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INTRODUCTION 
 

Cerebral small vessel disease (SVD) is recognized as the 

leading cause of vascular cognitive impairment (VCI) in 

older people [1]. Early intervention is the most effective 

treatment to prevent cognitive decline; therefore, 

substantial effort has been made to stratify SVD patients 

at high risk of VCI. Recently, a total SVD score was 

proposed [2], which was shown in several prospective 
studies to stratify SVD patients effectively [3–5]. To 

calculate the total SVD score, one point is added for each 

of the following features : (1) microbleeds, (2) lacunes, 

(3) basal ganglia enlarged perivascular space (EPVS), 

and (4) severe periventricular or moderate to severe deep 

white matter hyperintensity (WMH). 

 

A negative association between total SVD score and 

cognitive impairment has been demonstrated in older 

people [6], in patients with uncomplicated hypertension 

[7], and in a mixed population with either hypertension 

or lacunar infarction [2], but not in pure lacunar stroke 

patients. Usually, SVD patients with acute lacunar 

stroke have a relatively high SVD burden [3], so they 

should be monitored closely for signs of cognitive 

decline. We sought to discover whether VCI incidence 

is elevated in patients with certain total SVD scores, 
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which might facilitate early intervention to prevent 

cognitive dysfunction. 

 
At the same time, we wished to assess whether refined 

versions of the SVD score may be better at revealing 

the association between SVD burden and cognitive 

function. Several refinements have been proposed to 

the total SVD score in order to account better for 

individual symptoms and their severity [8–11]. One 

modified SVD score, for example, raises the scoring 

cutoff for EPVS and subdivides the points for 

microbleeds and WMH burden based on their number 

and severity [8]. We are unaware of studies on whether 

this modified SVD score can stratify patients based on 

their cognitive function. 

 
Therefore, we investigated whether the total or 

modified SVD scores were associated with cognitive 

function and VCI risk in a homogeneous group of 

patients with acute lacunar stroke. Our results may 

improve patient screening and enable more timely 

intervention. 

 

RESULTS 

 
Demographic and clinical characteristics of SVD 

patients with acute lacunar stroke 

 
In total, 189 SVD patients with acute lacunar stroke 

were considered eligible for the study, but 14 did not 

consent to participate, 5 were excluded due to 

incomplete brain magnetic resonance imaging (MRI), 

and 13 were excluded because of incomplete neuro-

psychological tests. A total of 157 patients were 

included in the final analysis (Figure 1). 

 

Ninety-five patients were diagnosed with vascular 

cognitive impairment (VCI), based on their 

performance on neuropsychological tests. The 

remaining 62 patients were diagnosed with non-

cognitive impairment (NCI). No significant 

differences were detected in age, sex, education or 

vascular risk factors between VCI and NCI groups 

(Table 1). Mean medial temporal lobe atrophy (MTA) 

scores also showed no significant difference between 

the two groups (p = 0.251); therefore, potential 

influence of MTA on cognitive function was not 

analyzed further. 

 

Patients were grouped according to the number of SVD 

manifestations present (SVD score 0-4), and 

comparable percentages of patients fell under each of 
the five scores (Table 1). For patients with scores of 1-

3, the percentage of patients presenting with each type 

of SVD manifestation is listed in Table 2. EPVS was 

the most frequently occurring manifestation, while 

microbleeds were rarely seen. 

 
The patients were further grouped according to the total 

SVD burden: group 1, non-burden (SVD score = 0, n = 

27, 17.2%); group 2, low SVD burden (SVD score = 1 – 

2, n = 74, 47.1%); and group 3, high SVD burden (SVD 

score = 3 – 4, n = 56, 35.7%). The demographic and 

clinical characteristics of each SVD group are shown in 

Table 3. Notably, age increased significantly with SVD 

burden (p = 0.002), but otherwise there were no 

significant differences in sex, education or vascular risk 

factors across the groups. 

 
Total and modified SVD scores are negatively 

associated with multidomain cognitive function 

 
To determine the relationship between total SVD score 

and multidomain cognitive function, we carried out 

Spearman correlation analysis and demonstrated that 

SVD burden was associated with overall cognition (rs = 

-0.253, p = 0.001) as well as with cognition involving 

the executive domain (rs = -0.214, p = 0.007) or 

visuospatial domain (rs = -0.254, p = 0.001), but not 

with memory or language domains (Table 4). The 

negative coefficients (rs) indicate that cognitive function 

was lower with higher SVD burden. After adjusting for 

age, sex, and education (Table 5, model 1), linear 

regression analysis further confirmed the negative 

associations between total SVD score and cognitive 

decline in overall cognition (B = -0.190, 95%CI = -

0.313 to -0.067, p = 0.003) as well as in the executive 

domain (B = -0.268, 95%CI = -0.429 to -0.107, p = 

0.001) and visuospatial domain (B = -0.296, 95%CI = -

0.506 to 0.086, p = 0.006). However, no associations 

were detected between total SVD score and cognition in 

the memory domain (p = 0.088) or language domain (p 

= 0.406). Associations remained significant even after 

additionally adjusting for vascular risk factors (Table 5, 

model 2). 

 
We next asked whether a modification of the total SVD 

score [8] could more accurately describe the association 

between SVD burden and cognitive dysfunction. 

Specifically, we modified the total SVD score by 

raising the cutoff value for basal ganglia EPVS and 

adjusting the scoring weighting of microbleeds and 

WMH according to a previous report [8]. Consistently, 

we observed a negative correlation of SVD burden with 

overall cognition (rs = -0.263, p = 0.001) and with 

cognition in the executive domain (rs = -0.246, p = 

0.002) and visuospatial domain (rs = -0.202, p = 0.011), 

but not in the memory or language domains (Table 4). 

The modified and total SVD scores gave similar rs 

coefficients for the significant correlations, suggesting 
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that the strength of those correlations did not depend on 

the scoring system. 

 

High modified SVD scores are associated with 

increased risk of VCI 

 

Next we asked whether patients with certain total or 

modified SVD scores may be at greater risk of VCI. 

Binary logistic regression showed that risk of VCI 

increased with the modified SVD score (ptrend = 0.01, 

Table 6), but not the total SVD score (ptrend = 0.086). 

The chi-squared trend test gave a similar ptrend for the 

modified SVD score (Figure 2). The odds ratio 

calculated for risk of VCI in patients with a modified 

SVD score of 5-6 (group 4) was 10.957 (95%CI = 1.310 

to 91.649) relative to patients with a modified score of 0 

(group 1) (Table 6). Consistently, we found that the 

prevalence of VCI increased significantly from 52.3% 

in group 1 to 92.3% in group 4 (p = 0.009, Figure 2). 

 

DISCUSSION 
 

In the current study, we demonstrated that the total SVD 

score was negatively correlated with cognitive function 

in patients with acute lacunar stroke. Our results are 

consistent with an earlier study [2] where the total SVD 

score was negatively associated with cognitive 

impairment in a heterogeneous population of patients 

suffering from both hypertension and lacunar stroke. 

Compared to an elderly population [6] and patients with 

hypertension [7], patients with lacunar stroke carry a 

higher total SVD burden [3] and are at higher risk of 

recurrent stroke [8]. These characteristics render 

patients with lacunar stroke more vulnerable to 

cognitive dysfunction. There is an urgent need to 

identify SVD patients at high risk of VCI in order to 

ensure timely prevention, treatment and management. 

Therefore, we focused our study on patients with acute 

lacunar stroke. Our sample contained comparable 

numbers of patients spanning the SVD spectrum, which 

may make our results more generalizable. 
 

We examined the correlation of the original total SVD 

score [2] with cognitive dysfunction in our patients and 

with risk of VCI, and we repeated the analysis using a 

modified SVD score [8] that grew out of two past 

findings: (a) among patients who had suffered transient 

ischemic attack or ischemic stroke, those who scored 

 

 
 

Figure 1. Schematic representation of patient enrollment. A total of 157 of 189 patients completed comprehensive evaluations, 

including neuroimaging and neuropsychological assessments, and were recruited into the study. Based on their performance on 
neuropsychological tests, patents were divided into those with vascular cognitive impairment (VCI) or those with no cognitive impairment 
(NCI). 
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Table 1. Demographic and clinical characteristics of SVD patients. 

 
All SVD patients 

(n =157) 

NCI 

(n =62) 

VCI 

(n=95) 
P value 

Age, years  65.27 + 7.37 65.26 + 7.31 65.27 + 7.39 0.843 

Male  127 (80.9) 55 (88.7) 72 (75.8) 0.061 

Education, years 10.52 + 2.90 11.2 + 3.02 10.05 + 2.73 0.089 

Hypertension 111 (71.2) 48 (77.4) 63 (67.0) 0.206 

Diabetes 75 (47.8) 28 (45.1) 47 (49.4) 0.494 

Hypercholesterolemia 25 (16.1) 11 (18) 14 (14.9) 0.658 

Current smoking 99 (63.1) 38 (61.2) 61 (64.2) 0.341 

Current drinking 40 (25.5) 17 (27.4) 23 (24.2) 0.709 

Mean MTA score 0.56 + 0.72 0.51 + 0.66 0.59 + 0.75 0.251 

Total SVD score category     

     0 27 (19.4) 12 (19.4) 15 (15.8)  

     1 37 (23.6) 18 (29.0) 19 (20.0)  

     2 37 (23.6) 16 (25.8) 21 (22.1)  

     3 37 (23.6) 11 (17.7) 26 (27.4)  

     4 19 (12.1) 5 (8.1) 14 (14.7)  

MMSE 26.12 + 2.09 27.53 + 1.34 25.21 + 2.30 0.012 

Z-scores for each domain     

     overall cognition -0.44 + 0.79 0.30 + o.40 -0.93 + 0.94 0.000 

     executive -1.07 + 1.03 -0.66 + 0.49 -1.72 + 1.25 0.000 

     memory -0.95 + 0.81 -0.27 + 0.21 -1.40 + 0.94 0.000 

     language -0.21 + 0.95 0.38 + 1.00 -0.60 + 1.04 0.000 

     visuospatial 0.87 (0.28,1.45) 1.16 (0.73,1.59) 0.26 (-1.44,1.58) 0.000 

Values are n (%), mean + SD, or median (25th quartile, 75th quartile). Abbreviations: SVD, cerebral small vessel disease; NCI, 
no cognitive impairment; VCI, vascular cognitive impairment; SD, standard deviation; MTA, medial temporal lobe atrophy; 
MMSE, mini-mental state examination. 

Table 2. Distribution of SVD manifestations according to total SVD score. 

Manifestation 
SVD score=1 

(n=37) 

SVD score=2 

(n=37) 

SVD score=3 

(n=37) 

Asymptomatic lacune 5 (13.5) 18 (48.6) 34 (91.9) 

White matter hyperintensity 9 (24.3) 24 (64.9) 34 (91.9) 

Deep brain microbleeds 1 (2.7) 5 (13.5) 13 (35.1) 

Basal ganglia enlarged perivascular 

spaces 
22 (59.5) 27 (73.0) 30 (81.1) 

Data are n (%). Abbreviations: SVD, cerebral small vessel disease. 

Table 3. Demographic and clinical characteristics of patients stratified according to SVD burden. 

Characteristic 
Group 1a 

(n=27) 

Group 2b 

(n=74) 

Group 3c 

(n=56) 
P value 

Age, years 61.33 + 6.46 65.18 + 7.39 67.29 + 6.97 0.002* 

Male  24 (88.9) 59 (79.7) 44 (78.6) 0.320 

Education, years 10.81 + 3.37 10.53 + 2.92 10.38 + 2.66 0.813 

Hypertension 18 (66.7) 52 (70.3) 42 (75) 0.407 

Diabetes 6 (22.2) 32 (43.2) 17 (30.4) 0.842 

Hypercholesterolemia 3 (11.1) 12 (27.3) 10 (17.8) 0.461 

Current smoking 18 (66.7) 37 (50.0) 24 (42.9) 0.052 

Current drinking 12 (44.4) 15 (20.3) 13 (23.2) 0.097 

Values are n (%) or mean + SD. Abbreviations: SD, standard deviation. aTotal SVD score = 0 point. bTotal SVD score = 1-2 
point(s). cTotal SVD score = 3-4 points. *P<0.05. 
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Table 4. Spearman correlation analyses of total or modified SVD scores with multidomain cognitive function. 

Domain 
Total SVD score Modified SVD score 

rs P value rs P value 

overall cognition -0.253 0.001* -0.263 0.001* 

executive  -0.214 0.007* -0.246 0.002* 

memory  -0.105 0.189 -0.128 0.110 

language  -0.055 0.497 -0.069 0.389 

visuospatial  -0.254 0.001* -0.202 0.011* 

*P<0.05. Abbreviations: SVD, small vessel disease; rs, Spearman correlation coefficient. 

Table 5. Regression analysis to identify associations between multidomain cognitive functions and total SVD score. 

Domain 
Linear 

regression analysis 

Multivariable regression analysis 

Model 1a Model 2b 

overall 

cognition 

B (95%CI) -0.185 (-0.303, -0.068) -0.190 (-0.313, -0.067) -0.190 (-0.315, -0.064) 

P 0.002* 0.003* 0.003* 

executive 
B (95%CI) -0.249 (-0.406, -0.092) -0.268 (-0.429, -0.107) -0.272 (-0.435, -0.109) 

P 0.002* 0.001** 0.001** 

memory 
B (95%CI) -0.084 (-0.217, 0.049) -0.118 (-0.254, 0.018) -0.122 (-0.260, 0.016) 

P 0.214 0.088 0.084 

language 
B (95%CI) -0.093 (-0.278, 0.092) -0.077 (-0.260, 0.106) -0.074 (-0.259, 0.110) 

P 0.323 0.406 0.427 

visuospatial 
B (95%CI) -0.315 (-0.516, -0.114) -0.296 (-0.506, -0.086) -0.290 (-0.504, -0.075) 

P 0.002* 0.006* 0.009* 

aAdjusted for age, sex and educational level. bAdjusted for age, sex, educational level and vascular risk factors (hypertension, 
hypercholesterolemia, diabetes, smoking and drinking). *P<0.05. **P<0.001 Abbreviations: B, nonstandardized coefficients; 
CI, confidence interval. 

Table 6. Logistic regression analysis to assess the association of total 
or modified SVD score with risk of vascular cognitive impairment. 

 n OR 95% CI 

Total SVD score 

Group 1a 15 1.00 (ref)  

Group 2b 40 0.941 0.388-2.283 

Group 3c 40 2.000 0.769-5.198 

Ptrend 0.086 

Modified SVD score 

Group 1a 23 1.00 (ref)  

Group 2b 31 1.089 0.495-2.395 

Group 3c 29 1.891 0.792-4.514 

Group 4d 12 10.957 1.310-91.649 

Ptrend 0.010* 

aTotal or modified SVD score = 0 point. bTotal or modified SVD score = 1-2 point(s). cTotal or modified SVD score = 3-4 points. 
dModified SVD score = 5-6 points. *P<0.05 by trend analysis in binary logistic regression. Abbreviations: SVD, small vessel 
disease; OR, odds ratio; CI, confidence interval. 

>20 based on EPVS were at greater risk of recurrent stroke 

than those who scored <11; and (b) risk of recurrent stroke 

increased with greater burden of microbleeds and WMH. 

In the present patient sample, the correlation between SVD 

burden and cognitive dysfunction was similar under the 

total or modified SVD score, consistent with the two 

scores’ similar ability to predict recurrent stroke [8]. In 

contrast, we observed that the modified SVD score, but not 

the original total score, identified patients at high VCI risk: 

a modified SVD score of 5-6 was associated with 

significantly greater risk of VCI in our sample. These data 

suggest that the modified SVD score may be useful in 

clinical practice for identifying SVD patients at high VCI 

risk. 
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We found a negative correlation between SVD score 

and executive function. This finding is consistent with 

previous reports linking lacunar infarcts, WMH, deep 

microbleeds and EPVS to executive dysfunction [2] 

[12–16]. The frontal subcortical pathway, a key 

substrate in executive control networks [17–22], might 

also be affected by SVD manifestations and might 

contribute to executive dysfunction. 

 

We also found a negative correlation of SVD score with 

visuospatial function. Previous studies [23, 24] showed 

that visuospatial dysfunction is strongly associated with 

white matter network disruption. Thus, WMH and 

microbleeds in white matter network pathways might 

contribute to visuospatial dysfunction after acute 

lacunar stroke. Such dysfunction may also reflect 

problems in the fronto-parietal pathway, which helps 

transform integrated sensory inputs into body 

movement during spatial tasks [25]. Increased SVD 

burden has been associated with reduced brain 

connectivity [26] and disruptions in pathways of the 

fronto-parieto-occipital network [27]. 

 

Since vascular disorders and Alzheimer’s disease (AD) 

are the most prevalent cerebral disorders in the elderly 

and share similar risk factors [28, 29], previous studies 

of SVD patients likely included patients with AD. In 

our study, we assessed our patients using the MTA scale 

[30, 31]. A cut-off score of 1.5 can sensitively detect 

AD patients with dementia younger than 75 years old 

[32, 33], and our patients, who had an average age of 

65, had scores far below 1.5 (mean 0.56, range 0.00 -

1.00). Thus, patients with typical AD characteristics 

probably did not confound our analysis of cognitive 

 

 
 

Figure 2. Proportions of patients with vascular cognitive impairment (VCI) based on modified SVD score. When patients were 
stratified based on the modified SVD score, the proportion of patients with VCI was significantly higher among those with high SVD burden (P 
= 0.009). This suggests that the modified SVD score is better at identifying patients at high risk of SVD. 
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function. Nevertheless, future studies should exclude 

any influence of early-onset AD though comprehensive 

analysis such as neuroimaging to detect widespread 

cortical atrophy, in particular parietal lobe atrophy [34], 

as well as laboratory analysis of biomarkers and 

positron emission tomography to detect amyloid and tau 

aggregates. 

 

Although this study elucidated key associations and the 

potential clinical relevance of a modified SVD scoring 

system, a few limitations are worth mentioning. Our 

sample was predominantly male, although we attempted 

to reduce potential sex bias during the statistical analysis. 

Our rs coefficients linking SVD scores to cognitive 

function (between -0.2 and -0.3) were weaker than in a 

previous report (-0.312 and -0.438) [2], which may 

reflect our small, male-dominated sample. Nevertheless, 

we confirmed the negative association using linear 

regression analysis and after adjusting for sex and other 

confounders. In addition, the nonstandardized B 

regression coefficients (between -0.185 and -0.315) were 

consistent with those in several other studies (between -

0.08 and -0.18) [6, 7, 35]. Future work with larger, sex-

balanced samples should verify and expand our findings. 

In particular, longitudinal studies are needed to examine 

whether the modified SVD score can identify or even 

predict acute lacunar stroke patients at high risk of VCI. 

 

MATERIALS AND METHODS 
 

Participants 

 

Consecutive SVD patients with first-ever lacunar stroke 

were recruited prospectively between January 2016 and 

January 2019 from the stroke clinic at the Department of 

Neurology of Renji Hospital affiliated to Shanghai Jiao 

Tong University School of Medicine (Renji Cerebral 

SVD Cohort Study, NCT01334749 at http://clinicaltrials. 

gov/). The current study was approved by the Ethics 

Committee of Renji Hospital affiliated to Shanghai Jiao 

Tong University School of Medicine. To be enrolled, 

patients had to have first-ever acute lacunar stroke as 

defined previously [36], at least six years of education, 

age between 50 and 85 years, and a modified Rankin 

score ≤ 3 points. Patients were excluded if they had any 

of the following: cardioembolic or large-vessel diseases; 

severe systemic or other diseases that may cause 

cognitive dysfunction; cortical and/or cortico-subcortical 

non-lacunar infarct, or WMH due to other specific 

causes; severe depression (17-item Hamilton Depression 

Rating Scale score ≥ 24); other major central 

neurological or psychiatric disorders; or severe claustro-

phobia or contraindications to MRI examination. 

 

Lacunes were defined as sharply demarcated hyper-

intense lesions <20 mm on T2-weighted MRI that 

showed a hyperintense rim on T2-fluid attenuated 

inversion recovery (FLAIR) sequences [37]. Recent 

symptomatic small subcortical infarcts were not counted 

as lacunes. 

 

Of 189 patients initially enrolled, 157 completed the 

following comprehensive evaluations: sociodemographic 

and clinical data collection, neurological and physical 

examination, laboratory tests, neuropsychological 

assessments and brain MRI. Brain MRI was conducted 

within 7 days (4 ± 2.34) after stroke, but neuro-

psychological assessments were performed 3 months 

after stroke in order to exclude any effects due to acute 

stroke. 

 

A mean MTA score ≥1.5 for both hemispheres has 

shown high sensitivity in identifying AD patients 

younger than 75 who convert to dementia [32, 33]. 

Therefore patients were assessed on the MTA scale in 

order to assess whether AD may have affected cognitive 

function in our sample. MTA score was rated visually 

using a 5-grade rating scale from 0 (no atrophy) to 4 

(severe atrophy), as described [31]. Briefly, the width of 

the choroidal fissure, width of the temporal horn and the 

height of the hippocampal formation were visually 

assessed in the best slice that depicted both 

hippocampal formations at the anterior pons. The final 

MTA score was calculated as the average value from 

both hemispheres. 

 

Brain MRI 

 

All brain MRI scans were acquired on a GE Signa 

HDxT 3.0T MRI scanner (General Electric Medical 

Systems, Milwaukee, WI, USA) with a standard 8-

channel head coil with foam padding. The following 

MRI images were obtained: 3D-fast spoiled gradient 

recalled (SPGR) sequence images (TR = 6.1 ms, TE = 

2.8 ms, TI = 450 ms, slice thickness = 1.0 mm, gap = 0, 

flip angle = 15° C, FOV = 256 × 256 mm2, number of 

slices = 166), axial T2-weighted fast spin-echo 

sequence images (TR = 3013 ms, TE = 80 ms, FOV = 

256 × 256 mm2, number of slices = 34), T2-FLAIR 

sequence images (TE = 150 ms, TR = 9075 ms, TI = 

2250 ms, FOV = 256 mm2, number of slices = 66), and 

gradient recalled echo (GRE) T2-weighted sequence 

images (TR = 53.58 ms, TE = 23.93 ms, flip angle = 2° 

C, matrix = 320 × 288, FOV = 240 × 240 mm2, slice 

thickness = 2 mm, NEX = 0.7, gap = 0, slices = 72). 

 

Total SVD score 

 

The total SVD score was calculated according to 
previous reports [2]. Briefly, one point was allocated for 

each of the following manifestations: lacune, severe 

periventricular (Fazekas score 3) or moderate-to-severe 

http://clinicaltrials.gov/
http://clinicaltrials.gov/
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deep WMH (Fazekas score 2 or 3), deep microbleeds, 

or moderate-to-severe EPVS (>10) in basal ganglia. 

WMH were graded on the Fazekas scale [38], while 

periventricular and deep WMH were graded from 0 to 3 

based on T2-FLAIR sequences. Microbleeds were 

defined as punctate (< 10 mm), homogeneous foci of 

low signal intensity on GRE T2*-weighted images. To 

evaluate the number of microbleeds, the microbleed 

anatomical rating scale (MARS) was employed [39]. 

The number of deep microbleeds was also determined, 

because SVD has been associated specifically with deep 

microbleeds that include the basal ganglia and thalamus 

as well as internal, external and extreme capsules [40]. 

EPVS was defined as round, oval or linear lesions with 

a smooth margin that gave the same signal as 

cerebrospinal fluid on MRI, i.e. low signal on T1WI, 

high signal on T2WI, and low signal without a 

hyperintense rim on the FLAIR sequence. EPVS at the 

level of the basal ganglia was scored as described [41] 

on only one slice on one side in the more affected 

hemisphere. Patients were stratified by EPVS burden 

into three score groups: <11, 11–20, or >20. 

 

Images were independently rated by two radiologists 

(Yan Zhou and Yao Wang), who resolved any 

discrepancies through discussion. Test–retest reliability 

was analyzed using 15 random samples, which yielded 

an intra-class correlation coefficient (ICC) of 0.815 for 

lacune number, 0.786 for total Fezakas score, 0.792 for 

deep microbleed number and 0.857 for EPVS number. 

 

Patients were divided into three groups according to 

their SVD score: group 1 (0 point), group 2 (1-2 points), 

and group 3 (3-4 points). 

 

Modified SVD score 

 

The modified SVD score was computed based on the 

presence of the abovementioned four MRI markers, 

with the scoring standards adjusted based on a previous 

report [8]. In the present study, one point was allocated 

to those who had >20 EPVS, rather than to those who 

had >10 basal ganglia EPVS as in the previous study 

[2]. Burden of deep microbleeds was accounted for by 

assigning 1 point to patients with 1-4 microbleeds and 

2 points to those with >4 microbleeds. Burden of total 

(periventricular and deep) WMH was accounted for by 

allocating 1 point to those with a moderate degree of 

WMH (combined score of 3 or 4) and 2 points to those 

with severe WMH (combined score of 5 or 6). 

Similarly to total SVD scoring, one point was awarded 

when one or more lacunes were present. As a result, the 

modified total score of SVD ranged from 0 to 6. 
Modified SVD scores were determined independently 

by the same two investigators who calculated total 

scores, and the ICC was 0.801. 

Patients were divided into four groups according to their 

modified SVD score: group 1 (0 point), group 2 (1-2 

points), group 3 (3-4 points), and group 4 (5-6 points). 

 

Neuropsychological assessments 

 

The mini-mental state examination (MMSE) [42] was 

used to assess overall cognitive performance. Each 

patient also completed the following battery of neuro-

psychological tests to assess multiple domains: (1) 

executive function was assessed using the Trail-Making 

Test A and B [43], Stroop color-word test [44] and 

category Verbal Fluency Test [45]; (2) memory was 

assessed using the Rey Auditory Verbal Learning Test 

of short- and long-delay free recall [46]; (3) language 

was assessed using the 30 words of the Boston naming 

test [47]; and (4) visuospatial function was assessed 

using the Rey-Osterrieth Complex Figure Test  [48]. 

The original score for each neuropsychological test was 

transformed to a Z score (a Z score of +1.0 corresponds 

to a score that is 1.0 standard deviation above the 

mean), and Z-scores for each domain were generated by 

averaging the Z-scores of the corresponding tests. 

Norms for Z scoring were based on the mean scores 

from community studies of elderly in Shanghai, China 

[49, 50]. Cognitive impairment was defined as a score 

lying 1.5 standard deviations below the mean on any 

neuropsychological test [51]. Patients were divided 

into a group with no cognitive impairment (NCI) and a 

group with vascular cognitive impairment (VCI) [51]. 

 

Neuropsychological assessments were conducted in a 

dedicated office by two experienced investigators (Ling 

Yu and Wenwei Cao) certified to administer neuro-

psychological assessments. All assessments of a given 

patient were carried out by one investigator in order to 

minimize intra-patient variability. Inter-rater reliability 

was assessed for the Z-scores for each domain. ICC was 

0.796 for the executive domain, 0.801 for the memory 

domain, 0.789 for the language domain and 0.815 for 

the visuospatial domain. In addition, the kappa 

coefficient for determining VCI was 0.792. 

 

Statistical analysis 

 

Differences in baseline characteristics between the NCI 

group and VCI group were assessed for significance 

using the independent t-test for continuous variables 

and chi-squared test for categorical variables (sex and 

vascular risk factors). Z scores on visuospatial domain 

were skewed, so differences were assessed using the 

non-parametric Mann–Whitney test. Spearman 

correlation analysis was used to determine associations 

between SVD score and multidomain cognitive 

functions. Simple linear regression analysis was 

performed with SVD score as the independent variable 
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and Z-scores of multidomain cognitive function as 

dependent variables (overall cognition, executive 

domain, memory domain, language domain, visuo-

spatial domain). The associations were adjusted for 

possible confounders using two multivariable linear 

regression models. In model 1, the associations between 

SVD score and multidomain cognitive scores were 

adjusted for age, sex and educational level. Model 2 

adjusted for these same factors as well as potential 

confounding vascular risk factors (smoking, drinking, 

and the presence of diabetes mellitus, hypertension or 

hypercholesterolemia). 

 

To determine the association of SVD burden and risk of 

VCI, binary logistic regression analysis was performed 

with total SVD score or modified SVD score as 

covariables, cognitive state as dependent variable (VCI 

or NCI), and group 1 (score of 0) as a dummy variable. 

To determine how the risk of VCI changed with a rise 

in SVD burden, trend analysis in binary logistic 

regression was carried out in SPSS. For validation, the 

linear-by-linear-association chi-squared statistic was 

calculated using the crosstabs routine in SPSS. The chi-

squared test was performed to compare the prevalence 

of VCI in modified SVD score groups 2, 3 or 4 with the 

prevalence in group 1. SPSS 23.0 (IBM, USA) was used 

for all analyses. Differences were considered significant 

at p < 0.05. 
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