and proliferation were examined by MTT 

and clone formation assays respectively. For MTT 

detection, each group cells (1×104 cells/well) were 

seeded into 96-well plates. 24 h later, each well was 

added 20 µl MTT and incubated at 37° C for 4 h. After 

removing the culture, each well was supplemented 150 

µl of DMSO and incubated at 37° C for 10 min. 

Subsequently, the absorbance was detected at 570 nm 

by the microplate reader Thermo K3 (Thermo 

Scientific, USA). For clone formation experiment, 

1×103 cells were plated into a 35 mm dish and cultured 

for nearly two weeks. Then, colonies of cells were fixed 

in 4% paraformaldehyde (PFA) and stained with 0.01% 

crystal violet dye. 

 

Cell adhesion analysis 

 

Cells (5×104 cells/well) were seeded in 24-well plate 
coated with 1:5 diluted Matrigel (Corning, USA), and 

incubated at 37° C for 30 min. Then removing the 

culture and non- adhered cells, the adhered cells were 

rinsed by PBS twice times and fixed in 4% PFA for 30 

minutes. Subsequently, cells were stained with 0.1% 

crystal violet for 20 minutes at room temperature.  

 

Cell migration and invasion analysis 

 

Wound scratch was applied to examine cell migration. 

Simply, cells were plated in the 12-well plates and 

grown to 100% confluence. Cell wounds were scratched 

using a 20 μl pipette tube. Wound closure was measured 

the distance between the opposite edges of the wound 

after 0 and 24 h. BioCoat Matrigel Invasion chamber 

(Corning, USA) was applied to invasion assay. 1×105 

cells suspended in serum-free medium were plated into 

the upper chambers (coated with matrigel), while the 

lower chambers were added medium containing 10% 

FBS. Incubating at 37° C for 48 h, the translocated cells 

were fixed with 4% PFA and stained by 0.1% crystal 

violet for 20 min. Subsequently, the invasive cells were 

photographed and counted under the microscope. 

 

Western blotting 

 

RIPA buffer containing protease and phosphatase 

inhibitors was used to lyse cells on ice for 0.5 h using. 

Proteins were extracted from supernatant of cell lysate 

and quantified the concentration by BCA Kit (Thermo 

Fisher, USA). 30 μg proteins per sample were separated 

by 10% SDS-PAGE and transferred to a polyvinylidene 

difluoride (PVDF) membrane (Thermo Fisher, USA). 

The membrane were blocked by 5% non-fat dry milk, 

and then added primary antibodies against TPT1 

(1:1000, Abcam), p-FAK (Try397) (1:1000, CST), FAK 

(1:1000, CST), p-JAK1(1:1000, Abcam), p-JAK1  

(1:1000, Abcam), p-JAK2 (1:1000, CST), JAK2 

(1:1000, CST), p-STAT3 (1:1000, CST), STAT3 

(1:1000, CST), overnight at 4° C, followed by 

incubating with HRP-labeled secondary antibody. The 

blotting signal was examined by using enhanced 

chemiluminescence reagent (Thermo Fisher, USA). β-

actin used as control. 

 

Subcellular fractionation 

 

The nuclear and cytosolic fractions of LoVo and SW620 

cells were separated with PARIS Kit (Thermo Fisher, 

USA) following the manufacturers’ instructions. 

 

Fluorescence in situ hybridization (FISH) 

 

The probe of TPT1-AS1 was designed and synthesized 

by BersinBio (Guangzhou, China), and its sequence was 

5’-TTGGAGCTGACCTGAAGTGAAGATCTGGGAG 
TGG-3’ and labeled with CY3. FISH was conducted 

according to previously described methods [27]. Fresh 

tissue samples were fixed with 4% PFA for 48 h and 
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dehydrated using graded ethanol. After vitrification by 

dimethylbenzene and embedding in paraffin, the tissues 

were subjected to dewaxing and hydration. After 

denatured at 73° C for 3 min, the sections were covered 

with hybridization solution that containing 5 ng/μl 

probes. Hybridization was placed in a moist chamber at 

42° C overnight. Then the sections were rinsed with 4× 

Saline Sodium Citrate (SSC) containing 1% Tween-20, 

descending series of SSC for 5 min at 42° C. 

Subsequently, the nucleus was stained by DAPI. The 

sections were observed and photographed by 

fluorescent microscopy (Nikon, Japan). 

 

Chromatin immunoprecipitation (ChIP) 

 

ChIP experiment was conducted by the EZ-Magna ChIP 

kit (Millipore, USA) and carried out as previous 

described [27]. Cells were fixed in 4% PFA and 

quenched with glycine for 10 min. DNA was broken 

into 200 to 600 bps through ultrasonication. The lysates 

were immunoprecipitated with anti-H3K4me3 antibody 

(ab213224, Abcam, USA) or anti-MLL1 (NB600-256, 

Novus, USA) or rabbit IgG. The ChIP product was 

analyzed by PCR. Primers used in ChIP assay were 

presented as following: TPT1-pro forward: 5’-AG 

CGGCTGAGTCGGCCTTTTC-3’, TPT1-pro reverse: 

5’-TGTGCGGCAGTAAGGATAGTG-3’. 

 

RNA immunoprecipitation (RIP) assay 

 

RIP was conducted by EZ-Magna RIP kit (Millipore, 

USA) and performed as previous study [27]. Simply, 

cells were crosslinked with 1% formaldehyde and lysed 

in RIPA buffer containing proteinase and RNase 

inhibitor. Then the magnetic beads pre-conjugated with 

anti-MLL1 antibody (NB600-256, Novus, USA) or IgG 

were incubated with the cell lysate at 4° C overnight. 

RNA was purified from immunoprecipitation complex 

and RT-PCR was applied to assess the expression of 

TPT1-AS1. Primers were presented as following: 

TPT1-AS1 forward: 5’-GAGACACAAGGCTCCGT 

TCC-3’, TPT1-AS1 reverse: 5’- AACAGCCAGGT 

TTTGAGAGC-3’. 

 

Gene set enrichment analysis (GSEA) 

 

The GSEA was launched to analyze gene sets 

correlated with TPT1 in CRC. Gene expression data of 

CRC were downloaded from TCGA database. TPT1 

expression was set high and low categories base on the 

median expression value. The TPT1 correlated gene 

sets and pathways were explored in the 

c2.cp.kegg.v7.0.symbols.gmt data set by GSEA v3 
soft. P <0.05 and false discovery rate (FDR) <0.25 was 

the criterion for identifying statistically enriched 

genes. 

In vivo tumorigenic and metastasis assays 
 

4-week-old male BALB/c nude mice were fed 

according to the guidelines authorized by the Animal 

Care Committee of the second Xiangya Hospital, 

Central South University.  
 

For vivo tumorigenicity, animals were randomly 

divided into two groups (n=5 for each group)  

and transplanted subcutaneously with 1×107 

HCT116-Lv-sh-TPT1-AS1 or HCT116-Lv-con at the 

right flank. Tumor growth was measured and 

recorded every 5 days. 25 days later, animals were 

killed after anesthetized and stripped the tumors. 

Tumor volume was calculated by the formula: (length 

× width2)/2. The tumors tissues were paraffin-

embedded, formal infixed and performed H&E 

staining, immunostaining analysis for Ki-67 protein 

expression. 
 

For metastasis assay, Lv-sh-TPT1-AS1 or control Lv-

sh-con lentivirus infected HCT116 cells (5×106/ 0.2 ml 

PBS) were intrasplenic injected into each mouse (n=6 

for each group). 8 weeks later, animals were killed after 

anesthetized and liver tissues were surgically excised. 

The the liver tissues were fixed in formalin and 

embedded in paraffin for hematoxylin and eosin (HE) 

examination. Metastatic nodules were analyzed under 

microscopy. 
 

Statistical analysis 
 

Each assay was performed at least three times, the data 

were presented as mean ± standard deviation (SD). The 

statistical analysis was conducted by SPSS 20.0 

software (SPSS Inc., IL, USA). Student’s t-test was 

applied to analyze the differential expression between 

two groups. The χ2 test was applied to assess the 

relationship between TPT1-AS1 expression and 

clinicopathological features of CRC. Survival was 

estimated by the Kaplan-Meier method. P < 0.05 were 

identified statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. The tumor sections were under H&E staining and IHC staining using antibody against Ki-67 
(magnification 200x). 

 

 
 

Supplementary Figure 2. ENCODE data analyzed the histone H3K4m3 modification of TPT1-AS1 promoter region. 
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Supplementary Figure 3. RNA-Protein Interactuin Prediction (RPISeq) analysis displayed TPT1-AS1 interacting with MLL1. 

 

 

 

Supplementary Figure 4. GESA analysis found that TPT1 expression was positive correlation with focal adhesion and JAK-
STAT signaling pathway. 

 



 

www.aging-us.com 3797 AGING 

 

 

Supplementary Figure 5. The correlation between TPT1-AS1 and FAK, JAK1, JAK2 and STAT3 expression were analyzed in 72 
CRC tissues. 


