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INTRODUCTION 
 

Renal cell carcinoma (RCC), one of the most common 

malignant urological tumors, accounts for approximately 

2-3% of adult malignancies and can be divided into 

several pathological subtypes, such as clear cell renal cell 

carcinoma (ccRCC), chromophobe RCC and papillary 

RCC, among which the clear cell type accounts for 

approximately 80% of all RCCs [1, 2]. At present, partial 

nephrectomy is the best method for the treatment of 

localized ccRCC, but the incidence and mortality rates of 

metastatic and advanced ccRCC are still high because of 

their insensitivity to traditional chemoradiotherapy. 
Although new targeted therapies represent the current 

general trend for the treatment of advanced ccRCC, 

variable drug response rates and obvious side effects 

reflect the wide variability in the efficacy and survival 

benefits of these drugs [1]. Thus, investigating the 

underlying mechanisms of ccRCC progression and 

finding new biomarkers for early diagnosis and effective 

therapeutic targets are urgently needed. 

 

RNA binding proteins (RBPs) are proteins that 

modulate gene expression by forming extensive protein-

RNA interactions at the posttranscriptional level [3, 4]. 

They bind RNA transcripts in the 3′-untranslated region 

(3′-UTR) and exert essential roles in numerous 

biological processes, including RNA degradation, 

localization, turnover, storage, splicing, transport to the 
cytoplasm, and protein translation [5–7]. In total, 1542 

RBPs were identified by genome-wide sequencing and 

bioinformatics analysis, which represent approximately 
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ABSTRACT 
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(EIF4A1, CARS, and RPL22L1) were validated as prognosis-related hub genes by univariate and multivariate Cox 
regression analyses and were integrated into a prognostic model by least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis. According to this model, patients with high risk scores displayed 
significantly worse overall survival (OS) than those with low risk scores. Moreover, the multivariate Cox analysis 
results indicated that risk score, tumor grade, and tumor stage were significantly correlated with patient OS. A 
nomogram was constructed based on the three RBP genes and showed a good ability to predict outcomes in 
ccRCC patients. In conclusion, this study identified a three-RBP gene risk model for predicting the prognosis of 
patients, which is conducive to the identification of novel diagnostic and prognostic molecular markers. 
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seven percent of all protein-coding genes [3]. These 

RBPs were demonstrated to modulate molecular 

functions and biological processes such as RNA 

turnover, splicing, localization, and protein translation 

[8]. Furthermore, dysregulation of RBPs has been found 

in various human cancers, suggesting that RBPs may be 

reliable early molecular markers and therapeutic targets 

[9]. Thus, it is essential to investigate the regulatory 

mechanisms of RBPs in the initiation and progression of 

various cancers. 

 

To date, numerous reports have indicated that RBPs are 

dysregulated in ccRCC tumorigenesis and are involved in 

RNA modification and turnover [10, 11]. For example, 

the RBP NONO binds to SKP2 and E2F8 mRNA to 

promote the proliferation of breast cancer at the 

posttranscriptional level [12]. Quaking (QKI) suppresses 

tumor proliferation and metastasis by downregulating the 

activity of Yes-associated protein in renal cancer [13]. 

SART3 binds to miR-34a to affect the cell cycle 

progression of lung cancer cells by downregulating miR-

34a target genes CDK4/6 [14]. Taken together, the results 

of these studies demonstrate that individual RBPs can 

play essential biological roles in tumor progression. 

Furthermore, a comprehensive analysis of RBPs may 

assist us in sufficiently understanding the potential 

mechanisms that occur during cancer progression. 

Therefore, the ccRCC RNA sequencing dataset and 

corresponding clinical features were screened from The 

Cancer Genome Atlas (TCGA). In addition, a number of 

differentially expressed RBPs in normal and cancerous 

samples were identified via bioinformatics methods. 

Then, an effective gene signature was constructed using 

these RBPs to predict patient prognosis. In this study, we 

determined that multiple RBPs are related to the 

progression of ccRCC, which may be conducive to the 

identification of novel diagnostic and prognostic 

molecular markers. 

 

RESULTS 
 

Identification of differentially expressed RBPs in 

ccRCC 

 

The workflow of our study is presented in Figure 1.  

A total of 1542 RBP-related genes were processed using 

 

 
 

Figure 1. The workflow for analyzing the RBPs in ccRCC. 
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the “limma” package, and 397 complied with our 

standards (false discovery rate (FDR) < 0.05, |log2FC| > 

0.5), including 153 significantly downregulated genes 

and 244 significantly upregulated genes. The results are 

displayed as heat maps and volcano plots (Figure 2A, 2B). 

 

Functional enrichment analysis of the differentially 

expressed RBPs 

 

To investigate the mechanism of the differentially 

expressed RBPs, we conducted Gene Ontology (GO)  

and Kyoto Encyclopedia of Genes Genomes (KEGG) 

pathway enrichment analyses. According to the P value, 

from lowest to highest, the top three biological process 

(BP) terms were RNA catabolic process, mRNA catabolic 

process, and RNA splicing. In the molecular function 

(MF) category, the top three terms were catalytic activity 

acting on RNA, mRNA 3'-UTR binding, and ribonuclease 

activity. In the cellular component (CC) category, 

ribosomal subunit, ribonucleoprotein granule, and 

cytoplasmic ribonucleoprotein granule were the top-

ranking terms. KEGG pathway analysis showed that these 

genes were closely related to the ribosome, RNA 

transport, and mRNA surveillance pathways. These 

results are presented in a bubble chart (Figure 3A, 3B). 

 

Protein-protein interaction (PPI) network 

construction and key module screening 

 

The PPI network was constructed to explore the 

underlying molecular biological function of these 

differentially expressed RBPs. A total of 398 nodes and 

4067 edges were analyzed using plugin string. Then, we 

further analyzed the coexpression network to screen 

potential significant modules. Finally, the top two key 

modules were confirmed (Figure 4A). Module 1 

consisted of 46 nodes and 905 edges (Figure 4B), and 

module 2 included 43 nodes and 429 edges (Figure 4C). 

Subsequently, the GO and KEGG pathway analysis 

revealed that the genes of module 1 were mostly 

enriched in the nuclear-transcribed mRNA catabolic 

process, ribosomal subunit, structural constituent of 

ribosome, and ribosome terms, whereas the genes in 

module 2 were primarily enriched in the RNA splicing, 

spliceosomal complex, catalytic activity acting on RNA, 

and spliceosome terms. 

 

Selection and verification of prognosis-related genes 
 

Among the 89 differentially expressed RBPs in the top 

two critical modules, 10 genes were identified as 

significantly related to prognosis by univariate Cox 

regression analysis (Figure 5A). Then, multivariate Cox 

regression was used to screen the RBP-related genes 

with independent prognostic value (Figure 5B), and 

three genes (EIF4A1, CARS, and RPL22L1) were 

selected as factors related to high risk in the prognostic 

model (Table 1). Additionally, we constructed a 

predictive model with these three genes in the training 

groups using LASSO regression analysis. Survival 

analyses were performed according to the expression of 

these three genes (Figure 6A–6C). 

 

 
 

Figure 2. The differentially expressed RBPs in ccRCC. (A) Heatmap of differentially RBPs in different samples. Red represents 

upregulation and green represents downregulation. (B) Volcanic plot showing dysregulated RBPs in ccRCC tissue samples. ccRCC, clear cell 
renal cell carcinoma; RBPs, RNA-binding proteins. 
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Figure 3. Enrichment analysis of differentially expressed RBPs. (A) Top 10 enriched BP terms, CC terms, MF terms. (B) The significant 

KEGG signal pathways. BP, biological process; CC, cellular components; MF, molecular functions; KEGG, Kyoto Encyclopedia of Genes and 
Genomes. 
 

 
 

Figure 4. PPI network construction and key module screening. (A) Protein-protein interaction network. (B) Significant module 1.  

(C) Significant module 2. Blue: down-regulation genes. Red: up-regulation genes. 
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As shown in Figure 7A–7C, the mRNA expression 

levels of EIF4A1, CARS, and RPL22L1 between renal 

tumor and normal tissues demonstrated that these genes 

were significantly upregulated in ccRCC patients (p < 

0.001). Furthermore, these three genes were also 

significantly abnormally expressed at the protein level 

(Figure 8A). The higher magnified pictures of IHC 

staining were provided (Supplementary Figure 3A). In 

the Gene Alteration Atlas database, CARS possessed 

the most frequent genetic alteration, at a frequency of 

1.9% among the samples; the other two genes also 

showed mutations (Figure 8B). 

 

Construction of the prognosis-related genetic risk 

score model 

 

Subsequently, we calculated the risk scores using the 

following formula based on their Cox coefficients for the 

training dataset: Risk score = 0.631*ExpEIF4A1 + 

0.5801*ExpCARS + 0.556*ExpRPL22L1. Then, ccRCC 

patients in the training group were split into a high-risk 

subgroup and a low-risk subgroup according to the 

median value of the risk score (Figure 9A). The dot plots 

show the survival status of the training group patients 

(Figure 9B). The expression heat maps of the three genes 

are shown in Figure 9C. Patients in the high-risk 

subgroup had considerably poorer overall survival (OS) 

than those in the low-risk subgroup (Figure 9D). 

Subsequently, receiver operating characteristic (ROC) 

analysis was performed to assess the predictive power of 

the three-RBP gene risk model; the area under the ROC 

curve (AUC) of this risk model for 5-year OS was 0.748 

(Figure 9E). These results indicated that our risk model 

exhibited good specificity and sensitivity. 

Then, ccRCC patients were stratified according to grade 

and stage. For all different stratifications, the OS time 

of the high-risk group was shorter than that of the low-

risk group (Supplementary Figure 1). These results 

suggest that the RBP-related risk model for OS can 

predict the prognosis of ccRCC patients without  

the need to consider clinicopathological variables. 

Additionally, high expression of CARS and RPL22L1 

was significantly correlated with late stage and high 

grade (p<0.001), whereas EIF4A1 expression was  

not correlated with stage and grade (Supplementary 

Figure 2). 

 

Verification of the risk score model in the testing 

group 

 

To confirm that our risk model has similar predictive 

value in other ccRCC patient datasets, we performed the 

same analysis in the testing group. Patients in the testing 

group were divided into a high-risk subgroup and a low-

risk subgroup according to the median risk score with the 

same risk assessment formula as the training group. The 

results demonstrated that high-risk patients exhibited 

worse outcomes than low-risk patients in the testing 

group (Figure 10A–10E). Furthermore, we analyzed the 

association of the risk score model and clinical features, 

such as sex, age, tumor grade, and stage, with patient 

survival. As displayed in Figure 11A, age, tumor stage, 

tumor grade, and risk score were related to the OS of 

patients using univariate Cox regression analysis. Next, 

we conducted multivariate Cox regression analysis, 

which demonstrated that tumor grade, tumor stage,  

and the risk score were significantly related to OS  

(Figure 11B). These results indicate that the risk score 

 

 
 

Figure 5. Identification of prognosis related hub RBPs. (A) Significance and Hazard ratio values of differentially expressed RBPs in 

univariate Cox regression. (B) Identification of prognosis related hub RBPs using multivariate Cox regression analysis. 
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Table 1. List of the hub genes related with ccRCC patient prognosis. 

Gene name Gene ID Protein name Location Expression status 

EIF4A1 1973 Eukaryotic translation initiation factor 4A1 Chromosome 17 Up-regulated 

CARS 833 Cysteinyl-tRNA synthetase Chromosome 11 Up-regulated 

RPL22L1 200916 Ribosomal protein L22 like 1 Chromosome 3 Up-regulated 

 

prognostic model can be used as an independent predictor 

of OS in ccRCC patients. Finally, we constructed a 

nomogram plot by combining the three-RBP signature 

with clinical characteristics, and this quantitative method 

can be used to assess the outcomes of ccRCC patients 

(Figure 11C). Gene set enrichment analysis (GSEA) was 

conducted to unravel the underlying molecular function 

of the risk model (Figure 12). 

 

DISCUSSION 
 

Despite great progress in tumor diagnosis and treatment, 

the OS and mortality rates of ccRCC patients remain 

unsatisfactory [1, 15]. Therefore, understanding the 

pathological mechanism of ccRCC is critical to 

improving its survival rate. Several studies have 

demonstrated that RBPs promote the progression of 

various malignant tumors [16–18]. However, there is 

little data regarding the potential function of RBPs in 

ccRCC tumorigenesis. 

 

In our current study, we screened 397 differentially 

expressed RBPs between normal and ccRCC tissues 

based on RNA sequencing information from the TCGA. 

Then, we comprehensively investigated their potential 

biological functions and built a PPI network based on 

these RBPs. We also conducted univariate and 

multivariate Cox regression analysis, ROC analysis, 

KM survival analysis and copy number alteration 

analysis of the key RBPs to comprehensively 

investigate their underlying biological roles and clinical 

value. Moreover, a risk model based on three prognosis-

related RBPs was constructed to assess the prognosis of 

ccRCC patients. These studies may promote the 

development of diagnostic and therapeutic approaches 

for ccRCC patients. 

 

 
 

Figure 6. Kaplan-Meier survival analysis of hub genes. (A) EIF4A1. (B) CARS. (C) RPL22L1. 
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Functional enrichment analysis of the differentially 

expressed RBPs suggested that these were mainly 

enriched in the RNA catabolic process, RNA splicing, 

regulation of translation, ribonucleoprotein granule, 

ribosome, spliceosomal complex, and mRNA 3'-UTR 

binding terms, which indicated that RBPs play 

significant roles as posttranscriptional regulators. 

During the last ten years, multiple studies have reported 

that RNA processing and metabolism are associated 

with the development and progression of human 

diseases [19–21]. RBP NONO promotes breast cancer 

cell growth by increasing the stability of STAT3 mRNA 

[22]. hnRNPL impacts the pathological conditions of 

membranous nephropathy by stabilizing the MTNR1A 

transcript [23]. In addition, SRSF3 inhibits B7-H3 

expression by regulating in its RNA splicing in colorectal 

 

 
 

Figure 7. The mRNA expression profiles of hub genes. (A) The expression levels among different cancers. (B) The expression levels of 

the hub genes based on the published research. (C) The mRNA expression of hub genes in normal renal tissue and ccRCC. 
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cancer [24]. Furthermore, the KEGG enrichment 

analysis demonstrated that the abnormally expressed 

RBPs participate in the progression of ccRCC by 

regulating ribosomes, RNA transport, spliceosomes, 

ribosome biogenesis in eukaryotes, RNA degradation, 

and polymerases. 

 

Subsequently, a PPI network was constructed based on 

these abnormally expressed RBPs. We obtained 89 key 

RBPs from two key modules. Many of these key RBPs 

have been reported to exert significant effects on 

tumorigenesis and the development of tumors. EIF4A1, 

a eukaryotic translation initiation factor, plays vital roles 

in protein translation initiation, participates in epithelial-

to-mesenchymal transition (EMT) and is related to a 

poor prognosis in patients with gastric cancer [25]. 

Another study showed that EIF4A1 contributes to gastric 

cancer progression by binding miR-1284 with high 

specificity [26]. CARS, cysteinyl-tRNA synthetase, 

boosts antitumor immunity by specifically interacting 

with TLR2/6 of antigen-presenting cells [27]. RPL22L1 

is a ribosomal protein that regulates pre-mRNA splicing 

to control morphogenesis [28]. Numerous previous 

studies have demonstrated that the expression of 

RPL22L1 is aberrant in human cancer, and this feature is 

associated with a poor prognosis in malignant tumors 

[29–31]. Another study systematically analyzed the 

influence of RBPs by bioinformatics analyses of 

colorectal cancer metastasis, which provided novel 

insights for diagnosis and targeted therapy [32]. In 

addition, multiple published studies have identified 

promising risk models for predicting tumor patient 

prognosis. For example, two studies explored the 

prognostic value of RBPs using bioinformatics analyses 

and built risk models based on RBP-related genes in 

lung adenocarcinoma that play essential roles in 

predicting patient prognosis and developing novel 

therapeutic targets [33, 34]. In head and neck squamous 

cell carcinoma (HNSCC), a two-RBP gene signature 

(consisting of EZH2 and NOVA1) was constructed to 

predict the clinical prognosis of HNSCC patients, and 

this model will assist clinicians in providing a clinical 

diagnosis, individualized therapy, and prognostic 

assessment [35]. 

 

 
 

Figure 8. The expression profiles of hub genes in online bioinformatics databases. (A) The protein expression of hub genes in 
normal renal tissue and ccRCC on the HPA database. (B) Alterations of the hub genes on the cBioportal database. 
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Figure 9. Prognostic analysis of three-gene model in the training group. The samples were divided into high- and low-risk subgroup 
according to the median of risk score. (A) The curve of risk score. (B) Survival status of patients. (C) Expression heatmap of three prognostic 
genes. (D) Survival curve for high- and low-risk subgroup. (E) ROC analysis of three-gene model. ROC, receiver operating characteristic. 
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Figure 10. Prognostic analysis of three-gene model in the testing group. The samples were divided into high- and low-risk subgroup 
according to the median of risk score. (A) The curve of risk score. (B) Survival status of patients. (C) Expression heatmap of three prognostic 
genes. (D) Survival curve for high- and low-risk subgroup. (E) ROC analysis of three-gene model. 
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Figure 11. Results of Cox regression for risk factors for ccRCC and construction of nomograms. (A) Result of univariate Cox 
regression. (B) Result of multivariate Cox regression. (C) The nomograms for overall survival. 

 

 
 

Figure 12. The top 10 significant enriched KEGG pathways in the training group. 
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In our study, the key RBPs were selected using survival 

analyses and univariate and multivariate Cox 

regression analyses. We ultimately identified three 

RBPs related to the prognosis of ccRCC patients, 

including EIF4A1, CARS, and RPL22L1. The 

expression of these three key RBPs was verified at the 

transcription and translation levels using the Gene 

Expression Profiling Interactive Analysis (GEPIA) and 

Human Protein Atlas (HPA) databases, and the results 

indicated that these genes are upregulated in ccRCC 

tissues compared to normal tissues. These findings 

indicate that EIF4A1, CARS, and RPL22L1 may exert 

carcinogenic effects. Subsequently, we constructed an 

effective prognostic risk model based on these genes 

using LASSO regression analysis. Next, the ROC curve 

analysis showed the superior diagnostic accuracy of the 

three-gene risk model over clinical features alone, with 

an AUC of 74.8% in the training group and 69% in the 

test group. However, the pathological mechanism by 

which these three RBPs promote ccRCC tumorigenesis 

is still unclear, and further molecular function studies 

are necessary. A nomogram was constructed to assist 

clinicians in predicting the outcomes of ccRCC 

patients. Our prognostic nomogram based on three 

RBPs may provide more reliable information for 

individualized treatment than conventional clinical 

characteristics. 

 

In summary, this study provides new insights into the 

roles of RBPs during ccRCC development and reports 

the construction of an effective prognostic risk model 

to evaluate patient prognosis. In addition, RBP-related 

genes play a vital role in tumorigenesis, which 

suggests that these key RBPs may provide additional 

clues to aid in the exploration of new diagnostic 

strategies. However, there are some limitations to our 

study. First, the prognostic model was built based only 

on expression data from the TCGA. Although all 

samples were classified into a training group and 

testing group and the predictive efficacy of the 

prognostic model was verified in the testing group, our 

outcome would be more convincing with verification 

in other public datasets. We will collect the expression 

profiles and corresponding clinical data of patients 

from our own research center to complete this work. 

Second, our conclusions are based on a retrospective 

analysis, and these outcomes should be verified in 

prospective clinical research. Finally, the biological 

roles of the key RBPs in this risk model must be 

further investigated in ccRCC. 

 

Overall, we systematically investigated the biological 

functions and prognostic value of differently expressed 
RBPs by comprehensive bioinformatics analysis in 

ccRCC. A prognostic signature consisting of three  

RBP-coding genes was established to serve as a novel 

prognostic factor for ccRCC. To the best of our 

knowledge, this study is the first to develop an RBP-

related prognostic model for ccRCC. Our results 

contribute to the identification of novel diagnostic and 

prognostic molecular markers. 

 

MATERIALS AND METHODS 
 

Source of data 

 

The RNA sequencing data of 539 ccRCC samples and 

72 normal renal samples and the corresponding clinical 

features of the patients were extracted from the TCGA 

(https://tcga-data.nci.nih.gov/tcga/). Patients who lacked 

information on age, sex, and survival status were 

excluded from the subsequent analysis. Finally, 530 

ccRCC tumor samples and 72 normal samples were 

screened from the TCGA database. R language (version 

3.6.0) was used to process the data. 

 

Identification of differentially expressed RBPs and 

functional enrichment analysis 

 

The Wilcox signed-rank test was used to screen the 

differentially expressed RBPs, with FDR less than 0.05 

and absolute fold change (FC) more than 0.5 as the 

cutoffs. The functional enrichment analysis included 

KEGG and GO analyses, which were applied to 

evaluate the functional categories related to the 

differentially expressed RBPs using the R package 

“clusterProfiler”; FDR less than 0.05 was set as the 

significance threshold. The results were visualized with 

the R package ggplot2. Then, a PPI network of the 

differentially expressed RBPs was built using the 

Search Tool for the Retrieval of Interacting Genes/ 

Proteins (STRING) database (https://string-db.org/). We 

imported these data into Cytoscape (version 3.6.1). The 

key modules were screened by using the MCODE 

plugin in Cytoscape. 

 

External validation of the prognostic signature 

 

The mRNA expression levels of the key genes between 

renal tumors and normal samples were obtained from the 

GEPIA online database (http://gepia.cancer-pku.cn/). 

Differential protein expression between renal tumor and 

normal tissues was assessed with data from the HPA 

database (https://www.proteinatlas.org/). Then, mutation 

data and overall copy number alteration data were 

obtained for hub genes in the cBioPortal database 

(http://www.cbioportal.org/). We validated the significance 

and the expression rank of hub RBPs in the Oncomine 

database (https://www.oncomine.org/). Kaplan-Meier 

survival analysis was performed with the OncoLnc 

online software (http://www.oncolnc.org/). GSEA was 

conducted with online software (version 4.0.3). 

https://tcga-data.nci.nih.gov/tcga/
https://string-db.org/
http://gepia.cancer-pku.cn/
https://www.proteinatlas.org/
http://www.cbioportal.org/
https://www.oncomine.org/
http://www.oncolnc.org/
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Table 2. Clinical parameters of 530 ccRCC patients. 

Clinical parameters 
Total Training group Testing gruop 

(n=530) (n=266) (n=264) 

Age (year, mean±SD) 60.56±12.14 60.52±12.24 60.61±12.06 

Gender(n,%)    

  Male 344(64.9) 175(65.7) 169(64.0) 

  Female 186(35.1) 91(34.3) 95(36.0) 

Tumor grade(n,%)    

  G1 14(2.6) 5(1.9) 9(3.4) 

  G2 227(42.8) 106(39.8) 121(45.8) 

  G3 206(38.9) 114(42.9) 92(34.8) 

  G4 75(14.2) 36(13.5) 39(14.8) 

  Gx 5(1.0) 3(1.1) 2(0.8) 

  Unknown 3(0.5) 2(0.8) 1(0.4) 

Pathological stage(n,%)    

  Stage I 265(50.0) 132(49.6) 133(50.4) 

  Stage II 57(10.8) 33(12.4) 24(9.1) 

  Stage III 123(23.2) 62(23.3) 61(23.1) 

  Stage IV 82(15.5) 37(13.9) 45(17.0) 

  Unknown 3(0.5) 2(0.8) 1(0.4) 

AJCC T(n,%)    

  T1 271(51.1) 136(51.1) 135(51.1) 

  T2 69(13.0) 36(13.6) 33(12.5) 

  T3 179(33.8) 87(32.7) 92(34.9) 

  T4 11(2.1) 7(2.6) 4(1.5) 

AJCC N(n,%)    

  N0 239(45.1) 123(46.2) 116(43.9) 

  N1 16(3.0) 9(3.4) 7(2.7) 

  Nx 275(51.9) 134(50.4) 141(53.4) 

AJCC M(n,%)    

  M0 420(79.2) 215(80.8) 205(77.7) 

  M1 78(14.7) 36(13.5) 42(15.9) 

  Mx 30(5.7) 13(4.9) 17(6.4) 

  Unknown 2(0.4) 2(0.8) - 

Survival status(n,%)    

  Alive 364(68.7) 182(68.4) 182(68.9) 

  Dead 166(31.3) 84(31.6) 82(31.1) 

Survival months(mean±SD) 37.88±27.20 36.59±26.73 39.19±27.64 

Risk scores(mean±SD) 1.31±1.32 1.29±1.15 1.33±1.46 

  High(n,%) 267(50.4) 133(50.0) 134(50.8) 

  Low(n,%) 263(49.6) 133(50.0) 130(49.2) 

ccRCC: clear cell renal cell carcinoma; SD: Standard Deviation; AJCC: American Joint Committee on Cancer. 

 

Construction and validation of the RBP-related 

prognostic model 

 

A total of 530 ccRCC tumor samples were randomly 

classified into the training group (n=266) and the testing 

group (n=264). The detailed clinical data of ccRCC 

patients are shown in Table 2. Prognosis-related RBP 

genes associated with patient OS were screened using 

univariate Cox regression. With the cutoff values of 

Cox P < 0.00001 and KM P < 0.00001, ten 

differentially expressed genes (DEGs) were considered 

survival-related RBP genes. Subsequently, LASSO Cox 

regression was used to build the RBP-related prognostic 

risk model from the training group data. The LASSO 

Cox regression model was performed using the 

“glmnet” R package. The prognostic risk signature 

includes a Cox regression coefficient and can be used to 

calculate the risk scores for all samples. The formula of 
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the prognostic risk model was given as risk score = 

expression level of gene 1*α1 + expression level of 

gene 2*α2 +... +expression level of gene n*αn, in which 

α is representative of the Cox regression coefficient of 

each parameter. 

 

After calculating the risk scores, the ccRCC patients were 

assigned to high- and low-risk subgroups. We compared 

the difference in survival rates among the two risk 

subgroups by the log-rank test in the R environment. 

Additionally, a ROC curve was plotted to assess the 

prognostic accuracy of the predictive model using the 

“survivalROC” R package. Further, the prognostic value 

of this model was evaluated using univariate and 

multivariate Cox regression analyses. These analyses 

were performed with the “survival” and “survminer” R 

packages. The testing group was used as a validation set 

to evaluate the predictive accuracy of this model by the 

same methods. Finally, we established a nomogram to 

visualize model efficiency using the rms R package. 

 

Statistical analysis 

 

The data were analyzed using the PERL programming 

language (version 5.32.0). All statistical analyses were 

conducted using the R language (version 3.6.0). 

Differences with P < 0.05 were regarded as statistically 

significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Kaplan-Meier survival curves for the high- and low-risk groups stratified by clinicopathological 
variables. (A, B) Stage. (C, D) Grade. 
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Supplementary Figure 2. The mRNA expression profiles of three hub RBPs stratified by clinicopathological variables. (A, C–E) 
Stage. (B, F–H) Grade 
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Supplementary Figure 3. The protein expression of hub genes in normal renal tissue and ccRCC on the HPA database. (A) The 

IHC staining of EIF4A1, CARS, and RPL22L1. 


