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INTRODUCTION 
 

Glioma is the most prevalent and deadly primary 

tumour of the central nervous system (CNS) in adults 

and it accounts for 80% of all primary brain tumours 

[1]. Vascular proliferation has been considered as one 

of the prominent features of gliomas which results in 

poor outcomes for glioma patients [2]. The anti-VEGF 
drug Avastin targets angiogenesis, which has been used 

for anti-glioma therapy [3]. However, patient outcomes 

are still poor, and for glioblastoma (GBM) patients, 

limited benefits are acquired despite the blocking of 

vascular endothelial cell-mediated angiogenesis [4]. 

Therefore, some salvage neovascularization 

independent of VEGF-induced angiogenesis in GBM 

must occur. Vasculogenic mimicry (VM) are the highly 

patterned vascular channels in tumour composed of a 

basement membrane stained positive with periodic acid-

schiff (PAS) in the absence of endothelial cells and 

fibroblasts [5]. It has been reported that in glioma, VM 

structure is formed by transdifferentiated tumour cells 

[6]. The formation of VM bypasses the canonical 
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ABSTRACT 
 

Vasculogenic mimicry (VM), the formation of an alternative microvascular circulation independent of VEGF-
driven angiogenesis, is reluctant to anti-angiogenesis therapy for glioma patients. However, treatments 
targeting VM are lacking due to the poor understanding of the molecular mechanism involved in VM formation. 
By analysing the TCGA database, microRNA-29a-3p (miR-29a-3p) was found to be highly expressed in normal 
brain tissue compared with glioma. An in vitro study revealed an inhibitory role for miR-29a-3p in glioma cell 
migration and VM formation, and further study confirmed that ROBO1 is a direct target of miR-29a-3p. Based 
on this, we engineered human mesenchymal stem cells (MSCs) to produce miR-29a-3p-overexpressing 
exosomes. Treatment with these exosomes attenuated migration and VM formation in glioma cells. Moreover, 
the anti-glioma role of miR-29a-3p and miR-29a-3p-overexpressing exosomes were confirmed in vivo. Overall, 
the present study demonstrates that MSCs can be used to produce miR-29a-3p-overexpressing exosomes, 
which have great potential for anti-VM therapy and may act as supplements to anti-angiogenetic therapy in the 
clinic. 
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pathways of angiogenesis and plays an important role in 

the maintenance of GBM malignancy [7]. 

 

VM formation is a consequence of hypoxia-induced 

epithelial-to-mesenchymal transition (EMT) in gliomas 

[8]. Studies have revealed that under hypoxic 

conditions, VM formation provides increased blood 

flow for oxygen supply and consequently promote the 

progression of GBM [8]. However, therapeutic methods 

targeting VM are still lacking due to poorly 

understanding for the molecular mechanisms involved 

in VM formation. 

 

MicroRNAs (miRs) function as tumour suppressors or 

oncogenes [9]. We have previously found that several 

miRs are able to inhibit migration and VM formation in 

gliomas [10, 11]. However, the clinical use of these 

glioma suppressors is limited due to the lack of an ideal 

delivery system. 

 

Exosomes are nanoparticles that are 30-100 nm in 

diameter [12]. Numerous biological molecules 

(including various miRs) are packaged into exosomes 

by donating cells and secreted into the extracellular 

microenvironments or the circulation [12]. Exosomes 

are accepted by target cells and subsequently alter the 

miR expression profile in target cells to induce 

variations in biological behaviour [12]. Recent research 

has demonstrated that miR-associated proteins were 

rarely found in exosomes, suggesting that exosomes do 

not contain major components of the miR biogenesis 

machinery [13]. Therefore, exosomes could serve as 

stable transferring vehicles for glioma suppressor miRs. 

 

Mesenchymal stem cells (MSCs) are multipotent 

stromal cells that can differentiate into a variety of cell 

types, including osteoblasts, chondrocytes, myocytes 

and adipocytes [14]. Several studies have reported the 

delivery of tumour suppressive miRs to cancers via 

MSC-derived exosomes [15, 16]. Researches on glioma 

have revealed that exosomes show glioma-suppressive 

effect when antitumour-miRs were overexpressed in the 

exosome-donating MSCs [17–20], suggesting the 

considerable potential for the use of MSC-derived 

exosomes in glioma treatment. Despite the vital role of 

vascular proliferation in glioma progression, none of 

these studies focused primarily on anti-angiogenesis or 

anti-VM formation therapy for gliomas. 

 

In the current study, we confirmed that miR-29a-3p 

attenuated migration and VM formation in glioma and 

thereby prolonged the survival time in xenografted nude 

mice model. Based on these findings, we verified that 
MSC-derived exosomes could be used as transferring 

vehicles for miR-29a-3p to decrease migration and VM 

formation both in vitro and in vivo. It may serve as an 

alternative treatment for glioma patients, especially for 

those who fail to respond to anti-VEGF therapy. 

 

RESULTS 
 

Glioma formed VM structures and showed 

aberrantly low expression level of miR-29a-3p 

 

Firstly, we studied the expression level of miR-29a-3p 

in normal brain tissue and in different subtypes of 

glioma in the TCGA database. As shown in the box 

plot, glioma tissue showed a significantly lower miR-

29a-3p expression level compared with normal brain 

tissue (Figure 1A). These results were confirmed in cell 

lines. Compared with normal human astrocytes (NHA), 

the glioma cell lines U87 and A172 showed lower 

expression level of miR-29a-3p (Figure 1B). We then 

showed VM structures in glioma tissue by double 

staining for PAS and CD34. VM structures exhibit 

positive staining for PAS but negative for CD34, 

whereas the epithelium-lined vessels were CD34 

positive (Figure 1C, Positive Control). No VM was 

found in the normal brain tissue, which suggested that 

VM structure is exclusively formed in glioma (Figure 

1C). These results demonstrated that glioma formed 

VM structures and showed aberrantly low expression 

level of miR-29a-3p. 

 

miR-29a-3p inhibited migration and VM formation 

in glioma cells 

 

To explore whether the VM forming abilities in glioma 

was associated with lower expression of miR-29a-3p, 

we performed in vitro gain-of-function assays. Firstly, 

we examined the migration abilities in glioma cell lines 

after miR-29a-3p overexpression. Consistent with 

results in former studies [21], miR-29a-3p could inhibit 

migration in glioma (Figure 2A, 2B; NC: negative 

control; NC i: negative control inhibitor; miR-29a-3p 

m: miR-29a-3p mimics; miR-29a-3p i: miR-29a-3p 

inhibitors). It has been reported that migration plays an 

important role in VM formation [10]. We further 

explore whether miR-29a-3p had the ability to 

ameliorate VM formation as well. The results showed 

that four hours after being placed into the wells, the 

glioma cells began to exhibit different degrees of VM 

(Figure 2C). Overexpression of miR-29a-3p attenuated 

the formation of VM, while silencing miR-29a-3p 

promoted VM formation (Figure 2C, 2D). We then 

examined the molecular changes after miR-29a-3p 

transfection. Matrix metalloproteinase (MMP) 9 

(MMP9) is an important factor associated with VM 

formation and migration [22] and LAMB2 is a VM-

related protein [6]. We observed a decrease in MMP9 

and LAMB2 protein level after miR-29a-3p over-

expression, which indicated suppressed migration and 
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VM formation pathways (Figure 3E). Considering that 

EMT contributes to VM formation and migration [8, 

23], we detected the alteration of EMT-related protein 

after miR-29a-3p overexpression. We found that N-

cadherin, the marker for EMT, was downregulated after 

miR-29a-3p overexpression, suggesting that miR-29a-

3p inhibited the EMT process in glioma cells (Figure 

3E). These results suggested that miR-29a-3p inhibited 

VM formation in glioma cells. In addition, migration 

and EMT, two processes closely associated to VM 

formation, were also impeded by miR-29a-3p. 

 

miR-29a-3p inhibited migration and VM formation 

by targeting ROBO1 

 

To identify the target gene of miR-29a-3p, we used 

TargetScan and miRDB and found that the 3’ UTR of 

ROBO1 contains several highly conserved putative 

miR-29a-3p binding sites (Figure 3A, left panel). To 

verify that ROBO1 is a direct target of miR-29a-3p, 3’ 

UTR luciferase assays were performed (Figure 3A, 

middle and right panel). The results showed that 

overexpression of miR-29a-3p reduced the luciferase 

activity in wild type group (WT) but not in the mutant 

group (MUT), suggesting the direct binding of miR-

29a-3p to the 3’UTR of ROBO1 (Figure 3A, middle and 

right panel). The expression level of ROBO1 was 

detected using western blotting (Figure 3B). The results 

showed that, following miR-29a-3p overexpression, 

ROBO1 was downregulated. Furthermore, ROBO1-

knockdown decreased the protein levels of MMP9, 

LAMB2, and N-cadherin in a similar fashion as miR-

29a-3p overexpression (Figure 3B). In contrast, 

overexpression of ROBO1 enhanced the expression of 

MMP9, LAMB2, and N-cadherin, indicating the pro-

VM formation effects of ROBO1. However, these 

 

 
 

Figure 1. Glioma formed VM structures and showed aberrantly low expression level of miR-29a-3p. (A) Quantification of  

miR-29a-3p expression levels in gliomas of different subtypes in the TCGA database. Data are shown as the mean±SD, n=204, one-way 
ANOVA (*, P < 0.05). (B) miR-29a-3p expression in NHA, U87 and A172 cells. Data are shown as the mean±SD, n=3, one-way ANOVA  
(*, P < 0.05). (C) Representative images of CD34-PAS IHC staining of VM structures (red arrows; scale bar, 100 μm) in normal brain 
specimens (n=2) and in gliomas of different grades (n=45). Epithelium-lined vessels (CD34+/PAS+) were set as positive control (green 
arrows; scale bar, 100 μm). 
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effects of ROBO1 could be offset by co-transfection 

with miR-29a-3p mimics (Figure 3C). To further 

confirm the opposing effects of ROBO1 and miR-29a-

3p on migration and VM formation, we performed 

transwell assays (Figure 3D, 3E) and VM formation 

assays (Figure 3F, 3G). In accordance with the western 

blotting results, the overexpression of ROBO1 

promoted migration (Figure 3D, 3E) and VM formation 

(Figure 3F, 3G). However, transfection of miR-29a-3p 

counteracted the effects of ROBO1 (Figure 3D, 3G). In 

 

 
 

Figure 2. miR-29a-3p inhibited migration and VM formation in glioma cells. (A) The effect of miR-29a-3p on cell movement was 

assessed using transwell migration assays (scale bar, 100 μm; n=3). (B) Quantification of transwell migration assays in (A). Data are shown 
as the mean±SD, n=3, one-way ANOVA (*, P < 0.05). (C) Effect of miR-29a-3p on VM formation ability (scale bar, 200 μm; n=3). (D) 
Quantification of relative VM number in (C). Data are shown as the mean±SD, n=3, one-way ANOVA (*, P < 0.05). (E) Western blot 
analysis of protein levels of N-cadherin, MMP9 and LAMB2 in A172 and U87 cells. GAPDH was used as a whole-cell protein loading 
control. Results are from three independent experiments. 
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Figure 3. miR-29a-3p inhibited migration and VM formation by directly targeting ROBO1. (A) Schematic representation of the 

predicted binding sites for miR-29a-3p in the ROBO1 3′-UTR (wild type; WT) and the designed mutant versions (mutant; MUT) of the ROBO1 
3’-UTR (left panel). Relative luciferase activity of HEK293T cells in the presence of the indicated treatments (middle and right plots). Data are 
shown as the mean±SD, n=3, one-way ANOVA (*, P < 0.05). (B) Western blot analysis of the protein level of ROBO1, N-cadherin, MMP9 and 
LAMB2 after miR-29a-3p transfection. Results are from three independent experiments. (C) Western blot analysis of the expression of 
ROBO1,N-cadherin, MMP9 and LAMB2 after ROBO1 and miR-29a-3p overexpression. Results are from three independent experiments. (D) 
Representative images for the transwell assay (scale bar, 100 μm; n=3). (E) Quantification of transwell migration assays in (D). Data are shown 
as the mean±SD, n=3, one-way ANOVA (*, P < 0.05). (F) Representative images for the VM formation assay (scale bar, 200 μm; n=3). (G) 
Quantification of relative VM numbers in (F). Data are shown as the mean±SD, n=3, one-way ANOVA (*, P < 0.05). 
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summary, our results suggested that ROBO1 is a direct 

target for miR-29a-3p that mediates the anti-VM and 

anti-migration effects. 

 

Transfected MSCs transferred miR-29a-3p via 

exosomes and inhibited migration and VM 

formation in glioma 

 

Since we had proved the inhibitory role of miR-29a-3p 

in migration and VM formation, we speculated that 

artificially introducing miR-29a-3p into glioma may 

have a therapeutic potential. It has been reported that 

MSCs were able to package miRs into exosomes and 

transfer them to target cells, such as glioma cells [18]. 

We therefore overexpressed miR-29a-3p in human 

MSCs (H-MSC) using lentivirus (Figure 4A). Isolated 

MSCs-exosomes were characterized by TEM (for 

morphologic analysis; Figure 4A) and nanoparticle 

tracking technology (for size and concentration 

analysis; Figure 4B; EXO-NC: exosomes derived from 

miR-NC-transfected MSCs; EXO-29a: exosomes 

derived from miR-29a-3p-transfected MSCs). As 

expected, the particles exhibited spherical morphology 

with a diameter ranging from 50 to 100 nm (Figure 4A, 

4B). We then performed western blotting to further 

confirm the presence of exosome markers TSG101 and 

CD9 but absence for endoplasmic membrane marker 

calnexin (Figure 4C). The upregulation of miR-29a-3p 

in MSC exosomes after transfection was confirmed by 

PCR, and the level of miR-29a-3p was increased 5-10-

fold in the miR-29a-3p transfection group compared to 

that in the NC transfection group or untransfected group 

(Figure 4D, EXO-Empty: exosomes derived from 

untransfected MSCs). Furthermore, after treatment by 

EXO-29a, the expression level of miR-29a-3p in both 

glioma cell lines increased significantly, indicating the 

efficient transfer of miR-29a-3p via exosomes (Figure 

4E). We then performed transwell assays for A172 and 

U87 glioma cells pre-treated with MSC exosomes for 

48 h. The results indicated that EXO-29a significantly 

limited migration in both glioma cell lines (Figure 4F, 

4G). Moreover, the VM formation capacity was 

ameliorated by EXO-29a (Figure 4H, 4I), which was 

consistent with the VM inhibitory capability of miR-

29a-3p. Alterations in migration and VM related factors 

were observed (Figure 4J). EXO-29a could decrease N-

cadherin, MMP9 and LAMB2 in the U87 and A172 cell 

lines (Figure 4J). Altogether, we verified the anti-VM 

and anti-migration capabilities of EXO-29a in vitro. 

 

In vivo study of miR-29a-3p and miR-29a-3p-

transfected MSC exosomes 

 
To extend our findings in vivo, we established an in vivo 

U87 xenograft nude mouse model. U87 glioma cells 

transfected with miR-NC, miR-29a-3p mimics or miR-

29a-3p inhibitors were intracranially transplanted into 

nude mice (Figure 5A). Moreover, two more groups of 

nude mice were transplanted with U87 cells and 

administered with EXO-NC or EXO-29a four times per 

week after transplantation (Figure 5A). Five days after 

transplantation, the tumour volumes remained similar 

among the different groups, indicating that the initial 

numbers of injected cells were equal, whereas on day 

10, the tumour burden of mice in the miR-29a-3p 

mimics group was much smaller than that in the miR-

NC group or in the miR-29a-3p inhibitors group. It is 

worth noting that mice treated with EXO-29a showed a 

similar tumour burden as those in the miR-29a-3p 

mimic group, which indicated the therapeutic effect of 

EXO-29a in vivo (Figure 5A). Kaplan–Meier analysis 

showed that miR-29a-3p overexpression moderately 

prolonged the survival time (Figure 5B; median survival 

time: NC: 17.5 days; miR-29a-3p m: 23 days; miR-29a-

3p i: 15 days). Treatment with EXO-29a also prolonged 

survival time compared with EXO-NC treatment or 

miR-NC transfection (Figure 5B; median survival time: 

NC: 17.5 days; EXO-NC: 16 days; EXO-29a: 23 days). 

To further determined the anti-migration effects in vivo, 

we conducted HE staining to show tumour/brain border 

in xenografted glioma tissues. The results indicated that 

there was less aggressive growth in gliomas over-

expressing miR-29a-3p or treated with EXO-29a 

(Figure 5C, upper panels). 

 

Furthermore, double staining for PAS and CD34 

showed that miR-29a-3p overexpression and EXO-29a 

treatment hampered the VM formation abilities in 

xenograft gliomas. The VM structures could rarely be 

found in gliomas overexpressing miR-29a-3p or treated 

by EXO-29a (Figure 5C, lower panels). 

 

In summary, we confirmed that miR-29a-3p inhibited 

migration and VM formation in vivo, which hampered 

the tumour growth and prolonged the survival of mice. 

Thereafter, administration of miR-29a-3p-transfected 

MSC exosomes was confirmed to have the anti-glioma 

capability in vivo. 

 

DISCUSSION 
 

Glioma remains a fatal disease with poor outcomes. 

Grade IV gliomas (GBM) have the most aggressive 

clinical course (median survival between 14.5 and 

16.6 months) [24, 25]. Anti-angiogenesis treatment is 

one of the therapeutic methodologies in addition to 

surgical resection [26]. However, the overall survival of 

glioma patients has failed to improve partially due to 

resistance to anti-angiogenesis therapy [4], suggesting 

that some methods of vessel formation independent of 

VEGF may exist in glioma. We have previously 

reported that VM, the formation of which is closely 
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Figure 4. Transfected MSCs transferred miR-29a-3p via exosomes and inhibited migration and VM formation in glioma. (A) 

Representative images of human MSCs transfected with miR-29a-3p or an NC nucleotide sequence (scale bar, 100 μm) and the corresponding 
electron microscopic images of exosomes (scale bar=100 nm). (B) Nanoparticle tracking technology indicated an accumulation of particles of 
diameters of 50-100 nanometres. (C) Western blot analysis showing the presence of TSG101 and CD9 and the absence of calnexin in MSC-
derived exosomes. Results are from three independent experiments. (D, E) PCR analysis of the miR-29a-3p level in exosomes (D) and glioma 
cell lines pretreated with exosomes (E). Data are shown as the mean±SD, n=3, one-way ANOVA (*, P < 0.05). (F) Migration capability detected 
by a transwell assay after treatment with miR-29a-3p-overexpressing exosomes (scale bar, 100 μm; n=3). (G) Quantification of transwell 
migration assays in (F). Data are shown as the mean±SD, n=3, one-way ANOVA (*, P < 0.05). (H) VM formation after treatment with miR-29a-
3p-overexpressing exosomes (scale bar, 200 μm; n=3). (I) Quantification of relative VM numbers in (H). Data are shown as the mean±SD, n=3, 
one-way ANOVA (*, P < 0.05). (J) Protein levels of markers of migration and VM formation detected by western blotting after miR-29a-3p-
overexpressing exosome (EXO-29a) treatment. Results are from three independent experiments. 
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associated with the abnormal expression of several 

miRs (for example, miR-Let-7f and miR-584-3p), is 

correlated with poorer outcomes for glioma patients [10, 

11]. Due to the absence of endothelial cells, VM 

structures were resistant to anti-angiogenesis agents 

targeting endothelial cells [6]. Moreover, it has been 

reported that the anti-VEGF drug Avastin increases VM 

in glioma [6]. Altogether, it is essential to explore a 

treatment targeting VM as a supplement for anti-

angiogenesis therapy. 

 

 
 

Figure 5. Effects of exosomes overexpressing miR-29a-3p resembled the anti-glioma effects of miR-29a-3p overexpression in 
vivo. (A) Bioluminescence imaging showed the tumour sizes on day 5 and day 10 after transplantation. (B) Kaplan–Meier survival curves for 

animals in different groups (miR-29a-3p m VS NC, p=0.0040; miR-29a-3p i VS NC, p=0.0074; EXO-29a VS NC, p=0.0091; EXO-29a VS EXO-NC, 
p=0.0060; EXO-NC VS NC, p=0.5433; log-rank test; n=23). (C) Representative images of the tumour/brain border with HE staining (upper 
panels; scale bar, 200 μm) and CD34-PAS IHC staining of VM structures (lower panels, red arrows; scale bar, 40 μm). 



 

www.aging-us.com 5063 AGING 

In this study, our results reveal that miR-29a-3p, 

which is a tumour suppressor in various malignant 

tumours, attenuated VM formation in gliomas. 

ROBO1 was a direct target for miR-29a-3p and 

knockdown of ROBO1 could yield the anti-VM effect 

in a same fashion. VM is closely associated with 

migration and EMT [8, 23]. Ling et al. reported that 

VM formation in glioma is probably attributed to 

EMT-induced cell plasticity elevation and MMP-

induced extracellular matrix remodelling [23]. The 

administration of EMT blocker SB203580 decreases 

N-cadherin expression and impairs VM formation 

abilities in glioma [23]. The downregulation of 

MMP9, a well-defined migration marker, diminishes 

the VM formation ability as well [22]. Furthermore, 

EMT induced migration in tumour cells whereas 

MMP9 is a potential EMT-promoting factor [27]. 

Therefore, we also confirmed the inhibitory role of 

miR-29a-3p in migration. N-cadherin, MMP9 and 

LAMB2 (the markers for EMT, migration and VM, 

respectively) were systematically inhibited by miR-

29a-3p. 

 

MSCs can be isolated from various tissues, including 

bone marrow, umbilical cord, and adipose tissue [28, 

29]. Recently, the technologies for MSC ex vivo culture 

and engineering have been developed [28, 29]. Some 

researchers have utilized MSCs for anti-tumour agents 

delivery [30, 31]. However, direct intravenous 

administration may trap MSCs inside the lungs due to 

the large size of MSCs. Injection MSCs into tumour 

nourishing arteries may prevent this but would 

drastically increase the complexity of the treatment 

[32]. As a result, MSC-derived exosomes may be an 

alternative method to deliver anti-tumour agents. 

 

MSCs have the strong capability to secrete exosomes 

[33] and various miRs are packaged into exosomes by 

MSCs [19, 34]. These findings imply the potential 

delivery of miRs with engineered MSC exosomes. In 

the current study, we transfected human MSCs with 

miR-29a-3p. We observed an elevation of miR-29a-3p 

in the MSCs exosomes. Consistent with the anti-glioma 

effects of miR-29a-3p, the miR-29a-3p overexpressing 

exosomes attenuated the migration and VM formation 

in vitro and in vivo. 

 

Due to time constraints, we did not explore the 

mechanism by which ROBO1 inhibits VM formation. It 

has been reported that VMs are probably originated 

from glioma stem cells [35–37]; hence, it is probable 

that ROBO1 abolishes VM formation ability by 

suppressing stemness. If so, exosomes derived from 
miR-29a-3p-overexpressing MSCs would have even 

broader application. Since glioma stem cells are 

associated with resistance to radiotherapy and chemo-

therapy [38, 39], the administration of engineered MSC-

derived exosomes may reduce resistance to radio-

therapy, chemotherapy and antiangiogenesis therapy. 

 

In summary, we revealed the inhibiting role of miR-

29a-3p on migration and VM formation in glioma. To 

utilize this anti-tumor effects of miR-29a-3p, we 

modified MSCs as a “bio-factory” for exosomes 

overexpressing miR-29a-3p. EXO-29a attenuated 

migration and VM formation and hence inhibited  

the growth of glioma. It is promising to use EXO-29a 

as a supplement for anti-VEGF therapy which would 

synergistically decrease the blood supply in glioma. 

Furthermore, anti-VEGF drugs could promote  

the formation of VM in glioma [6]; to prevent this  

side effect, inhibiting VM may be considered as 

 an integral part of antiangiogenesis therapy in the 

future. 

 

MATERIALS AND METHODS 
 

The cancer genome atlas (TCGA) databases and 

clinical specimens 

 

TCGA Research Network data for microRNA 

expression microarrays and associated clinical 

information for samples were downloaded from 

Betastasis.com (http://www.betastasis.com/). The data 

were analysed with GraphPad Prism. Glioma tissues 

(WHO I-IV, n=45) and normal brain tissue (n=2) 

embedded in paraffin had been collected from patients 

who underwent surgery at the Department of 

Neurosurgery at Qilu Hospital of Shandong University. 

Normal brain tissue samples were collected from severe 

traumatic brain injury patients who underwent partial 

resection of the normal brain. 

 

Immunohistochemistry (IHC) 

 

Sections were obtained from paraffin-embedded tissues 

from normal brains and human gliomas of different 

grades. The sections were heated, deparaffinized, 

rehydrated and placed in sodium citrate buffer (pH 6.0) 

for antigen retrieval, and the endogenous peroxidase 

activity was blocked with 3% hydrogen peroxide. The 

slides were blocked with 10% normal goat serum and 

incubated with primary antibody (rabbit anti-CD34 

monoclonal antibody, 1:500 dilution, ab81289; Abcam; 

UK) at 4° C overnight. The images were visualized by 

following standard protocols using a horseradish-

peroxidase-conjugated secondary antibody and 3,3′-

diaminobenzidine (DAB) as a substrate, and PAS 

staining was used to visualize the matrix-associated 

vascular channels. Sections were incubated with normal 

rabbit serum to generate the negative controls. The 

slides were counterstained with haematoxylin, and 

http://www.betastasis.com/
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typical images were obtained using a Leica DM 2500 

microscope. 

 

Cell culture 

 

Human glioma cell lines (U87MG and A172) and normal 

human astrocytes (NHAs) were obtained from the 

Culture Collection of the Chinese Academy of Sciences 

(Shanghai, China) and cultured in Dulbecco’s modified 

Eagle medium (DMEM; Thermo Fisher Scientific; USA) 

with 10% fetal bovine serum (FBS; Gibco; USA). 

Human bone marrow-derived MSCs were purchased 

from Cyagen (Suzhou, China) and cultured in 

mesenchymal stem cell complete medium (HUXMA-

90011; Cyagen; China). These cell lines were maintained 

in a humidified chamber containing 5% CO2 at 37° C. 

 

MiR-29a-3p/ROBO1 overexpression and knockdown 

 

Small interfering RNA (siRNA) for ROBO1, ROBO1-

overexpressing vector and empty vector were purchased 

from Genepharma (Shanghai, China). Lentiviruses 

encoding miR-29a-3p mimics (miR-29a-3p m), miR-

29a-3p inhibitor (miR-29a-3p i), negative control (NC) 

and inhibitor-negative control (NC i) were purchased 

from Genechem (Shanghai, China). Transient cell 

transfections (siRNA and vector) were performed using 

LipofectamineTM 3000 reagent (Thermo Fisher 

Scientific; USA) according to the manufacturer’s 

protocol. Transfections with lentivirus were performed 

with a MOI=10 in the two glioma cell lines and a 

MOI=10 in the human MSCs. 

 

Exosome isolation and identification 

 

Exosomes from MSCs were isolated from conditioned 

medium from MSCs, and the procedures used for 

isolation were performed as previously described [40]. 

The exosomes were stored at −80° C and verified by 

electron microscopy and nanoparticle tracking 

technology (Nanosight™). 

 

VM formation assay 

 

Ninety-six-well tissue culture plates were coated with 

Matrigel (50 μl/well; BD Biosciences; France), and U87 

and A172 cells were seeded in the wells (3x104 cells/well) 

and cultured in FBS-free medium (100 µl/well). Images 

were captured at 4 h and 8 h using an inverted Olympus 

microscope (DP72, Japan). The number of tubules was 

analyzed using ImageJ software [41]. 

 

Transwell migration assays 

 

Glioma cells were added to the top chamber in serum-

free media. The bottom chamber was filled with 

DMEM containing 10% FBS. After 6 h (U87) or 13 h 

(A172) of incubation, the cells in the top chamber were 

removed using a cotton swab, and the membrane was 

fixed in 4% paraformaldehyde for 15 min and stained 

with crystal violet for 15 min. Three fields of adherent 

cells from each well were photographed randomly. 

 

Luciferase reporter assay 

 

The reporter genes containing pGL3-ROBO1 and 

pGL3-mutROBO1 were synthesized by Bio-Asia 

(Jinan, China). The 293T cells were co-transfected with 

the luciferase reporters and the miR-29a-3p 

mimics/inhibitors. 48 h later, the activity of the reporter 

protein was measured using a luciferase assay kit 

(Promega; USA) according to the manufacturer’s 

instructions. 

 

Western blotting 

 

The harvested cells were lysed using heat denaturation in 

RIPA cell lysis buffer. The protein lysates were loaded 

and separated using SDS-PAGE and then transferred to a 

polyvinylidene difluoride (PVDF) membrane. The blots 

were incubated with primary antibodies against ROBO1 

(rabbit anti-ROBO1 polyclonal antibody, 1:500 dilution, 

20219-1-AP; Proteintech; China), LAMB2 (rabbit anti-

LAMB2 polyclonal antibody, 1:1000 dilution, 10895-1-

AP; Proteintech; China), N-cadherin, MMP9, and 

GAPDH (1:1000; Cell Signaling Technology; USA). To 

visualize the protein bands, enhanced chemiluminescence 

(ECL, Millipore, Bedford, USA) was used. The intensity 

of the protein bands was analysed using ImageJ software 

and normalized to GAPDH. 

 

Quantitative real-time PCR (qRT-PCR) 

 

Total RNA was isolated from glioma cells using Trizol 

reagent (Invitrogen, Life Technologies). Reverse 

transcription was performed using 2 μg of total RNA 

and the High Capacity cDNA Reverse Transcription Kit 

(Toyobo, FSQ-101) according to the manufacturer’s 

protocol. The cDNA was subject to real-time PCR using 

the Mx-3000P Quantitative PCR System (Stratagene). 

The primers for miR-29a-3p were 5-CATCTGACTA 

GCACCATCTGAAAT-3 and 5-TATGGTTTTGACGA 

CTGTGTGAT-3. The primers for U6 were 5-CAGCA 

CATATACTAAAATTGGAACG-3 and 5-ACGAATT 

TGCGTGTCATCC-3. The relative miR expression was 

normalized to that of U6. 

 

Intracranial mouse model 

 
To establish the intracranial gliomas, U87MG luciferase 

cells (5×105) transfected with lenti-miR-29a-3p, lenti-

miR-29a-3p-inhibitors or lenti-control virus were 
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stereotactically implanted into the brains of 4-week-old 

nude mice (SLAC Laboratory Animal Center, Shanghai, 

China). For the MSC exosome treatment experiment, 

U87MG luciferase cells (5×105) were implanted, and 

the mice were intravenously injected with exosomes 

(100 μg/mouse) four times per week for 3 weeks. 

Bioluminescence imaging was used to detect 

intracranial tumour growth. Kaplan-Meier survival 

curves were plotted to determine the survival time. 

When the mice were moribund or cachectic, the tumour 

tissues were harvested, fixed in formalin, embedded in 

paraffin, cut into sections and HE stained. 
 

Statistical analysis 
 

Data analysis was performed and visualized using 

GraphPad Prism. Each experiment was carried out at 

least in triplicate, and all results are presented as the 

means±SD. One-way ANOVA test was used to assess 

statistical significance. Kaplan–Meier survival curves 

were also constructed, and log-rank tests in GraphPad 

Prism software were used to assess survival. The data 

were considered significant with the following P values: 

P value < 0.05, denoted by “*”; P value < 0.01, denoted 

by “**”; P value < 0.001, denoted by “***”; and P 

value < 0.0001, denoted by “****.” P values > 0.05 

were considered not significant and are denoted  

by “ns”. 
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