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INTRODUCTION 
 

Ulcerative colitis (UC) is an inflammatory bowel 

disease (IBD), characterized by the damage of mucosa 

and submucosa of the colon. The major symptom 

includes blood in stool, pain, increased defection in 

diarrhea and tenesmus [1–3]. During the past years, the 

prevalence and incidence increased in developed and 

developing countries [4, 5]. Epidemiology study 

suggested that the incidence of IBD is highest in 20-30-

year-old group and reaches to another peak at 60-70-
year-old group [6]. The high incidence of UC brings 

serious economic burden and significantly decreased 

quality of life for both patients and their families. 

Up to now, the definite pathogenesis of UC remains 

unclear. It is believed that the immune tolerance defect 

induced by loss of mucosal barrier integrity is the 

primary mechanism [7]. The balance between Th1 and 

Th2 as well as the cytotoxicity of the intestinal epithelial 

cells caused by interleukin (IL) were reported function in 

UC development. Auto-immune was also involved in the 

progression of UC with the present of antibodies against 

epithelial cells in serum and mucosal [8, 9]. In recent 

years, impaired homoeostatic balance between the enteric 

microflora and the host's mucosal immunity was also 
reported to be possible pathogenesis of UC [10]. In 

addition, living status, microbial drugs, stress and diet 

may also be provoking factors of UC [11–13]. 
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ABSTRACT 
 

This study aimed to investigate the therapeutic mechanism of Huankuile suspension (HKL), a typical traditional 
Chinese medicine, on ulcerative colitis (UC) in a rat model. UC model was established by 2,4,6-trinitrobenzene 
sulfonic acid (TNBS) enema. Then, the rats were randomly divided into three groups: water treated group, HKL 
treated group and 5- amino salicylic acid (5-ASA) treated group. After 7 days treatment, the histological score in 
the HKL treated group was comparable with those in the control group. qRT-PCR and western blot 
demonstrated that HKL could significantly decreased pro-inflammatory cytokines, including TNF-α, IL-1β and IL-
6, while having less effect on anti-inflammatory cytokines, including IL-4 and IL-10. Transcriptomic analysis 
identified 670 differentially expressed genes (DEGs) between HKL treated UC rats and water treated UC rats. 
These DEGs were mostly related with immune response. Besides, metabonomic profile revealed 136 
differential metabolites which were significantly enriched in “pyrimidine metabolism”, “glutathione 
metabolism”, “purine metabolism” and “citrate cycle”. Finally, integrated analysis revealed that metabonomic 
pathways including “steroid hormone biosynthesis”, “pyrimidine metabolism”, “purine metabolism”, and 
“glutathione metabolism” were altered by HKL at both transcriptomic and metabonomic levels. HKL could 
inhibit inflammation and regulate bile metabolism, pyrimidine metabolism, purine metabolism, glutathione 
metabolism and citrate cycle. 
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Currently, there is no permanent cure for UC. The 

available drug therapy, including 5-aminosalicylates 

acid (5-ASA), corticosteroids and thiopurines, could 

induce clinical remission and promote healing process 

of colonic mucosa [14, 15]. Besides, biological drugs 

targeting specific pathways and non-biological agents 

targeting different pathways were also developed [13]. 

However, considering the adverse effects and hormone 

resistance or dependence, seeking for other drugs of UC 

treatment is still warranted. 

 

The traditional Chinese medicine (TCM), derived from 

herbs, shows higher safety in treating disease including 

UC and is widely used in clinical therapy in Asian 

countries [16, 17]. Some TCM drugs illustrated 

promising therapeutic effects in treatment of UC, [18–

20]. Huankuile suspension (HKL) is a new recipe, 

which composed of 8 kinds of herbs, including Trukish 

galls, Coptis chinensis, pomegranate flower, amber, 

tabasheer and plantain herb. However, the molecular 

mechanism of HKL has not been investigated 

previously. 

 

Recent advances of high-throughput technologies, such 

as genome-wide gene expression profiling and 

metabolomics analysis have greatly facilitated the 

research on UC pathogenesis. RNA sequencing studies 

have identified UC specific differential expression of 

genes, fusion genes and mutated genes [21]. Small-

molecule metabolites in biological fluids including 

serum, plasma, and urine were identified by 

metabolomics analysis to explore the metabolites 

related to UC [22–24]. In this study, we investigated 

the molecular mechanism of HKL on treating UC by 

integrating RNA sequencing and metabolomics 

analysis in a UC rat model. The disturbed trans-

criptomic and metabonomic profiles of HKL were 

characterized and the underlying molecular mechanism 

was elucidated. 

 

RESULTS 
 

HKL treatment significantly relief UC symptom 

 

The 2,4,6-trinitrobenzene sulfonic acid (TNBS) 

administration successfully induced UC in Wistar rats, 

with characters of the fragmentation, shedding in 

intestinal mucosal epithelial cells and inflammatory 

infiltration in lamina propria. After treatment for 7 days, 

the symptoms were partly relieved in HKL and 5-ASA 

treated groups, which demonstrated basically intact 

intestinal mucosal epithelial tissues and reduced amount 

of inflammatory cells. In water treated group, the 

intestinal mucosa epithelial fragmentation, shedding, 

intestinal mucosal congestion and edema, and lamina 

propria inflammatory cell infiltration were found. These 

results indicated the effective function of HKL in UC 

treatment (Figure 1A). Histopathology scores based  

on inflammation, extent, regeneration, crypt damage 

and percent involvement were graded and calculated. 

We found the 5-ASA and HKL could significantly 

relieve the symptom after 3 days or 7 days treatment. 

Among all groups, the most obvious improvement of 

HKL was observed after 7 days treatment (Figure 1B). 

These results revealed that HKL indeed functioned 

in UC. 

 

HKL regulated the expression of cytokines 

 

Next, we sought to investigate the mechanism, through 

which HKL regulated the progression of UC. As the 

inflammation was the primary mechanism in UC, the 

expression of inflammation cytokines was explored. 

Rats were administered for 3 days, 7 days or 10 days 

and the expression of TNF-α, IL-1β, IL-6, IL-4 and IL-
10 was determined. As shown in Figure 2, the 

expression of pro-inflammatory cytokines, including 

TNF-α, IL-1β and IL-6 was significantly increased in 

water group, while treatment of 5-ASA and HKL could 

significantly reduce the expression levels of these pro-

inflammation cytokines at 3 days and 7 days. However, 

the anti-inflammatory cytokines, IL-4 and IL-10, were 

not significantly different among groups (Figure 2). 

These results indicated that HKL might block UC 

progression by inhibiting expression of pro-

inflammation cytokines. The protein expression of 

inflammation cytokines was further confirmed by 

western blot. As shown in Figure 3, protein expression 

levels of TNF-α, IL-1β and IL-6 were significantly 

decreased compared with water group, while the protein 

expression of anti-inflammation factors, IL-4 and IL-10 

were not significantly different among groups (Figure 

3). Taken the above results together, we proposed that 

HKL might function in UC by regulating expression of 

pro-inflammation cytokines but not anti-inflammation 

cytokines. 

 

Identification and functional analysis of DEGs 

 

To further explore the underlying mechanism of HKL 

on UC progression, the transcription profile and 

metabolism profile of UC rats in water group and HKL 

group at 7-day treatment were investigated. Based on 

criteria of P < 0.05 and |log2 fold change (FC)| >1, a 

total of 670 differentially expressed genes (DEGs), 

including 415 up-regulated and 255 down-regulated 

genes, were identified between HKL group and water 

group (Figure 4A, Supplementary Table 1). Heatmap 

showed the DEGs could separate the HKL treated 
samples and water treated samples, indicating the DEGs 

are reliable (Figure 4B). Then, Gene Ontology (GO) 

and Kyoto encyclopedia of genes and genomes (KEGG) 
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pathways were performed to explore the biological 

function of DEGs. Based on threshold of false 

discovery rate (FDR) < 0.05, a total of 293 GO-terms 

were significantly enriched (Supplementary Table 2). 

The most significant enriched GO terms were related 

with immune system, including “leukocyte mediated 

immunity” (n = 39, FDR = 0), “lymphocyte mediated 

immunity” (n = 35, FDR = 0), “adaptive immune 

response based on somatic recombination of immune 

receptors built from immunoglobulin superfamily 

domains” (n = 36, FDR = 0), “immune response” (n = 

84, FDR = 0), and “B cell mediated immunity” (n = 30, 

FDR = 3.35 ×10-10) (Figure 5A). Besides, we performed 

KEGG enrichment analysis for upregulated genes and 

downregulated genes, respectively. As shown in Figure 

5B, the KEGG pathways of “PPAR signaling pathway”, 

“ECM-receptor interaction”, “calcium signaling 

pathway”, “cGMP-PKG signaling pathway”, and 

“cAMP signaling pathway” were significantly activated 

after HKL treatment (Supplementary Table 3), while the 

KEGG pathways of “Complement and coagulation 

cascades”, “IL-17 signaling pathway”, “cell adhesion 

molecules (CAMs)” were significantly suppressed 

(Figure 5C, Supplementary Table 4). 

 

 
 

Figure 1. Histological grading of colitis. (A) Representative photographs showing histological score assigned to biopsies, magnification 
10X. (B) Sum of inflammation score according to Dieleman scoring system in normal group, 5-ASA group, HKL group and water group after 3 
days, 7 days and 10 days treatment (n = 3 at each time points in each group). * P < 0.05, ** P < 0.01 compared with control group, ## P < 0.01 
compared with water group. 
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Figure 2. HKL suppressed inflammatory factors expression at mRNA level. UC rats were treated with water, 5-ASA and HKL for 3 
days, 7 days and 10 days. Tissues were harvested for qRT-PCR analysis (n = 3 at each time points in each group). Each sample was tested in 
triplicate. *, P < 0.05; **, P < 0.01 compared with control group. # P < 0.05, ## P < 0.01 compared with water group. 

 

 
 

Figure 3. HKL inhibited expression of inflammatory factors at protein level. UC rats were treated with water, 5-ASA and HKL for 7 

days. Colon tissues were harvested for western blot analysis. Each experiment was repeated in three samples. 
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Protein-protein interactions (PPI) network 

construction 

 

Further, we selected KEGG pathways that might be 

related with UC progression and built a PPI network 

among the DEGs enriched in these pathways. As shown 

in Figure 6, Dhcr7 (degree = 17), Cyp2e1 (degree = 14), 

Pnlip (degree = 12), Cpb1 (degree = 12) and Kng1 

(degree) were the 5 nodes with the highest node degree. 

 

Differentially expressed metabolites identification 

 

We further performed metabonomic analysis for HKL 

and water treated UC rats. Principal Component 

Analysis of samples showed that the samples of the 

same group are relatively concentrated in the two-

dimensional spatial distribution and the quality 

control (QC) sample was distributed around the 

origin. This result indicated that the method was  

stable and had good repeatability (Figure 7A). A total 

of 136 differential metabolites were identified based 

on criteria of variable importance in projection (VIP) > 

1, P < 0.05 and |log2FC| > 0.565, including 71 

upregulated metabolites and 65 downregulated 

metabolites (Figure 7B and Supplementary Table 5). 

Hierarchical cluster analysis revealed obvious 

difference between UC rats in water group and HKL 

group, indicating the high reliability of metabonomic 

analysis (Figure 7C). KEGG pathway analysis indicated 

pyrimidine metabolism, glutathione metabolism, purine 

metabolism and citrate cycle were four of the most 

significantly enriched pathways (Figure 7D). 

 

Integrative transcriptomic and metabonomic 

molecular profiling analysis 

 

Next, we integrated transcriptomic and metabonomic 

data to further explore the pharmacological effect of

 

 

Figure 4. Expression signature of differentially expressed genes (DEGs). (A) Volcano plot displayed the distribution of DEGs. The blue 
dots represent down-regulated genes and the red dots represent up-regulated genes. (B) Heatmap of DEGs (n = 3 in each group). Each row 
represents one individual sample, and each column represents one gene. High expression levels are shown in red and low expression levels in 
green. UC rats were treated with water or HKL for 7 days and colon tissues were extracted for transcriptomics analysis. 
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Figure 5. Gene ontology terms and KEGG pathway 
enrichment of DEGs. (A) The significantly enriched GO terms of 

DEGs in molecular function, biological process and cellular 
component. (B) The significantly enriched KEGG pathways of the 
upregulated genes. (C) The significantly enriched KEGG pathways 
of the downregulated genes. The dot represents biological 
process, triangle represents cellular component and square 
represents molecular function. 

HKL. The KEGG pathways being disturbed at both 

transcriptomic level and metabonomic level were 

identified. The pathways of “steroid hormone 

biosynthesis”, “primary bile acid biosynthesis”, “central 

carbon metabolism in cancer”, “vitamin digestion and 

absorption”, “pyrimidine metabolism”, “purine 

metabolism”, and “glutathione metabolism” were 

significantly enriched (Figure 8). 

 

DISCUSSION 
 

In this study, the molecular mechanism of HKL on UC 

was explored. We demonstrated that intrarectal 

administration of HKL could decrease the inflammation 

of the colon, relieve the symptom and promote repair by 

down-regulating the pro-inflammatory cytokines. To 

further explore the underlying chemical composition 

and therapeutic targets of herbal medicines, trans-

criptomic and metabolomics changes were characterized 

in a parallel and integrative manner, providing a 

comprehensive molecular profile. 

 

UC is the chronic inflammatory condition of mucosa 

with large intestine in the rectum and colon, which 

involves the immune response resulting in epithelial 

barrier breach of mucosa, immune cells migration 

across the endothelial layer and the release of mediators 

[13]. Active inflammatory cells could up-regulate the 

cytokines and these cytokines could positively 

feedback, which exacerbates the damage of the colon 

[25]. The activation immune cells and cytokines 

including ILs, and TNF-α regulate cytotoxicity of 

epithelial cells and enhance the immune response of the 

intestinal tissue [11]. T helper cell-1 (Th1) could 

mediate the immune response by releasing IL-2, 

Interferon-γ (IFN-γ), and TNF-α [26–28]. The increased 

concentration of TNF-α mediated by IL-9 performs 

negative effect on the function of intestinal barrier [29, 

30]. Our results revealed the significant increase of  

TNFα, IL-6 and IL-1β in control group. However, after 

HKL treatment, these pro-cytokines were decreased, 

which showed the significantly clinical function in 

adaptive immune response. 

 

The effects of HKL on regulating immune response were 

further validated by transcriptomic analysis. A total of 

670 DEGs (415 up-regulated and 255 down-regulated 

genes) were identified between HKL treated UC rats and 

water treated UC rats. Functional enrichment analysis 

suggested that these DEGs were mostly related with 
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immune system, including “leukocyte mediated 

immunity”, “lymphocyte mediated immunity”, 

“immune response”, and “B cell mediated immunity”. 

The DEGs involved in these functions included C3, Cbl, 

Cd8a, Cfb, Chga, Dennd1b, Igh-6, Ighg1, Pla2g1b, 

Pram1, RT1-CE3, RT1-T24-1, Ripk3 and Tfrc. Among 

these DEGs, C3 and Cfb are complement components 

which are found being upregulated in UC in previous 

studies [31, 32]. Complements are potent innate immune 

defense factors involved in intestinal homeostasis and 

activation of complements have been reported to be 

involved in UC for a long time [33, 34]. In our study, 

C3 and Cfb were downregulated by HKL at a 3.24-fold 

and 3.85-fold, respectively. In line with this, the 

downregulated DEGs were significantly enriched in the 

pathway of “Complement and coagulation cascades”. 

These results suggested HKL might regulate immune 

response for UC rats. 

 

We performed KEGG enrichment analysis for 

upregulated genes and downregulated genes, 

respectively. The KEGG pathways of “PPAR signaling 

pathway”, “ECM-receptor interaction”, “calcium 

signaling pathway”, “cGMP-PKG signaling pathway”,

 

 
 

Figure 6. Protein-protein interaction network construction. Each node represents one differentially expressed protein. Each edge 
represents regulation. Red, up-regulated expressed protein; green, down-regulated expressed protein. 
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and “cAMP signaling pathway” were significantly 

activated after HKL treatment, while the KEGG 

pathways of “Complement and coagulation cascades”, 

“IL-17 signaling pathway”, “cell adhesion molecules 

(CAMs)” were significantly suppressed. The 

proliferator-activated receptor γ (PPAR-γ) activation 

plays key role in regulation of inflammation and 

immune response in UC patients and the anti-

inflammatory effects of 5-ASA in UC patients are 

mediated by PPARγ activation [35]. After treatment 

with HKL, the PPAR signaling pathway was 

significantly activated in this study, showing similar 

mechanism of 5-ASA. The pathways of “IL-17 

signaling pathway” and “cell adhesion molecules 

(CAMs)” were significantly suppressed after HKL 

treatment in this study. IL-17 is a key mediator in the 

pathogenesis of intestinal inflammation [36]. It acts as a 

potent inflammatory interleukin that activates the 

expression of other pro-inflammatory cytokines [37]. In 

a previous study, Abdelmegid et al. proposed that gold 

nanoparticles could effectively targeted colonic tissue 

by reducing IL-17 [38]. The IL-17 signaling pathway 

 

 
 

Figure 7. Identification of differentially expressed metabolites. (A) Principal Component Analysis examines the distribution of 
samples. (B) The log2 ratio of fold change and –log(P-values) plotted in the form of volcano plots. Red dots represent differentially expressed 
metabolites and black dots represent non-significantly changed metabolites. (C) Heatmap illustrates the metabolite profile. The column 
represents sample and the row represents relative molecular mass. (D) The bubble graph represents the significantly enriched pathways of 
DEGs. UC rats were treated with water or HKL for 7 days and fetal samples were collected for metabolomics assay. LC-MS/MS analyses were 
performed on 6 rats from water or HKL treated groups. Each bubble represents one individual pathway. The area of the bubble positively 
correlates with the importance in pathway. C, M, QC, quality control samples. 
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was suppressed in this study, suggesting the promising 

effect of HKL on UC. 

 

Further, we selected KEGG pathways that might be 

related with UC progression and built a PPI network 

among the DEGs enriched in these pathways. Dhcr7 

(degree = 17), Cyp2e1 (degree = 14), Pnlip (degree = 12), 

Cpb1 (degree = 12) and Kng1 (degree) were the 5 nodes 

with the highest node degree. Dhcr7 encodes delta-7-

sterol reductase, which is the ultimate enzyme of mam- 

 

 
 

Figure 8. Integrated altered metabolic pathways in HKL treated UC rats according to our transcriptomic and metabolomics 
data. The bubble graph represents the enriched DEGs. The column represents enriched counts; the row represents enriched pathway. Each 
bubble represents one individual pathway. Different colors represent significance P value. 
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malian sterol biosynthesis that converts 7-dehydro-

cholesterol to cholesterol [39]. Recent study suggested 

that cholesterol metabolism plays important role in innate 

immune response [40]. It is shown that expression of 

Dhcr7 is reduced by macrophages and it might be a 

potential therapeutic target against pathogenic viruses 

[41]. Cyp2e1 encodes cytochrome P450 2E1 is a member 

of the cytochrome P450 mixed-function oxidase system. 

Previously, Yamamoto et al. demonstrated that CYP2E1 

is activated in serum obtained from UC rats and could be 

used as a biomarker for evaluating UC [42]. In this 

study, Dhcr7 and Cyp2e1 were significantly down-

regulated by 1.39-fold and 3.71-fold after HKL 

treatment, indicating the role of HKL in relieving UC. 

 

Metabolic abundance analysis provided another way to 

evaluate the therapeutic mechanisms. In a previous 

study, tricarboxylic acid (TCA)-trans-aconitate was 

found decreased in UC patients [43]. Besides, serum 

levels of 3-hydroxybutyrate and acetoacetate were 

found elevated in UC patients compared with controls 

[44, 45]. Low concentration of cysteine is also observed 

in UC patients, which is known as limiting substrates in 

the biosynthesis of glutathione [46]. Also, it is reported 

that significant variations TCA cycle-related molecules 

were observed in the sera of the UC patients [47]. In 

this study, after integrating of transcriptome and 

metabolite analysis, “steroid hormone biosynthesis”, 

“pyrimidine metabolism”, “purine metabolism”, and 

“glutathione metabolism” were altered in UC 

progression and might be the therapeutic targets of 

HKL. These results revealed correlation with previous 

studies and explored the underlying mechanism in HKL 

therapy. Further, the rarely reported significance of 

pyrimidine metabolism and purine metabolism provided 

the new therapeutic evidence. We also observed mineral 

absorption and bile secretion were enriched in 

metabolite and transcription integrative analysis. 

Previous reports indicated that vitamin and minerals 

supplements could be used for treating IBD [48–50]. 

Our study firstly showed mineral absorption might 

function in UC progression, which provided the 

treatment option in UC patients. In UC, the deficiency 

of passive absorption in the colonic tract could lead to 

the variation of bile acids pool [51]. Usually, 

inflammation often is associated with deficit bile acids 

malabsorption [52]. Our research revealed bile 

absorption played a role in UC pathology. 

 

In conclusion, we investigated the promising effects of 

HKL on UC and its related molecular mechanism in 

TNBS-induced UC model. The results revealed that 

HKL could significantly reduce pro-inflammatory 
cytokines expression. Integrative analysis of 

transcriptomic and metabolomic profiling in water 

treated UC and HKL treated UC samples provided us 

the immune pathway might be the therapeutic targets of 

HKL. These results shed light on the clinical application 

of HKL. Further clinical trial research is needed to help 

demonstrating the pharmacology of HKL. 

 

MATERIALS AND METHODS 
 

Experimental rats 

 

Specific pathogen free male Wistar rats (220-250g) 

were obtained from Xinjiang Medical University 

Animal Center, Urumqi, China and housed in the 

controlled condition with 25° C temperature and 70%-

75% humidity. The rats were feed with standard diet 

before use. All the experiments were approved by the 

ethics committee of Xinjiang Medical University 

(Permit number: (IACUC20121122011). 

 

UC model establishment 

 

After one week of acclimation, the UC model was 

established by using TNBS enema according to 

literature [53]. Briefly, Wistar rats were randomly 

divided in to 4 groups with 10 rats in each group: 

normal group, water-treated group, HKL-treated group 

and 5-ASA treated group. TNBS was used to induce 

UC. The rats were fasted for 24 h and anaesthetized by 

intraperitoneal injection of sodium pentobarbital (40 

mg/kg). Then, TNBS (70 mg/kg) was dissolved in 50% 

ethanol, and the mixed solution was injected into the 

proximal end of the descending colon slowly using 3-

mm enema tube. The rats were kept inverted vertical 

position for 30s to facilitate the diffuse distribution of 

TNBS solution in intestine. The rats in control group 

received injection of physiological saline. After 3 days, 

rats in each group were subjected for drug treatment. 

 

Treatment of rats 

 

After 3-day of UC model establishment, UC rats in 

HKL group were clustered with HKL at dose of 1.8 

g/kg/day. UC rats in 5-ASA group were treated with 5-

ASA at a dose of 100 mg/kg/day. Rats in water treated 

group and control group were given sterilized water at 2 

ml/day for 10 days. Weight, stool characters, mental 

state, hair and activity were recorded daily. Rats were 

sacrificed by decapitation under anesthesia after 

treatment for 3 days, 7 days and 10 days. Different parts 

of the colon were isolated including caecum and 

lymphoid for histology assay and immunohisto-

chemistry analysis. 

 

Histological analysis 

 

Histological analysis was assessed as described 

previously. Briefly, 8 um cryostat sections were picked 
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up and dried. After fixing by formalin buffer, 

hematoxylin-eosin staining was introduced. Histological 

scores were quantified by two blinded researchers based 

on reference [54]. Amount of inflammation and extent 

of lesion were evaluated with a range from 0 to 3. Depth 

of the inflammation was assessed with a range from 0 to 

4 to evaluate the damage and regeneration. Also, the 

scores were quantified as to the percentage of UC 

progress: 1-25%, 26-50%, 51-75% and 76-100%. Each 

section was scored to establish the grade and percentage 

(0-12 for inflammation and 0-16 for regeneration). 

Experiments were performed in triplicate. 

 

RNA extraction and qRT-PCR 

 

Total RNA of colon tissues after treating for 3 days, 7 

days and 10 days was extracted using TRIzol reagent 

(TaKaRa, Dalian, China) and was reverse transcribed 

using PrimeScript™ RT Master Mix (TaKaRa). qRT-

PCR was performed using 2× Power SYBR green mix 

(Thermo Fisher Scientific, Waltham, MA, USA) on an 

ABI 7500 sequencer (Thermo Fisher Scientific). The 

primer sequences were listed in Table 1. Relative 

expression of genes was determined using 2-ΔΔCt method 

using GAPDH as an internal reference. The gene 

expression was tested in three rats at each time points 

and each sample was tested in triplicate. 

 

Western blot 

 

Colon tissues after treating for 7 days was lysed in 

RIPA buffer (Beyotime Biotechnology, Shanghai, 

China) containing PMSF and centrifugated at 12000 × g 

for 10 min at 4° C. Protein concentration was 

determined by a bicinchoninic acid kit (PL212989, 

Thermo). Equal amounts of protein were separated by 

10% SDS-PAGE and transferred to a PVDF membrane. 

The membranes were blocked with 5% non-fat milk and 

incubated with primary antibodies (IL-10, ab9969, 

Abcam, 1:500; IL-1β, 66737-1-Ig, Proteintech, 1:2000; 

IL-4, 66142-1-Ig, Proteintech, 1:1000; IL-6, 66146-1-

1Ig, Proteintech, 1:1000; TNF-α, ab6671, Abcam, 

1:1000; β-actin, Sc-47778, Santa Cruz, 1:5000) 

overnight at 4° C. The membranes were then incubated 

with goat anti-rabbit or goat anti-mouse (Jackson 

ImmunoResearch) for 1 h at room temperature. β-actin 

served as a loading control. Band intensity was 

determined using a chemiluminescent imaging system 

(Tanon, Shanghai, China), and ImageJ (NIH, Bethesda, 

MD, USA) was used for quantification. 

 

Transcriptomic profiling 

 
Total RNA was extracted from colon tissues of UC rats 

in water group and HKL group (n = 3 in each group) at 

7-day treatment using TRIzol® Reagent (Thermo 

Fisher, Waltham, MA, USA). The quality and quantity 

of total RNA were evaluated using Nanodrop 2000 

(Agilent Technologies, Santa Clara, CA, USA). 

Independent cDNA libraries were constructed using 

Truseq™ RNA sample prep Kit (Illumina, San Diego, 

CA, USA) and the cDNA libraries were sequenced on 

Illumina Hiseq2500 (Illumina). The data could be 

assessed from NCBI SRA database with the accession 

number of PRJNA627528. 

 

Bioinformatics analysis of RNA sequencing data 

 

The raw sequencing data were quantified using FastQC 

v0.11.4. Clean reads were obtained by removing adapter 

sequences and low-quality bases using cutadapt v1.16 

(http://cutadapt.readthedocs.io/). Then, clean reads were 

aligned to reference genome of Rat (Rnor_6.0) using 

hisat v2.1.0 (https://ccb.jhu.edu/software/hisat2/ 

index.shtml). The fragments per kilobase of transcript 

sequence per million base pairs sequence (FPKM) for 

each sample were estimated using Stringtie v1.3.3b 

(http://ccb.jhu.edu/software/stringtie/). Differential gene 

expression analysis was implemented using the edgeR 

(v 3.24, http://www.bioconductor.org/packages/release/ 

bioc/html/edgeR.html) with the P < 0.05 and |log2 FC| 

>1. DEGs were visualized using in-house scripts of 

plot_scatter_exp (v1.1.0) and plot_volcano_exp 

(v1.1.0). GO and KEGG analyses of DEGs were 

conducted using in-house scripts of go_anot_exp 

(v1.4.0) and kegg_anot_exp (v1.4.0) respectively. GO-

terms or KEGG pathways with adjusted P value < 0.05 

were regarded as significant. PPIs among DEGs were 

predicted using STRING (http://string-db.org) database 

and a PPI network was visualized by Cytoscape 

(version 3.6.2). 

 

Metabolites extraction 

 

Fecal samples of rats in water group and HKL group (n 

= 6 in each group) after treatment for 7 days were 

prepared in Eppendorf tube. After the addition of 1000 

μL of extract solvent (acetonitrile-methanol-water, 

2:2:1, containing internal standard 1 μg/mL), the 

samples were vortexed for 30 s, homogenized at 45 Hz 

for 4 min, and sonicated for 5 min in ice-water bath. 

The homogenate and sonicate circle were repeated for 3 

times, followed by incubation at -20° C for 1 h and 

centrifugation at 1200 ×g and 4° C for 15 min. The 

resulting supernatants were transferred to LC-MS vials 

and stored at -80° C until the UHPLC-QE Orbitrap/MS 

analysis. Three QC samples were prepared by pooling 

aliquots of the supernatants from all the samples. 

 
LC-MS/MS analyses were performed using an UHPLC 

system (Agilent Technologies) with a UPLC HSS T3 

column (2.1 mm × 100 mm, 1.8 μm) coupled to 

http://cutadapt.readthedocs.io/
https://ccb.jhu.edu/software/hisat2/index.shtml
https://ccb.jhu.edu/software/hisat2/index.shtml
http://ccb.jhu.edu/software/stringtie/
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://string-db.org/
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Table 1. The sequence of primers in qRT-PCR. 

Gene Direction Sequence (5’-3’) 

IL4 Forward ACAAGGAACACCACGGAGAA 

Reverse CAGACCGCTGACACCTCTACA 

IL6 Forward AAGAAAGACAAAGCCAGAGTC 

Reverse CACAAACTGATATGCTTAGGC 

IL10 Forward AGAAGGACCAGCTGGACAACAT 

Reverse CAAGTAACCCTTAAAGTCCTGCAGTA 

IL1β Forward CCCTGCAGCTGGAGAGTGTGG 

Reverse TGTGCTCTGCTTGAGAGGTGCT 

TNFα Forward TCAGCCTCTTCTCATTCCTGC 

Reverse TTGGTGGTTTGCTACGACGTG 

GAPDH Forward AGACAGCCGCATCTTCTTGT 

Reverse CTTGCCGTGGGTAGAGTCAT 

 

Q Exactive (Orbitrap MS, Thermo). The mobile phase A 

was 0.1% formic acid in water for positive, and 5 

mmol/L ammonium acetate in water for negative, and the 

mobile phase B was acetonitrile. The elution gradient 

was set as follows: 0 min, 1% B; 1 min, 1% B; 8 min, 

99% B; 10 min, 99% B; 10.1 min, 1% B; 12 min, 1% B. 

The flow rate was 0.5 mL/min. The injection volume was 

2 μL. The QE mass spectrometer was used for its ability 

to acquire MS/MS spectra on an information-dependent 

basis during an LC/MS experiment. In this mode, the 

acquisition software (Xcalibur 4.0.27, Thermo Fisher) 

continuously evaluates the full scan survey MS data as it 

collects and triggers the acquisition of MS/MS spectra 

depending on preselected criteria. 

 

Data preprocessing and annotation 

 

The raw data were converted to the mzXML format using 

ProteoWizard, and processed by MAPS software (version 

1.0). The preprocessing results generated a data matrix 

that consisted of the retention time (RT), massto-charge 

ratio (m/z) values, and peak intensity. The identification 

of metabolites was conducted by in-house MS2 database 

based on RT, m/z and peak intensity. Principal 

component analysis plots were used to evaluate data 

quality. Important metabolites were selected according to 

VIP score derived from applying partial least squares 

discriminant analysis or orthogonal partial least squares 

discriminant analysis. Differential metabolites were 

identified based on criteria of VIP > 1, P < 0.05 and 

|log2FC| > 0.565. Metabolic pathways were linked by 

differential metabolites according to KEGG database. 

 

Integrative metabolic and transcriptomic profiling 

data 

 

The correlation between DEGs and differential 

metabolites was calculated by Spearman rank correlation 

analysis. Correlation coefficient (Q-value) < 0.05 was 

regarded as significance level. The overlapped KEGG 

pathways of DEGs and differential metabolites were 

obtained based on criteria of num_overlapping_ 

genes > 0, num_overlapping_metabolites > 0 and P < 

0.05. 
 

Statistical analysis 
 

Statistical analyses were performed by GraphPad Prism 5 

and data were showed as mean ± standard deviation (SD). 

Student’s t test with three repeats or analysis of variance 

(ANOVA) with Bonferronic post-hoc analysis were used 

to analyze the differences among groups when 

appropriate. P < 0.05 was regarded as statistically 

significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5. 

 

Supplementary Table 1. The list of differentially expressed genes between HKL treated UC samples and water 
treated UC samples. 

Supplementary Table 2. The list of GO enrichment analysis of differentially expressed genes between HKL treated UC 
samples and water treated UC samples. 

Supplementary Table 3. The list of KEGG enrichment analysis of upregulated genes between HKL treated UC samples 
and water treated UC samples. 

Supplementary Table 4. The list of KEGG enrichment analysis of downregulated genes between HKL treated UC 
samples and water treated UC samples. 

Supplementary Table 5. The list of differential metabolites between HKL treated UC samples and water treated UC 
samples. 


