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INTRODUCTION 
 

Non-homologous end-joining (NHEJ) is a DNA repair 

pathway that recognizes, processes and ligates DNA 

double-stranded breaks (DSB) throughout the cell cycle. 
NHEJ is required for lymphocyte development; in 

particular, to repair DSBs induced by the recombination 

activating genes (RAG) 1 and 2 in developing B and T  

 

lymphocytes, and by activation-induced cytidine 

deaminase (AID) in mature B cells [1]. NHEJ is 

initiated when Ku70 and Ku80 (Ku) are recruited to the 

DSB sites. Ku, together with DNA-dependent protein 

kinase, catalytic subunit (DNA-PKcs), forms the DNA-

PK holoenzyme [2]. Subsequently, the nuclease Artemis 

is recruited to the DSB sites to process DNA hairpins 

and overhangs [3]. Finally, DNA ligase IV (LIG4), X-
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ABSTRACT 
 

Non-homologous end-joining (NHEJ) is a DNA repair pathway required to detect, process, and ligate DNA 
double-stranded breaks (DSBs) throughout the cell cycle. The NHEJ pathway is necessary for V(D)J 
recombination in developing B and T lymphocytes. During NHEJ, Ku70 and Ku80 form a heterodimer that 
recognizes DSBs and promotes recruitment and function of downstream factors PAXX, MRI, DNA-PKcs, Artemis, 
XLF, XRCC4, and LIG4. Mutations in several known NHEJ genes result in severe combined immunodeficiency 
(SCID). Inactivation of Mri, Paxx or Xlf in mice results in normal or mild phenotype, while combined inactivation 
of Xlf/Mri, Xlf/Paxx, or Xlf/Dna-pkcs leads to late embryonic lethality. Here, we describe three new mouse 
models. We demonstrate that deletion of Trp53 rescues embryonic lethality in mice with combined deficiencies 
of Xlf and Mri. Furthermore, Xlf-/-Mri-/-Trp53+/- and Xlf-/-Paxx-/-Trp53+/- mice possess reduced body weight, 
severely reduced mature lymphocyte counts, and accumulation of progenitor B cells. We also report that 
combined inactivation of Mri/Paxx results in live-born mice with modest phenotype, and combined inactivation 
of Mri/Dna-pkcs results in embryonic lethality. Therefore, we conclude that XLF is functionally redundant with 
MRI and PAXX during lymphocyte development in vivo. Moreover, Mri genetically interacts with Dna-pkcs and 
Paxx. 
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ray repair cross-complementing protein 4 (XRCC4) and 

XRCC4-like factor (XLF) mediate DNA end ligation. 

The NHEJ complex is stabilized by a paralogue of 

XRCC4 and XLF (PAXX) and a modulator of retroviral 

infection (MRI/CYREN) [4, 5].  

 

Inactivation of Ku70, Ku80, Dna-pkcs or Artemis results 

in severe combined immunodeficiency (SCID) 

characterized by lack of mature B and T lymphocytes 

[2, 3, 6–8]. Deletion of both alleles of Xrcc4 [9] or Lig4 

[10] results in late embryonic lethality in mice, which 

correlates with increased apoptosis in the central 

nervous system (CNS). Inactivation of Xlf (Cernunnos) 

only results in modest immunodeficiency in mice [11–

13], while mice lacking Paxx [14–17] or Mri [5, 18] 

display no overt phenotype.  

 

The mild phenotype observed in mice lacking XLF 

could be explained by functional redundancy between 

XLF and multiple DNA repair factors, including Ataxia 
telangiectasia mutated (ATM), histone H2AX [19], 

Mediator of DNA Damage Checkpoint 1 (MDC1) [20, 

21], p53-binding protein 1 (53BP1) [17, 22], RAG2 

[23], DNA-PKcs [20, 24, 25], PAXX [4, 14, 15, 20, 26–

28] and MRI [5]. However, combined inactivation of 

Xlf and Paxx [4, 14, 15, 20], as well as Xlf and Mri [5], 

results in late embryonic lethality in mice, presenting a 

challenge to the study of B and T lymphocyte 

development in vivo. It has also been shown that both 

embryonic lethality and increased levels of CNS 

neuronal apoptosis in mice with deficiency in Lig4 [9, 

10, 29, 30], Xrcc4 [9, 31], Xlf and Paxx [20], or Xlf and 

Dna-pkcs [24, 25] is p53-dependent.  

 

In this study, we rescue synthetic lethality from Xlf and 

Mri by inactivating one or two alleles of Trp53. We also 

show that both Xlf
-/-

Mri
-/-

Trp53
+/- 

and Xlf
-/-

Paxx
-/-

Trp53
+/-

 mice possess a leaky SCID phenotype with 

severely reduced mature B and T lymphocyte counts in 

the spleen, low mature T cell counts in the thymus, and 

accumulated progenitor B cells in the bone marrow. 

Finally, we demonstrate that MRI is functionally 

redundant with DNA-PKcs and PAXX.  

 

RESULTS 
 

Inactivation of Trp53 gene rescued embryonic 

lethality in mice lacking XLF and MRI 

 

Combined inactivation of Xlf and Mri has previously 

been shown to result in synthetic lethality in mice [5]. 

To generate XLF/MRI deficient mice with altered 

expression of Trp53, we intercrossed an Mri
-/-

 strain 
[18] with an Xlf

-/-
Trp53

+/-
 [20] strain. Next, we selected 

and intercrossed triple heterozygous (Xlf
+/-

Mri
+/-

Trp53
+/-

), and later, Xlf
-/-

Mri
+/-

Trp53
+/-

 mice. With PCR 

screening, we identified Xlf
-/-

Mri
-/-

Trp53
+/-

 (n=11), Xlf
-/-

Mri
-/-

Trp53
-/-

 (n=2), and Xlf
-/-

Mri
-/-

Trp53
+/+

 (n=1) 

(Figure 1A) among the resulting offspring. Mice lacking 

both XLF and MRI possessed reduced weight (12 g on 

average, p<0.0001) when compared with gender- and 

age-matched WT (19 g), Xlf
-/-

 (19 g) and Mri
-/-

 (20 g) 

controls (Figure 1B and 1C). In addition, Xlf
-/-

Mri
-/-

Trp53
+/- 

and Xlf
-/-

Mri
-/-

Trp53
-/- 

mice were viable up to 

63 days and died for unknown reasons. We used Xlf
-/-

Mri
-/-

Trp53
+/-

 mice to further characterize the 

development of B and T lymphocytes in vivo.  

 

Leaky SCID in Xlf
-/-

Mri
-/-

Trp53
+/- 

mice  

 

To determine the roles of XLF and MRI in lymphocyte 

development in vivo, we isolated the thymus, spleen, 

and femur from Xlf
-/-

Mri
-/-

Trp53
+/- 

mice, as well as from 

Xlf
-/-

, Mri
-/-

, Trp53
+/- 

and WT controls. Combined 

deficiency for XLF and MRI resulted in a 3-fold 

reduction in thymus size (32 mg on average, p<0.0001) 

and a 9-fold reduction in thymocyte count (1.9x10
7
, 

p<0.0001) when compared to single deficient or WT 

controls (Figure 1D). Similarly, both average spleen 

weight (22 mg, p<0.0001) and splenocyte count 

(2.0x10
7
, p<0.0001) in Xlf

-/-
Mri

-/-
Trp53

+/- 
mice 

decreased approximately 4-5 fold when compared with 

WT and single deficient controls (Figure 1E). The 

reduced number of splenocytes in XLF/MRI double-

deficient mice could be explained by decreased 

populations of B and T lymphocytes observed in the Xlf
-

/-
Mri

-/-
Trp53

+/- 
mice (Figure 1F–1H and Supplementary 

Tables 1–4). Specifically, CD3+ T cells were reduced 6-

fold (p<0.0001), while CD19+ B cells were reduced 50-

fold (p<0.0001) when compared with single deficient 

and WT controls (Figure 1F–1H). Likewise, counts of 

CD4+ and CD8+ T cells in the spleen (Supplementary 

Tables 3 and 4), were all dramatically reduced when 

compared with single deficient and WT controls (about 

4-fold, p<0.0001; Figure 1F, 1H) as well as counts of 

CD4+, CD8+ and CD4+CD8+ T cells in the thymus 

(Figure 1F, 1I and Supplementary Tables 5–7). From 

these observations, we conclude that XLF and MRI are 

functionally redundant during B and T lymphocytes 

development in mice.  

 

Leaky SCID in mice lacking XLF and PAXX 
 

Combined inactivation of XLF and PAXX has been 

shown to result in embryonic lethality in mice [4, 14, 

15, 20]. To determine the impact of XLF and PAXX on 

B and T cell development in vivo, we rescued the 

synthetic lethality by inactivating one allele of Trp53, as 

described previously [20]. We did not detect any direct 

influence of altered Trp53 genotype on lymphocyte 

development (Supplementary Tables 1–9). The resulting 

Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

 mice possess 
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Figure 1. Development of B and T lymphocytes in Xlf
-/-

Mri
-/-

Trp53
+/- 

mice. (A) Number of thirty-day-old mice (P30) of indicated 

genotypes. *Expected distribution assuming lethality. (B) Comparison of body size, thymi and spleens of XLF/MRI-deficient and XLF-deficient 
mice of the same age. (C) Weights of WT, Xlf

-/-
, Mri

-/-
, Xlf

-/-
Mri

-/-
Trp53

+/-
 mice. (D, E) Number (×10

6
) of thymocytes (D) and splenocytes (E) in 

WT, Xlf
-/-

, Mri
-/-

, Xlf
-/-

Mri
-/-

Trp53
+/-

 mice. (F) Flow cytometric analysis of thymic and splenic T cell subsets and splenic B cells. (G, H, I) Number 
(×10

6
) of splenic CD19+ B cells (G), splenic CD3+ T cells (H) and thymic CD4+CD8+ double positive (DP) T cells (I) in WT, Xlf

-/-
, Mri

-/-
, Xlf

-/-
Mri

-/-

Trp53
+/-

, Paxx
-/-

, Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 and Paxx
-/-

Mri
-/-

 mice. Dna-pkcs
-/-

 mice were used as an immunodeficient control. Comparisons between 
every two groups were made using one-way ANOVA, GraphPad Prism 8.0.1. Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 is a combination of Xlf

-/-
Paxx

-/-
Trp53

+/-
 and 

Xlf
-/-

Paxx
-/-

Trp53
-/-

. Not shown in the graph for (G): WT vs Paxx
-/-

Mri
-/-

, p<0.0001 (****), Paxx
-/-

 vs Paxx
-/-

Mri
-/-

, p<0.0001 (****), Mri
-/-

 vs Paxx
-

/-
Mri

-/-
, p<0.0025 (**), Xlf

-/-
 vs Paxx

-/-
Mri

-/-
, p=0.9270 (n.s), Xlf

-/-
Mri

-/-
Trp53

+/-
 vs Paxx

-/-
Mri

-/-
, p<0.0001 (****), and Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 vs Paxx

-

/-
Mri

-/-
, p<0.0001 (****).  
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30- to 40-fold reduced thymocyte count (4.0x10
6
, 

p<0.0001) when compared to WT (1.3x10
8
), Xlf

-/-
 

(1.4x10
8
) and Paxx

-/-
 (1.7x10

8
) mice. This is reflected in 

decreased levels of double-positive CD4+CD8+ cells, 

as well as decreased levels of single-positive CD4+ and 

CD8+ T cells (Figure 1, Supplementary Figure 1, and 

Supplementary Tables 5–7). Spleen development was 

dramatically affected in mice lacking XLF and PAXX 

compared to WT and single-deficient controls, due to 

the lack of B cells and decreased T cell count (Figure 1, 

Supplementary Figure 1, and Supplementary Tables 1–

4). When compared with the WT and single knockout 

controls, Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

 

mice had a 100- to 600-fold reduction in CD19+ B 

splenocyte count (0.7x10
6
, p<0.0001) and a 50- to 90-

fold reduction in CD3+ splenocyte count (to 0.5x10
6
) 

(Figure 1F–1H and Supplementary Figure 1). From 

these results, we concluded that XLF and PAXX are 

functionally redundant during the B and T lymphocyte 

development in vivo.  

 

Early B cell development is abrogated in mice 

lacking XLF and MRI, or XLF and PAXX 
 

Reduced counts and proportions of mature B 

lymphocytes in Xlf
-/-

Mri
-/-

Trp53
+/- 

mice suggest a 

blockage in B cell development in the bone marrow. To 

investigate this further, we isolated the bone marrow 

cells from femora of mice lacking XLF, MRI or both 

XLF/MRI, and analyzed the proportions of 

B220+CD43+IgM- progenitor B cells and B220+CD43-

IgM+ immature and mature B cells. We detected only 

background levels of B220+CD43-IgM+ B cells in bone 

marrows isolated from Xlf
-/-

Mri
-/-

Trp53
+/- 

mice (Figure 

2A, 2B and Supplementary Table 8). However, these 

mice exhibited a 2- to 3-fold higher proportion of pro-B 

cells when compared with WT, Xlf
-/-

 and Mri
-/-

 controls 

(Figure 2A, 2C and Supplementary Table 9). Similarly, 

Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

 mice also 

possess background levels of IgM+ B cells (p<0.0001; 

Figure 2A, 2B and Supplementary Table 8) while 

having 3- to 4-fold higher proportion of pro-B cells 

when compared with WT, Xlf
-/-

 and Paxx
-/-

 controls 

(p<0.0001; Figure 2A, 2C and Supplementary Table 9). 

Therefore, we conclude that B cell development is 

blocked at the pro-B cell stage of Xlf
-/-

Mri
-/-

Trp53
+/- 

and 

Xlf
-/-

Paxx
-/-

Trp53
+/- 

mice.  

 

Paxx
-/-

Mri
-/-

 mice possess a modest phenotype 

 

Both PAXX and MRI are NHEJ factors that are 

functionally redundant with XLF in mice. Combined 

inactivation of Paxx and Xlf [4, 14, 15, 20], or Mri and  

Xlf ([5]; this study) results in synthetic lethality in mice, 

 

 
 

Figure 2. Development of B cells is abrogated in bone marrow of Xlf
-/-

Mri
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
+/-

 mice. (A) Flow 

cytometric analysis of developing B cells. Upper left boxes mark B220+CD43+IgM- progenitor B cell populations, and lower right boxes mark 
the B220+CD43-IgM+ B cells. (B, C) Frequencies (%) of B220+CD43-IgM+ B cells (B) and B220+CD43+IgM- progenitor B cells (C) in WT, Xlf

-/-
, 

Mri
-/-

, Xlf
-/-

Mri
-/-

Trp53
+/-

, Paxx
-/-

, Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 and Paxx
-/-

Mri
-/-

 mice. Comparisons between groups were made using one-way ANOVA, 
GraphPad Prism 8.0.1. Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 is a combination of Xlf

-/-
Paxx

-/-
Trp53

+/-
 and Xlf

-/-
Paxx

-/-
Trp53

-/-
.  
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Figure 3. Development of B and T cells in Paxx
-/-

Mri
-/-

 mice. (A) Number of thirty-day-old mice (P30) of indicated genotypes. Parents 
were Paxx

+/-
Mri

+/- 
and Paxx

-/-
Mri

+/-
. (B) Example of thirty-day-old Paxx

-/-
Mri

-/-
 and WT male littermates with their respective thymi and 

spleens. (C) Example of flow cytometry analyzes of B and T cells in Paxx
-/-

Mri
-/-

 and WT mice. (D, E) Class switching analyzes of in vitro 
activated naïve B cells of indicated genotypes. 
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as well as in abrogated V(D)J recombination in vAbl 

pre-B cells [4, 5, 14, 15, 27]. To determine if Paxx 

genetically interacts with Mri, we intercrossed mice that 

are heterozygous or null for both genes (such as Paxx
-/-

Mri
+/- 

and Paxx
+/-

Mri
+/-

). We found that resulting Paxx
-/-

Mri
-/-

 mice are live-born, fertile, and are similar in size 

to WT littermates (17 g, p>0.9999) (Figure 3A and 3B). 

Specifically, we observe that Paxx
-/-

Mri
-/-

 mice have 

normal thymocyte and splenocyte counts. Furthermore, 

Paxx
-/-

Mri
-/-

 mice underwent normal T cell development 

that was indistinguishable from the WT, Paxx
-/-

, and 

Mri
-/-

 controls (Figures 1H, 1I and 3C). However, Paxx
-

/-
Mri

-/-
 mice had reduced CD19+ B cell counts (Figure 

1G) when were compared to WT, Paxx
-/-

 and Mri
-/-

 

controls (p<0.0025). Moreover, CD19+ B cell counts 

were similar in Paxx
-/-

Mri
-/- 

and Xlf
-/-

 mice (p>0.9270), 

suggesting that combined depletion of PAXX and MRI 

has modest phenotype similar to the one in XLF-

deficient mice. CSR to IgG1 was performed in order to 

determine if DNA repair-dependent immunoglobulin 

production is affected in mature B cells lacking PAXX 

and MRI [16, 18]. Paxx inactivation did not affect Ig 

switch to IgG1 in MRI-deficient B cells (Figure 3D and 

3E). The quantity of IgG1+ cells after CSR stimulation 

was similar between Paxx
-/-

Mri
-/-

 and Mri
-/-

 naïve B 

cells (p>0.73). From this, we can conclude that there is 

a genetic interaction between Paxx and Mri in vivo, and 

it is only detected in B cells. 

 

Synthetic lethality between Mri and Dna-pkcs in mice 
 

Both MRI and DNA-PKcs are functionally redundant 

with XLF in mouse development [5, 24]. Combined 

inactivation of Paxx and Mri (this study), or Paxx and 

Dna-pkcs [20] genes results in live-born mice that are 

indistinguishable from single deficient controls. To 

determine if Mri genetically interacts with Dna-pkcs, we 

crossed Mri
+/- 

and Dna-pkcs
+/- 

mouse strains, then 

intercrossed the double-heterozygous Mri
+/-

Dna-pkcs
+/-

, 

and then Mri
-/-

Dna-pkcs
+/-

 mice (Figure 4A). We 

identified 12 Mri
-/-

Dna-pkcs
+/+

 and 12 Mri
-/-

Dna-pkcs
+/

, 

but no Mri
-/-

Dna-pkcs
-/-

 mice (out of 6 expected). To 

determine if double-deficient Mri
-/-

Dna-pkcs
-/-

 embryos 

are present at day E14.5, we intercrossed Mri
-/-

Dna-

pkcs
+/-

 mice, extracted and genotyped the embryos 

(Figure 4B). We identified two Mri
-/-

Dna-pkcs
-/-

 mice at 

E14.5 (63mg), which were about 40% lighter than Mri
-/-

 

littermates (108mg) (Figure 4C and 4D). A Chi-Square 

test (χ
2
) was performed to determine if the embryonic 

distribution data fits the mendelian ratio of 1:2:1 that is 

expected from Mri
-/-

Dna-pkcs
+/-

 parents. With DF=2 and 

χ
2
=1.8, the corresponding p-value lies within the range 

0.25<p<0.5. This affirms that our data fit the expected 

1:2:1 distribution and suggests that Mri
-/-

Dna-pkcs
-/-

 is 

synthetic lethal. Therefore, we can conclude that there is 

genetic interaction between Mri and Dna-pkcs in vivo. 

DISCUSSION 
 

Recent findings by our and other research groups 

suggest that MRI forms heterogeneous complexes 

involving PAXX or XLF, which function during DNA 

DSB repair by NHEJ [5]. Furthermore, genetic 

inactivation of Xlf [11], Paxx [4, 14–16], or Mri [5, 18] 

in mice leads to development of modest or no detectable 

phenotype. However, combined inactivation of Xlf and 

Mri [5] or Xlf and Paxx [4, 14, 15] results in embryonic 

lethality, which correlates with increased levels of 

neuronal apoptosis in the CNS (Figure 5). Here, we 

show that synthetic lethality produced by combined 

inactivation of Xlf and Mri can be rescued by altered 

Trp53 expression, similar to our previous Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 [20] mouse model. Furthermore, we have 

developed and presented here Paxx
-/-

Mri
-/-

 and Mri
-/-

Dna-pkcs
-/-

 double deficient models. 

 

Our findings have demonstrated that mice lacking XLF, 

MRI and p53, although live-born, possess a leaky SCID 

phenotype. Xlf
-/-

Mri
-/-

Trp53
+/-

 mice have a clear fraction 

of mature B cells in the spleens (CD19+) and bone 

marrow (B220+CD43-IgM+) (Figures 1 and 2), as well 

as clear fractions of double- and single-positive T cells 

in the thymus (CD4+CD8+, CD4+, CD8+) and single-

positive T cells in the spleen (CD4+ and CD8+) (Figure 

1). However, the cell fractions from these mice are 

noticeably smaller than those of WT or single-deficient 

mice. Strikingly, we were able to identify one Xlf
-/-

Mri
-/-

Trp53
+/+

 mouse at day P30 post-birth. This mouse 

resembled Xlf
-/-

Mri
-/-

Trp53
+/-

 mice of similar age with 

respect of B and T cell development (Supplementary 

Table 10), although this mouse was generally sicker 

than its littermates and had to be euthanized. Similarly, 

one live-born Xlf
-/-

Paxx
-/-

 mouse was reported by 

Balmus et al. 2016 [15], indicating that, exceptionally, 

embryonic lethality in NHEJ ligation-deficient mice can 

be overcome, likely due to activity of alternative end-

joining. Previously, in 2018, Hung et al. [5] reported 

that combined inactivation of Xlf and Mri in vAbl pre-B 

cells results in a severe block in V(D)J recombination 

and accumulation of unrepaired DSBs in vitro, although 

it was unclear whether this combined inactivation 

would lead to a deficiency in B lymphocytes when 

translated to a mouse model [5]. Similarly, double 

deficient vAbl pre-B cells lacking Xlf and Paxx are also 

unable to sustain V(D)J recombination. Importantly, the 

lack of a progenitor T cell model system left the 

question of T cell development in Xlf
-/-

Mri
-/-

 and Xlf
-/-

Paxx
-/-

 mice completely unexplored. 

 

Previously, we showed that mice lacking XLF, PAXX 
and p53 were live-born and had nearly no B and T cells, 

reduced size of spleen and hardly detectable thymus [20] 

(Figure 5). Consistent with this model, a conditional 
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knockout mouse model, which results in double-

deficiency of XLF/PAXX in early hematopoietic 

progenitor cells, was also able to overcome the 

embryonic lethality of Xlf
-/-

Paxx
-/-

 mice [33]. With this 

model, impairment of V(D)J recombination in Xlf
-/-

Paxx
-/-

 

cells, as well as the resulting depletion of mature B cells 

and lack of a visible thymus could also be observed in 
vivo [33]. Our new data provide evidence that Xlf

-/-
Paxx

-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

 mice possess a very 

small number of mature B cells in the spleen and bone 

marrow, as well as very minor fractions of single positive 

T cells in thymus and spleen (Figures 2, 5 and 

Supplementary Figure 1). Therefore, both mature B and 

T cells are present in mice lacking XLF/PAXX and 

XLF/MRI. This can be explained by incomplete blockage 

in NHEJ and V(D)J recombination, in which the process 

is dramatically reduced but still possible. We also 

detected more mature T cells than B cells in these 

double-deficient mice. Potential explanations include 

longer lifespan of T cells, which accumulate over time 

following low efficiency of V(D)J recombination, while 

B cells are eliminated faster from the pool due to the 

different physiology [34, 35]. It is also possible that the T 

cells we detected are a resultant subpopulation that is 

descendent from the few cells that were able to bypass 

V(D)J recombination [12]. In this case, the repertoire of 

T cells based on T cell receptor in mice lacking 

XLF/PAXX and XLF/MRI would be significantly lower 

than in control mice, even if normalized to the total cell 

count. Due to the small presence of mature B and T cells 

in Xlf
-/-

Mri
-/-

Trp53
+/-

, Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

 mice, we categorize the observed immuno-

deficient phenotypes as “leaky SCID”. Previously, leaky 

SCID has been described in mice lacking other NHEJ 

factors, such as Ku70
-/- 

[6], Artemis
-/- 

[3], Lig4
-/-

Trp53
-/- 

[10, 30], Xrcc4
-/-

Trp53
-/-

 [9, 31], Xlf
-/-

Atm
-/- 

[19] and Xlf
-/-

Rag2
c/c 

[23]. 
 

In addition to XLF/MRI and XLF/PAXX deficient 

mice, inactivation of one or two alleles of Trp53 also 

rescues the embryonic lethality of Xrcc4
-/-

 [9, 31],  

Lig4
-/-

 [10, 30] and Xlf
-/-

Dna-pkcs
-/- 

[20] mice. We 

propose a model (Figure 5), when single deficiency for 

DNA-PKcs, PAXX or MRI results in no or modest 

 

 
 

Figure 4. Genetic interaction between Mri and Dna-pkcs in vivo. (A) No live-born Mri
-/-

Dna-pkcs
-/-

 mice were detected. (B, C) Mri
-/-

Dna-pkcs
-/-

 embryos were detected at day E14.5. (D) Body weight in milligrams (mg) from two E14.5 Mri
-/-

Dna-pkcs
-/- 

and Mri
-/-

Dna-pkcs
+/- 

embryos from the same litter. The mendelian ratio 1:2:1 in embryos was verified by the Chi-Square test (χ
2
). The χ

2
 was 1.8 and its 

corresponding probability was between 25 and 50%. *Expected distribution assuming lethality. 
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Figure 5. Mutations in NHEJ genes result in distinct phenotypes. Suggested models. Inactivation of Paxx or Mri results in live-born 
mice with nearly no DNA repair defects. Inactivation of Xlf or Dna-pkcs results in live-born mice with increased levels of genomic instability 
due to reduced NHEJ activity. Combined inactivation of Xlf/Paxx, Xlf/Mri or Xlf/Dna-pkcs leads to embryonic lethality in mice that correlate 
with high levels of genomic instability and nearly no NHEJ. Accumulated DSBs activate the ATM-dependent DNA damage response (DDR) 
pathway; ATM phosphorylates CHK checkpoint proteins that further trigger cell cycle arrest and apoptosis. Alternative end-joining is blocked 
by presence of Ku70/Ku80. Inactivation of one or two alleles of Trp53 rescues embryonic lethality of Xlf/Paxx, Xlf/Mri and Xlf/Dna-pkcs mice. 
While in these mice the levels of DSBs are increased and ATM-dependent DDR response is activated, lack of p53 prevents massive apoptosis 
and thus results in alive mice. Sizes of the triple-deficient mice are reduced, as one option, due to DNA damage-dependent cell cycle arrest in 
multiple cells of the body. The embryonic lethality in mice lacking Xlf/Paxx and Xlf/Mri is likely to be rescued by inactivation of Ku70 or Ku80.  
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phenotypes, and DSBs are efficiently repaired. 

Combined inactivation of Xlf/Dna-pkcs, Xlf/Paxx and 

Xlf/Mri results in inefficient DSB ligation, 

accumulation of DNA breaks, activation of ATM-

dependent DDR, checkpoint protein CHK2, 

stabilization of p53 and massive apoptosis. This results 

in embryonic lethality in mice. Furthermore, 

inactivation of Trp53 results in Xlf/Dna-pkcs/Trp53, 

Xlf/Paxx/Trp53 and Xlf/Mri/Trp53 triple-deficient 

mice. While DNA breaks in these mice are not 

repaired, ATM-dependent DDR response and 

activation of CHK proteins takes place. However, 

without p53, apoptosis is not activated, allowing 

survival of mice (Figure 5). Moreover, we propose that 

inactivation of Atm will also rescue embryonic lethality 

of Xlf/Paxx and Xlf/Mri mice due to the mechanisms 

proposed above. However, inactivation of Atm will not 

rescue embryonic lethality of Xlf/Dna-pkcs mice, due 

to synthetic lethality between Atm and Dna-pkcs.  

 

It is important to note that altered Trp53 expression is 

not always sufficient to rescue embryonic lethality in 

mice; for example, PLK1-interacting checkpoint 

helicase (PICH)-deficient mice possess developmental 

defects in the presence or absence of p53 [36], and ATR 

mutants (Seckel syndrome) are not completely rescued 

from embryonic lethality with the inactivation of Trp53 

[37]. Embryonic lethality of XLF/PAXX and XLF/MRI 

double-deficient mice can be explained by the presence 

of Ku70/Ku80 heterodimer at the DSBs sites, which 

blocks DNA repair by alternative end-joining 

pathway(s), leading to massive apoptosis and cell cycle 

arrest [38]. Previously, it was shown that embryonic 

lethality of LIG4-deficient [39] and XLF/DNA-PKcs 

double-deficient mice [25] could be rescued by 

inactivating Ku70 or Ku80 genes. Similarly, we propose 

that inactivation of either Ku70 or Ku80 gene will 

rescue the embryonic lethality of XLF/PAXX and 

XLF/MRI double-deficient mice and will result in mice 

indistinguishable from Ku70- or Ku80-deficient 

controls (Figure 5). 

 

Recent studies have shown that Xlf genetically interacts 

with Rag2 [23] and DDR factors, such as Atm, 53bp1, 

H2ax, and Mdc1 [17, 19–22, 38]. Xlf
-/-

Rag2
c/c 

mice 

almost completely lack mature B cells and have 

significantly fewer mature T cells than single deficient 

controls [23]. Xlf
-/-

Atm
-/-

 and Xlf
-/-

53bp1
-/-

 mice are live-

born and exhibit reduced body weight, increased 

genomic instability, and severe lymphocytopenia as a 

result of V(D)J recombination impairment in 

developing B and T cells [1, 17, 19, 22]. Xlf
-/-

H2ax
-/-

 

and Xlf
-/-

Mdc1
-/-

, on the other hand, are embryonic lethal 

[19–21]. There are several possible explanations for the 

functional redundancy observed between DNA repair 

genes. For instance, the two factors could have identical 

(e.g., if both proteins are involved in ligation or DNA 

end tethering) or complementary (e.g., if one protein 

stimulates ligation while the other is required for DNA 

end tethering) functions. To date, XLF has been shown 

to genetically interact with multiple DNA repair factors 

[1, 4, 5, 14, 15, 19, 20, 24, 25], and this list is likely to 

grow [38, 40]. However, no clear genetic interaction has 

been shown between Xlf and Artemis or Xrcc4 in the 

context of mouse development and V(D)J re-

combination [24], meaning that it remains difficult to 

predict genetic interactions without developing and 

characterizing genetic models. 

 

We found that mice with combined inactivation of Paxx 

and Mri (Paxx
-/-

Mri
-/-

) are live-born, fertile, and undergo 

almost normal B and T cell development (Figure 3), 

where only the number of splenic B cells is affected, 

giving rise to a modest phenotype. Moreover, 

inactivation of Paxx did not affect the CSR efficiency in 

in vitro stimulated MRI-deficient B cells (Figure 3), 

thereby confirming our observations in vitro. It has been 

also shown that combined inactivation of Paxx and Mri 

genes in vAbl pre-B cells lead to similar V(D)J 

recombination efficiency to single-deficient Mri
-/-

, Paxx
-

/- 
and WT controls [5]. Thus, we conclude that there is a 

genetic interaction between Paxx and Mri, which results 

in a modest phenotype. 
 

Lastly, we found that combined inactivation of Mri and 

Dna-pkcs (Mri
-/-

Dna-pkcs
-/-

) leads to embryonic 

lethality, and that E14.5 Mri
-/-

Dna-pkcs
-/- 

murine 

embryos were about 40% smaller than single-deficient 

siblings (Figure 4). DNA-PKcs is associated with the N-

terminus of the MRI and Ku heterodimer in the process 

of recognizing DSBs [5], which may account for 

genetic interaction between Mri and Dna-pkcs. Thus, 

inactivation of Trp53, Ku70 or Ku80 may be a viable 

method to rescue synthetic lethality from Mri
-/-

Dna-

pkcs
-/- 

mice. 
 

In conclusion, we have developed and described several 

complex genetic mouse models (Figure 5). Xlf
-/-

Mri
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 mice possessed 

severely impaired B and T lymphocyte development, 

leaky SCID; Paxx
-/-

Mri
-/- 

mice develop a modest B cell 

phenotype; and Mri
-/-

Dna-pkcs
-/-

 mice are embryonic 

lethal.  

 

MATERIALS AND METHODS 
 

Mice 
 

All experiments involving mice were performed 

according to the protocols approved by the Comparative 

Medicine Core Facility (CoMed) at the Norwegian 

University of Science and Technology (NTNU, 
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Trondheim, Norway). Xlf
+/-

 [11] and Dna-pkcs
+/-

 [2] 

mice were imported from the laboratory of Professor 

Frederick W. Alt at Harvard Medical School. Trp53
+/-

 

mice [32] were imported from Jackson Laboratories. 

Paxx
+/- 

[16] and Mri
+/-

 [18] mice were generated by the 

Oksenych group and described previously.  

 

Lymphocyte development 

 

Lymphocyte populations were analyzed by flow 

cytometry [16, 18, 19, 22]. In summary, cells were 

isolated from the spleen, thymus, and femur of 5-7-

week-old mice and treated with red blood cell lysis 

buffer Hybri-Max
TM

 (Sigma Aldrich, St. Louis, MO, 

USA; #R7757). The cells were resuspended in PBS 

(Thermo Scientific, Basingstoke, UK; #BR0014G) 

containing 5% Fetal bovine serum, FCS (Sigma Life 

Science, St. Louis, Missouri, United States; #F7524), 

and counted using a Countess™ II Automated Cell 

Counter (Invitrogen, Carlsbad, CA, United States; 

#A27977). Then, the cell suspension was diluted with 

PBS to get a final cell concentration of 2.5 x 10
7 

cells/mL. Finally, surface markers were labeled with 

fluorochrome-conjugated antibodies and the cell 

populations were analyzed using flow cytometry. 

 

Class switch recombination (CSR) 

 

Spleens were isolated from 5-7-week-old mice and stored 

in cold PBS. Splenocytes were obtained by mincing the 

spleens, and naïve B cells were negatively selected using 

an EasySep Isolation kit (Stemcell™, Cambridge, UK; 

#19854). Lipopolysaccharide (LPS; 40 μg/mL; Sigma 

Aldrich, St. Louis, MO, USA; #437627-5MG) and 

interleukin 4 (IL-4; 20 ng/mL; PeproTech, Stockholm, 

Sweden; #214-14) were used to induce CSR to IgG1. 

Expression of IgG1 was analyzed by flow cytometry. 

 
Antibodies 

 
The following antibodies were used for flow cytometric 

analysis: rat anti-CD4-PE-Cy7 (BD Pharmingen
TM

, 

Allschwil, Switzerland, #552775; 1:100); rat anti-CD8-

PE-Cy5 (BD Pharmingen
TM

, Allschwil, Switzerland, 

#553034; 1:100); anti-CD19-PE-Cy7 (Biolegend, San 

Diego, CA, USA, #115520; 1:100); hamster anti-mouse 

anti-CD3-FITC (BD Pharmingen
TM

, Allschwil, 

Switzerland, #561827; 1:100); rat anti-mouse anti-

CD43-FITC (BD Pharmingen
TM

, Allschwil, 

Switzerland, #561856; 1:100); rat anti-mouse anti-

CD45R/B220-APC (BD Pharmingen
TM

, Allschwil, 

Switzerland; #553092; 1:100); rat anti-mouse anti-IgM-

PE-Cy7 (BD Pharmingen
TM

, Allschwil, Switzerland, 

#552867; 1:100); rat anti-mouse IgG1-APC (BD 

Pharmingen
TM

, Allschwil, Switzerland; #550874; 

1:100). A LIVE/DEAD™ fixable violet dead cell stain 

kit (ThermoFisher Scientific, Waltham, MA, USA; 

#L34955; 1:1000) was used to identify dead cells. 
 

Statistics 
 

Statistical analyses were performed using one-way 

ANOVA, GraphPad Prism 8.0.1.244 (San Diego, CA, 

USA). In all statistical tests, p<0.05 were taken to  

be significant (*p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001).  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 

 

 
 

Supplementary Figure 1. B and T cell development in Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 mice. Examples of flow cytometric analysis of thymic and 

splenic T cell subsets and splenic CD19+ B cells. Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 is a combination of Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

.  
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Supplementary Tables 
 

 

Supplementary Table 1. Summary of splenic CD19+ B cells. 

WT Xlf
-/-

 Mri
-/-

 Xlf
-/-

Mri
-/-

Trp53
+/-

 Paxx
-/-

 
Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 

Paxx
-/-

Mri
-/-

 Dna-pkcs
-/-

 
Trp53

+/-
 Trp53

-/-
 

55.82 38.91 41.56 0.48 28.22 0.18 0.42 21.71 0.02 

60.49 59.69 56.91 0.23 29.15 0.11 1.53 34.40 0.36 

79.07 41.87 42.70 0.80 91.10 0.05 0.93 42.52 0.03 

63.94 39.23 92.59 0.48 58.69 0.20  55.20 0.08 

36.16 54.24 79.30 0.19 55.26 0.16  21.26 0.02 

56.50 41.89 48.03 
 

61.57 2.21  31.01 0.05 

63.69 36.46 55.14 
 

56.28 1.82  25.84 
 

42.85 37.87 
  

39.59 0.58  15.51 
 

75.05 28.68 
  

55.36 0.08  32.73 
 

67.60 39.08 
  

61.29   58.43 
 

38.27 29.73 
  

80.28   64.75 
 

79.47 47.11 
  

61.29   36.96 
 

29.43 56.65 
  

93.23 
 

 37.92 
 

52.58 44.10 
  

61.86 
 

 63.63 
 

65.47 34.65 
    

 31.99 
 

62.80 30.79 
    

 22.31 
 

56.68 34.55 
    

 28.62 
 

57.03 50.48 
    

 
  

54.05 52.23 
    

 
  

75.79 36.41 
    

 
  

CD19+ splenocytes (×10
6
) in WT, Xlf

-/-
, Mri

-/-
, Xlf

-/-
Mri

-/-
Trp53

+/-
, Paxx

-/-
, Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 and Paxx

-/-
Mri

-/-
 mice. Dna-pkcs

-/-
 

mice were used as an immunodeficient control. Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 is a combination of Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

. 
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Supplementary Table 2. Summary of splenic CD3+ T cells.  

WT Xlf
-/- 

Mri
-/-

 Xlf
-/-

Mri
-/-

Trp53
+/- 

Paxx
-/-

 
Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 

Paxx
-/-

Mri
-/-

 Dna-pkcs
-/- 

Trp53
+/-

 Trp53
-/-

 

41.61 15.06 23.01 5.55 34.34 0.13 0.41 26.93 0.38 

37.93 36.01 36.61 3.31 21.89 0.52 1.42 24.53 0.23 

42.64 33.33 23.12 3.05 38.84 0.42 0.84 36.66 0.03 

29.44 39.67 32.84 2.36 23.51 0.26  41.18 0.09 

15.25 30.11 30.74 1.55 31.11 0.92  15.22 0.02 

22.62 15.19 19.45 
 

16.26 0.25  18.83 0.07 

20.41 49.15 25.38 
 

14.86 0.71  20.21  

18.50 24.24 
  

10.45 0.38  13.65  

27.19 17.04 
  

14.62 
 

 17.85  

24.49 14.83 
  

16.18 
 

 25.19  

13.86 15.41 
  

21.20 
 

 28.55  

28.79 11.67 
  

16.18 
 

 20.70  

19.05 15.90 
  

24.62 
 

 16.90  

23.72 12.10 
  

16.34 
 

 32.74  

22.75 19.17 
    

 17.44  

20.53 23.05 
    

 19.22  

27.01 17.94 
    

 18.25  

25.60 14.10 
    

 
 

 

35.90 12.52 
    

 
 

 

 
14.06 

    
 

 
 

 
20.54 

    
 

 
 

 
21.25 

    
 

 
 

 
42.82 

    
 

 
 

 
14.81 

    
 

 
 

CD3+ splenocytes (×10
6
) in WT, Xlf

-/-
, Mri

-/-
, Xlf

-/-
Mri

-/-
Trp53

+/-
, Paxx

-/-
, Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 and Paxx

-/-
Mri

-/-
 mice. Dna-pkcs

-/-
 

mice were used as an immunodeficient control. Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 is a combination of Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

. 
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Supplementary Table 3. Summary of splenic CD4+ T cells. 

WT Xlf
-/- 

Mri
-/-

 Xlf
-/-

Mri
-/-

Trp53
+/- 

Paxx
-/-

 
Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 

Paxx
-/-

Mri
-/-

 Dna-pkcs
-/- 

Trp53
+/-

 Trp53
-/-

 

19.51 5.46 10.36 1.14 12.17 0.03 0.49 8.3 0.08 

17.39 11.43 15.61 1.66 9.96 0.01 0.34 12.54 0.05 

18.17 18.99 13.88 1.09 24.65 0.49 0.56 17.64 0.09 

9.23 15.66 19.32 0.96 15.97 0.59  18.51 
 

13.63 14.9 17.57 
 

19.38 0.35  6.66 
 

12.38 6.88 13.25 
  

0.37  8.13 
 

11.89 21.81 14.42 
  

0.37  8.92 
 

9.844 
    

0.27  5.51 
 

8.961 
     

 9.67 
 

9.96 
     

 15.61 
 

15.85 
     

 18.01 
 

19.29 
     

 10.36 
 

16.42 
     

 
  

12.85 
     

 
  

CD4+ splenocytes (×10
6
) in WT, Xlf

-/-
, Mri

-/-
, Xlf

-/-
Mri

-/-
Trp53

+/-
, Paxx

-/-
, Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 and Paxx

-/-
Mri

-/-
 mice. Dna-pkcs

-/-
 mice  

were used as an immunodeficient control. Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 is a combination of Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

. 
 

Supplementary Table 4. Summary of splenic CD8+ T cells. 

WT Xlf
-/- 

Mri
-/-

 Xlf
-/-

Mri
-/-

Trp53
+/- 

Paxx
-/-

 
Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 

Paxx
-/-

Mri
-/-

 Dna-pkcs
-/- 

Trp53
+/-

 Trp53
-/-

 

14.39 4.03 12.59 0.74 6.83 0.32 0.40 5.86 0.08 

18.35 12.06 14.79 1.72 9.30 0.07 0.41 10.45 0.05 

12.31 12.73 10.57 1.19 15.76 0.22 0.29 15.26 0.06 

7.13 13.11 18.08 0.66 12.05 0.24  16.02 
 

9.70 9.67 15.62 
 

14.11 0.02  5.60 
 

9.64 6.39 9.96 
  

0.39  7.69 
 

7.96 14.92 12.09 
  

0.20  7.16 
 

14.26 
     

 4.86 
 

12.96 
     

 7.28 
 

13.91 
     

 13.26 
 

11.62 
     

 14.87 
 

12.17 
     

 7.78 
 

10.88 
     

 
  

7.88 
     

 
  

CD8+ splenocytes (×10
6
) in WT, Xlf

-/-
, Mri

-/-
, Xlf

-/-
Mri

-/-
Trp53

+/-
, Paxx

-/-
, Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 and Paxx

-/-
Mri

-/-
 mice. Dna-pkcs

-/-
 

mice were used as an immunodeficient control. Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 is a combination of Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

. 
 

  



 

www.aging-us.com 23595 AGING 

Supplementary Table 5. Summary of thymic CD4+ T cells.  

WT Xlf
-/- 

Mri
-/-

 Xlf
-/-

Mri
-/-

Trp53
+/- 

Paxx
-/-

 
Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 

Paxx
-/-

Mri
-/-

 Dna-pkcs
-/- 

Trp53
+/-

 Trp53
-/-

 

9.88 8.45 8.63 1.32 6.01 0.66 0.13 5.53 0.02 

9.06 3.41 10.16 0.48 8.77 0.07 0.06 8.40 0.001 

10.48 11.88 6.74 0.89 12.88 0.07 0.19 4.31 0.01 

16.33 7.05 7.95 0.65 11.10 0.11  6.77 0.02 

7.50 6.67 15.23 0.50 9.80 0.40  6.85  

10.64 11.66 17.57   0.29  13.08  

7.12  15.94   0.19  9.52  

4.33  10.99   0.13  6.86  

2.55  15.88     12.67  

11.74  9.21     12.97  

13.15         

14.54         

14.41         

12.07         

11.39         

9.70         

CD4+ thymocytes (×10
6
) in WT, Xlf

-/-
, Mri

-/-
, Xlf

-/-
Mri

-/-
Trp53

+/-
, Paxx

-/-
, Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 and Paxx

-/-
Mri

-/-
 mice. Dna-pkcs

-/-
 

mice were used as an immunodeficient control. Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 is a combination of Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

. 
 

Supplementary Table 6. Summary of thymic CD8+ T cells.  

WT Xlf
-/- 

Mri
-/-

 Xlf
-/-

Mri
-/-

Trp53
+/- 

Paxx
-/-

 
Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 

Paxx
-/-

Mri
-/-

 Dna-pkcs
-/- 

Trp53
+/-

 Trp53
-/-

 

2.70 2.39 3.48 0.64 4.34 0.18 0.19 1.08 0.02 

2.00 1.83 3.43 0.33 2.93 0.06 0.09 1.85 0.001 

3.84 3.40 1.82 0.91 5.51 0.28 0.21 1.33 0.01 

4.69 2.60 2.72 0.29 4.52 0.51  2.24 0.01 

1.47 2.60 7.14 0.67 4.7 0.15  3.07 
 

2.11 3.59 6.40 
  

0.23  6.2 
 

5.07 
 

5.45 
  

0.60  4.03 
 

3.26 
 

4.28 
  

0.49  3.16 
 

1.98 
     

 5.14 
 

3.91 
     

 5.11 
 

13.59 
     

 
  

11.68 
     

 
  

13.78 
     

 
  

3.47 
     

 
  

5.36 
     

 
  

4.90 
     

 
  

2.25 
     

 
  

4.56 
     

 
  

CD8+ thymocytes (×10
6
) in WT, Xlf

-/-
, Mri

-/-
, Xlf

-/-
Mri

-/-
Trp53

+/-
, Paxx

-/-
, Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 and Paxx

-/-
Mri

-/-
 mice. Dna-pkcs

-/-
 

mice were used as an immunodeficient control. Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 is a combination of Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

. 
Supplementary Table 7. Summary of thymic CD4+CD8+ double positive T cells. 
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WT Xlf
-/- 

Mri
-/-

 Xlf
-/-

Mri
-/-

Trp53
+/- 

Paxx
-/-

 
Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 

Paxx
-/-

Mri
-/-

 Dna-pkcs
-/- 

Trp53
+/-

 Trp53
-/-

 

154.05 48.40 160.60 20.69 132.56 2.68 6.22 75.37 0.17 

141.52 73.77 133.62 11.40 161.22 7.21 6.54 184.27 0.002 

230.74 163.07 14.22 21.18 151.30 6.79 5.14 122.11 0.0002 

147.74 95.47 165.78 17.78 208.39 3.39  105.44 0.001 

138.62 115.71 154.74 17.71 202.99 3.72  88.37 0.002 

98.78 115.77 193.15 
 

161.06 4.43  168.00 
 

115.10 174.36 102.72 
 

171.03 11.90  122.32 
 

66.71 144.88 
  

100.87 5.18  87.20 
 

102.13 160.88 
  

175.18 
 

 136.82 
 

162.51 105.29 
  

197.59 
 

 153.47 
 

126.04 155.83 
    

 114.36 
 

79.43 90.46 
    

 136.39 
 

140.22 118.17 
    

 55.65 
 

146.71 183.46 
    

 96.22 
 

119.15 158.35 
    

 
  

 
172.50 

    
 

  

 
146.98 

    
 

  

 
101.50 

    
 

  

 
143.61 

    
 

  

 
114.38 

    
 

  

 
132.49 

    
 

  

 
105.96 

    
 

  
 136.45        

 162.14        

CD4+CD8+ thymocytes (×10
6
) in WT, Xlf

-/-
, Mri

-/-
, Xlf

-/-
Mri

-/-
Trp53

+/-
, Paxx

-/-
, Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 and Paxx

-/-
Mri

-/-
 mice. Dna-

pkcs
-/-

 mice were used as an immunodeficient control. Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 is a combination of Xlf
-/-

Paxx
-/-

Trp53
+/-

 and  
Xlf

-/-
Paxx

-/-
Trp53

-/-
. 
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Supplementary Table 8. Summary of IgM+ B cells in bone marrow. 

WT Xlf
-/- 

Mri
-/-

 Xlf
-/-

Mri
-/-

Trp53
+/- 

Paxx
-/-

 
Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 

Paxx
-/-

Mri
-/-

 
Trp53

+/-
 Trp53

-/-
 

19.80 7.82 17.10 3.04 17.8 2.19 3.26 15.90 

16.70 11.00 16.30 1.47 14.3 2.53 4.01 16.70 

18.60 8.47 16.00 1.42 15.9 4.09 3.55 14.30 

10.10 6.04 15.80 1.10 11.9 0.37  14.00 

14.10 7.68 13.80 1.57 
 

4.60  10.10 

11.60 6.06 11.50 
  

4.35  9.82 

12.40 12.40 14.90 
  

1.50  7.34 

13.90 10.60 13.00 
  

3.76  8.22 

14.10 5.79 
   

5.19  14.60 

14.50 
    

6.20  14.10 

13.70 
     

 
 

10.10 
     

 
 

12.10 
     

 
 

Frequencies (%) of B220+CD43-IgM+ B cells in WT, Xlf
-/-

, Mri
-/-

, Xlf
-/-

Mri
-/-

Trp53
+/-

, Paxx
-/-

, Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 and Paxx
-/-

Mri
-/-

 
mice. Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 is a combination of Xlf

-/-
Paxx

-/-
Trp53

+/-
 and Xlf

-/-
Paxx

-/-
Trp53

-/-
. 

w 

Supplementary Table 9. Summary of progenitor B cells in bone marrow. 

WT Xlf
-/- 

Mri
-/-

 Xlf
-/-

Mri
-/-

Trp53
+/- 

Paxx
-/-

 
Xlf

-/-
Paxx

-/-
Trp53

+(-)/-
 

Paxx
-/-

Mri
-/-

 
Trp53

+/-
 Trp53

-/-
 

6.00 21.6 3.74 24.90 8.92 33.70 20.10 7.53 

7.47 8.73 4.31 14.50 4.40 28.40 24.00 7.04 

3.38 17.5 9.53 17.20 4.07 23.20 25.60 8.64 

6.96 10.9 7.03 14.90 3.81 21.90  10.9 

5.02 9.61 6.73 19.00  26.80  9.00 

5.49 7.99 6.58   27.10  6.28 

2.75 5.31 4.17   25.10  6.76 

4.25 7.16 4.28   17.30  6.20 

7.58 6.08    22.20  3.32 

7.47     25.50  4.06 

5.03        

7.72        

8.29        

Frequencies (%) of B220+CD43+IgM- pro-B cells in WT, Xlf
-/-

, Mri
-/-

, Xlf
-/-

Mri
-/-

Trp53
+/-

, Paxx
-/-

, Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 and Paxx
-/-

Mri
-/-

 mice. Xlf
-/-

Paxx
-/-

Trp53
+(-)/-

 is a combination of Xlf
-/-

Paxx
-/-

Trp53
+/-

 and Xlf
-/-

Paxx
-/-

Trp53
-/-

. 
 

Supplementary Table 10. Lymphocytic development in the Xlf-/-Mri-/-Trp53+/+ mouse. 

Splenocytes (×10
6
) Thymocytes (×10

6
) 

Cell populations (%) in 

bone marrow 

CD19+ B cells CD3+ T cells CD4+ T cells CD8+ T cells CD4+ T cells CD8+ T cells CD4+CD8+ T cells IgM+ B cells Pro-B cells 

0.11 0.80 0.53 0.41 0.42 0.41 15.70 2.71 19.40 

Summary of splenic (×10
6
) B- and T cells; and T cell subpopulations in the thymus (×10

6
). Frequencies (%) in bone marrow of 

B220+CD43-IgM+ B cells and B220+CD43+IgM- pro-B cells. 


