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INTRODUCTION 
 

Colorectal cancer (CRC) is one of the most fatal 

cancers, in both men and women [1]. More than 1.8 

million people worldwide were diagnosed with CRC in 

2018, which was estimated by Global Cancer Incidence, 

Mortality, and Prevalence (GLOBOCAN) to account 

for 10.2% of all cancers [2]. There are many significant 

risk factors associated with the development of CRC, 

such as inflammatory bowel disease (IBD) (including 
ulcerative colitis and Crohn's disease), cancer history in 

a first-degree relative, obesity, smoking, irregular diet 

and the use of some drugs (e.g., nonsteroidal anti-

inflammatory drugs and postmenopausal hormone 

replacement). 

 

Metabolic syndrome (MetS) is a disease that includes at 

least three of the following five items: high blood 

pressure, high blood sugar, high triglycerides (TG), 

reduced low-density lipoprotein cholesterol (HDL-C) 

and high body mass index (BMI) [3]. The incidence of 

MetS is increasing dramatically worldwide, although 

the global data is hard to measure. However, as we 

know, the prevalence of diabetes has reached 8.8% 

worldwide and MetS is 3 times more than diabetes, 

from which we can speculate that over a billion people 
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ABSTRACT 
 

Metabolic syndrome (MetS) is characterized by a group of metabolic disturbances which leads to the enhanced 
risk of cancer development. Elucidating the mechanisms between these two pathologies is essential to identify 
the potential therapeutic molecular targets for colorectal cancer (CRC). 716 colorectal patients from the First 
and Second Affiliated Hospital of Wenzhou Medical University were involved in our study and metabolic 
disorders were proven to increase the risk of CRC. The prognostic value of the MetS factors was analyzed using 
the Cox regression model and a clinical MetS-based nomogram was established. Then by using multi-omics 
techniques, the distinct molecular mechanism of MetS genes in CRC was firstly systematically characterized. 
Strikingly, MetS genes were found to be highly correlated with the effectiveness of targeted chemotherapy 
administration, especially for mTOR and VEGFR pathways. Our results further demonstrated that 
overexpression of MetS core gene IL6 would promote the malignancy of CRC, which was highly dependent on 
mTOR-S6K signaling. In conclusion, we comprehensively explored the clinical value and molecular mechanism 
of MetS in the progression of CRC, which may serve as a candidate option for cancer management and therapy 
in the future. 
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may be affected with MetS in the world currently [4]. 

MetS and its components have been proven increase the 

risk of various tumors, such as colorectal cancer, breast 

cancer and kidney cancer, and significantly augmented 

corresponding mortality [5]. Previous studies have 

demonstrated that MetS also increased the risk of 

postoperative death of colorectal cancer by 2.98 times 

[5]. Diabetes mellitus (DM) was reported to be a 

possible prognostic factor for progression free survival 

(PFS) in localized CRC [6], and modulation of BMI 

might reduce the risk of CRC mortality [7]. There are 

many hypotheses contribute to this phenomenon. 

Traditionally, adipose tissues were considered a place 

storing lipids. However, lipid metabolism disorder has 

recently been proven to function in modulating various 

signaling cascades and integrating systemic metabolism 

[8]. Moreover, insulin resistance could lead to 

hypertriglyceridemia through the synthesis of non-

esterified fatty acids and triglycerides as well as the 

accumulation of fat tissue, which was involved in the 

development of colorectal carcinoma [9]. More 

seriously, the increasing of MetS gave rise to drug 

dysregulation and added the probability of chemo-

therapy side-effects. Thus, it is urgent to explore the 

specific mechanism underlying CRC metabolism to 

further predict and administer individual therapy. 

 

The main purpose of our study was to identify the 

relationship between MetS and the progression of CRC. 

A MetS-related model was established to predict the 

prognosis of CRC and a nomogram was built for better 

application and use in clinical settings. Further study 

found that MetS-genes were associated with the 

effectiveness of targeted chemotherapy for CRC and the 

MetS core gene IL6 would promote the malignancy of 

colorectal cancer through mTOR-S6K signaling. 

 

RESULTS 
 

Association of metabolic syndrome with 

clinicopathological features 

 

At first, a total of 716 CRC patients from Wenzhou 

Medical University met the inclusion criteria from 2014 

January 1st to 2016 January 1st. As of March of 2020, 

211 patients died during follow-up, none lost follow-up. 

About 49.4% of the patients only received surgery, 

while the others received both adjuvant postoperative 

therapy and surgery. Baseline clinicopathological 

parameters were summarized in Supplementary Table 1. 

 

Metabolic syndrome is conferred as central obesity, 

dyslipidemia, hyperglycemia, insulin resistance, and 

hypertension. Metabolic disorders were proven to 

involve in increased tumor risk. In our study, the 

proportions of patients with overweight, hypertension, 

diabetes, and dyslipidemia were 27.5%, 12.2% and 

59.5%, respectively. There were 108 patients diagnosed 

with metabolic syndrome (meeting over three 

requirements) and 608 patients failed to meet the 

diagnostic criteria. Correlation values between 

metabolic syndrome indexes and clinicopathological 

features were shown in Table 1. 

 

Impact of metabolic syndrome on OS in patients 

with colorectal cancer 

 

The following metabolic variables had significant 

differences in survival rates within their respective 

groups by using univariate analysis. There were 

statistically significant differences between the groups 

with respect to TG, HDL, HP, DG and BMI (each 

parameter with P< 0.05, Figure 1A–1E, Table 2). The 

univariate analysis demonstrated that compared with 

normal blood glucose level patients, CRC patients with 

diabetes showed a poor prognosis in OS (P = 0.00011). 

Low BMI can be considered as a predictor of poor 

survival in OS. In particular, the underweight group has 

the worst prognosis, while the normal and overweight 

groups have similar prognosis (P<0.0001). In the same 

way, an increasing in HDL could lead to the increase in 

the mortality of CRC (P = 0.0038). Overall, patients 

diagnosed with metabolic syndrome (score ≥ 3) had the 

worst survival outcome among the enrolled population 

(Figure 1F). The multivariate analysis showed that only 

BMI (P < 0.001), diabetes (P = 0.046), TG (P = 0.001), 

and metabolic syndrome (P < 0.001) were significantly 

independently associated with OS. 

 

An OS nomogram was constructed to predict 1-, 3- and 

5-year overall survival of colorectal cancer (Figure 1G). 

Total scores were summations of each variable based on 

the intersection of the vertical line. As shown in Figure 

1G, metabolic syndrome and age contributed the most 

risk points (ranged, 0-100), whereas the other clinical 

information contributed much less (ranged, 0-75). By 

using this nomogram, we could convert each clinical 

index to the corresponding point, and then calculated 

the total point, which was used to evaluate the 1-year, 3-

year, and 5-year survival rate. Moreover, decision curve 

analysis showed the high accuracy of the predictive 

prognostic of MetS score for 1-, 3- and 5-year OS 

possibility (Figure 1H). 

 

Summary and analysis of the genomic mechanism of 

metabolic syndrome 

 

With the rapid development of oncotherapy, 

metabolism regulation, as a promising predictor, has 
received more and more attention. Aforementioned 

epidemiological data have proven the tight connection 

between metabolic syndrome and increased cancer risk. 
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Table 1. Clinicopathological characteristics of 716 colorectal cancer patients grouped by BMI, hypertension, diabetes, 
dyslipidemia and metabolic syndrome. 

Characteristics BMI   DG  HP  HDL  TG  MetS    

 <18.5 18.5-25 ≥25 No Yes No Yes <0.9 ≥0.9 <1.7 ≥1.7 0 1 2 3-5 

Sex   0.026  0.250  0.430  0.382  0.007    0.100 

   Male 34 296 95 370 55 304 121 202 223 295 131 98 157 105 64 

   Female 39 197 50 258 29 213 74 146 141 225 62 89 88 67 42 

T stage   0.174  <0.001  <0.001  <0.001  <0.001    0.872 

   T1 4 28 2 32 2 25 9 15 19 22 12 11 9 10 4 

   T2 6 43 19 60 8 52 16 30 38 44 24 18 24 16 10 

   T3 12 52 19 72 11 57 26 38 45 57 26 16 31 24 12 

   T4 53 371 107 466 65 385 146 267 264 399 132 142 183 124 82 

N stage   0.068  0.255  0.079  0.539  0.482    0.085 

   N0 32 271 66 329 40 279 90 181 188 264 105 106 116 98 49 

   N1 22 112 47 161 20 130 51 83 98 131 50 48 71 35 27 

   N2 21 111 34 140 26 110 56 86 80 127 39 33 60 41 32 

M stage   0.014  <0.001  0.011  0.868  0.039    0.409 

   M0 54 415 128 531 66 444 153 291 306 425 172 157 212 147 85 

   M1 21 79 19 99 20 75 44 59 60 97 22 30 35 27 23 

Stage   <0.001  <0.001  <0.001  <0.001  <0.001    0.332 

   1 7 61 19 75 12 61 26 42 45 62 25 24 25 24 14 

   2 20 195 44 233 26 202 57 124 135 186 73 77 84 66 32 

   3 27 160 65 224 28 182 70 126 126 178 74 56 101 55 40 

   4 21 183 19 98 20 74 44 58 60 96 22 30 37 29 22 

CEA   0.014  0.009  0.162  0.440  0.008    0.512 

   <5 45 302 79 387 40 317 109 213 213 326 100 117 146 105 58 

   ≥5 30 191 68 244 46 202 88 136 153 196 94 70 101 69 50 

Renal failure   0.498  <0.001  <0.001  <0.001  0.881    <0.001 

   No 59 414 120 535 58 462 131 280 313 433 160 164 221 138 70 

   Yes 16 80 27 95 28 57 66 70 53 89 34 23 26 36 36 

Chemotherapy   0.002  0.883  0.022  0.002  0.842    0.068 

   No 43 253 65 317 44 248 113 196 165 262 99 81 124 93 63 

   Yes 32 163 82 313 42 271 84 154 201 260 95 106 123 81 45 

 

Nevertheless, the mechanisms that link metabolic 

disorders and cancer risk remain unknown. The possible 

association mechanism between these two risk factors will 

be firstly described in this paper, focusing on the shedding 

light on candidate signature genes and biological events 

occurring in CRC progression. We identified 11 key 

metabolic genes, including TGFB, IGF2BP1, IGFL1, 

IGF2BP3, CHS2, IGF1R, IL6, IL6R, CSF1, CSF3 and 

IGF2 from recognized literature [5, 10]. Subsequently, we 

constructed a gene metabolic score via Cox regression 

analyses. As shown in Figure 2A, 2B, CRC patients with 

high metabolic signature had significantly poorer OS than 

patients with low metabolic signature. Next, univariate and 

multivariate Cox regression analyses were constructed to 

evaluate the prognostic significance of the gene metabolic 

signature combined with various clinicopathologic factors 

(Figure 2C, 2D). Gene MetS score was also proven to be 

an independent prognostic factor and had strong predictive 

power. 

Identifying metabolic -related modules 
 

To particularly describe molecular events relative to 

cancer metabolic progress, the WGCNA was used to 

identify the module eigengenes that were associated 

with MetS score. The power (β) of 6 was selected as the 

soft-power to ensure a scale-free network (scale R2 = 

0.95), and ultimately identified 14 co-expressed gene 

modules (Figure 3A). The correlation between the 

module eigengenes and the clinical traits were shown in 

Figure 3B. Particularly, black and turquoise eigengenes 

were significantly associated with cancer MetS Score 

(Figure 3C). 

 

Metabolic signature was associated with drug 

metabolism 
 

To better annotate the black module function, we 

singled out the 20 central genes in the co-expression 
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Figure 1. Kaplan-Meier curves for CRC patients stratified by metabolic syndrome. Kaplan-Meier analysis of overall survival (OS) of 

TG (A), HDL (B), hypertension (C), diabetes mellitus (D), BMI (E) and metabolic syndrome (F); (G). Nomogram developed by integrating 
metabolic syndrome and clinical pathological parameters for predicting 1-, 3-, 5-year survival of CRC patients; (H). Calibration curve for risk of 
1-, 3-, 5-year survival of CRC metabolic syndrome. 
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Table 2. Univariate and multivariate Cox hazards analysis for OS in 716 patients with colorectal cancer. 

Variable 
Univariate analysis  Multivariate analysis 

P 
HR (95%CI) P HR (95%CI) 

Age  <0.001  0.01 

   <60 Reference    

   >60 0.591(0.440-0.795)  1.034(1.011-1.060)  

Gender  0.086  0.758 

   Male     

   Female 1.279(0.966-1..695)  1.087(0.639-1.849)  

CEA  0.125  0.252 

   <     

   > 1.156(0.829-1.548)  1.210(0.726-1.650)  

T stage  <0.001  0.028 

   T1     

   T2 2.264(1.087-6.422) 0.032 1.228(0.342-4.407) 0.753 

   T3 1.201(0.437-3.305) 0.722 0.836(0.217-3.223) 0.795 

   T4 0.574(0.175-1.880) 0.359 0.583(0.176-1.929) 0.376 

N stage  <0.001  0.039 

   N0     

   N1 5.536(4.001-7.632) <0.001 0.880(0.499-1.552) 0.659 

   N2 1.862(1.293-2.737) 0.001 1.496(0.884-2.440) 0.138 

M stage  <0.0001  0.730 

   M0     

   M1 8.236(6.321-10.885)  0.771(0.176-3.374)  

Stage  <0.001  0.001 

   1     

   2 12.321(7.971-15.325) <0.001 10.362(1.599-60.164) 0.014 

   3 3.162(1.584-6.314) 0.01 1.782(0.504-6.306) 0.370 

   4 1.191(0.596-2.496) 0.643 0.779(0.227-2.672) 0.691 

BMI  <0.001  <0.001 

   <18.5     

   18.5-25 0.414(0.270-0.636) <0.001 2.427(1.554-3.791) <0.001 

   >25 0.355(0.250-0.505) <0.001 0.826(0.578-1.180) 0.293 

Hypertension  <0.001  0.821 

   No     

   Yes 1.702(1.288-2.249)  1.036(0.761-1.412)  

Diabetes  0.0008  0.0456 

   No     

   Yes 1.935(1.367-2.722)  1.430(1.097-2.057)  

HDL  0.03  0.125 

   <0.9     

   >0.9 0.679(0.503-0.966)  0.765(0.544-1.077)  

TG  0.004  0.001 

   <1.7     

   >1.7 1.491(1.135-1.959)  1.659(1.247-2.209)  

Kidney  0.669  0.156 

   No     

   Yes 1.045(0.853-1.281)  1.291(0.907-1.837)  

MetS  <0.001  <0.001 
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Figure 2. The distribution of gene MetS Score in the TCGA cohort. (A). K-M survival curve of the low- and high- MetS Score for TCGA 
CRC patients; (B). The distributions of the MetS Score and survival status for each CRC patients; (C). Forest plot summary the univariable 
analyses of overall survival of gene MetS Score; (D). Forest plot summary the multivariable analyses of overall survival of gene MetS Score. 
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Figure 3. Weight gene co-expression network analysis (WGCNA) identified metabolic -related modules eigengenes. (A). The 
clustering dendrograms for the CRC groups. (B). Heatmap of module-trait relationships. (C). The relationship of module membership and 
gene expression. 
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network whose MM > 0.8. The known metabolic-

related genes were strikingly marked in red (Figure 4A). 

Functional enrichment showed that these genes owe 

strong association with classic drug metabolism 

pathways, such as EGFR signaling, PI3K-mTOR 

signaling and JAK signaling (Figure 4B). In addition, 

we compared the gene expression profiles between 

high- and low- gene MetS score by GSEA. It suggested 

that the high-MetS score group was closely associated 

with key drug metabolism process, such as UDP 

glycosyltransferase, compound transmembrane 

transporter activity, drug metabolism cytochrome P450 

and other enzymes (Supplementary Figure 1). 

Consistent with black module functional annotation, 

metabolic syndrome factors (specially for DG, BMI and 

HDL) also have an immense influence on chemotherapy 

drug metabolism in our above clinic retrospective 

investigation (Supplementary Figure 2). 

 

 
 

Figure 4. Functional annotation of black module and drug response. (A). PPI network of black module genes. The known metabolic -

related genes were strikingly marked in red; (B). Functional annotation for black module; (C). Correlation between drugs metabolism and 
metabolic –related genes, which affect major signaling pathways—IGF, EGFR, mTOR, ERK-MAPK, p53, JNK and p38-MAPK signaling. (D). The 
correlation of gene MetS Score and major drugs metabolism signaling pathways. 
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To further detect the effects of metabolic syndrome on 

drug metabolism, further in-depth study of the 

correlation of metabolic-related gene expression and 

chemotherapy drug sensitivity was performed by 

Pearson correlation, which clarified the pathological 

mechanisms that link its components with carcino-

genesis. We focused on major targeted drug 

pathways—IGF, EGFR, mTOR, ERK-MAPK, p53, 

JNK and p38-MAPK signaling. Remarkably, IL-6 and 

IL6R remarkably improved the effectiveness of 

targeted therapy administration, yet IGF2 was closely 

related with drug tolerance (Figure 4C). Specially, low 

metabolism group was strongly associated with the 

mTOR pathway and VEGFR pathway without 

significantly association with AKT pathway (Figure 4D). 
 

IL6 promoted oncogenic growth in CRC by 

stimulating mTOR signaling 
 

We compared the differential expression of key 

metabolic genes and they all showed high diversity (P< 

0.05, Supplementary Figure 3). IL6 was thought to 

promote tumor growth mainly by paracrine and autocrine 

methods, which explained the above experimental results 

to some extent. GSEA revealed that high IL6 expression 

groups in the TCGA CRC cohort were mainly enriched 

in KEGG pathways related to drug metabolism, 

especially the mTOR pathway (Figure 5A). We further 

specially delineated the protein expression patterns of IL6 

and p-S6 by immunohistochemical staining, and they 

showed higher expression patterns in above MetS CRC 

patients (Figure 5B). We further detailed investigated the 

consequence of IL6 overexpression by stably expressing 

IL6 in SW480 and DLD1. Ectopic expression of IL6 was 

also sufficient to robustly promote CRC cell migration 

and transwell compared with control cells (Figure 5C, 

5D). On the other hand, IL6 overexpression strongly 

potentiates the activity of mTOR pathway as shown by 

much enhanced S6K1 and mTOR phosphorylation 

(Figure 5E). Given the previous research, we speculated 

that whether IL6 participated in the regulation of the 

activity of PP242 activity, a mTOR kinase inhibition. As 

shown in Figure 5F, IL6 ectopic expression enhanced 

PP242 drug susceptibility in colorectal cancer cells, 

which completely abolished the activity of mTOR 

pathway. We also found that PP242 strongly inhibited the 

invasion of IL6-overexpressing CRC cells (Figure 5C, 

5D). The above results suggested that overexpression of 

IL6 prompted colorectal cancer highly dependent on 

mTOR-S6K signaling and more sensitive to mTOR 

kinase inhibitors. 
 

DISCUSSION 
 

MetS and its related complications are serious health 

problems, and the global prevalence has exceeded 

23.7%, without significant statistic evidence in gender. 

Emerging evidences have demonstrated that MetS is a 

vital factor for the development and malignant 

progression of various cancers [11]. Patients with MetS 

have a higher risk for an increased in the 30-day post-

operation mortality rate, postoperative complications, 

and recurrence of colorectal adenoma [12]. Therefore, 

exploring the relationship between MetS and CRC 

becomes extremely important. 

 

The results of the present study suggested that the 

components of MetS were closely related with poor 

prognosis of CRC. Based on the results of univariate 

Cox analysis, we found that patients with hypertension, 

with low HDL cholesterol, who were underweight or 

who had diabetes/hyperglycemia were more likely to 

have poor survival (Figure 1A–1E). In addition, we 

constructed a clinical nomogram based on the MetS 

syndrome and other clinical items, followed by 

analyzing the relationship between different subgroups 

and their prognosis. A higher nomogram score was 

associated with a poorer prognosis of patients with 

CRC. It is promising to utilize this nomogram in the 

future to predict the prognosis of CRC patients (Figure 

1F, 1G). Although the impact of the components of 

MetS on the clinical prognosis of CRC patients has 

been confirmed, the underlying mechanism remains 

unclear. The possible association mechanism between 

these two risk factors was firstly described in this paper 

and focused on shedding light on the candidate 

signature genes and biological events occurring during 

CRC progression. We identified 11 key metabolic genes 

from recognized literature, including TGFB, IGF2BP1, 

IGFL1, IGF2BP3, CHS2, IGF1R, IL6, IL6R, CSF1, 

CSF3 and IGF2. CRC patients were divided into high- 

and low-risk groups based on the MetS-gene score. The 

prognosis of the low-risk group was significantly better 

than the high-risk group (Figure 2). Using WGCNA, we 

found that MetS was also related to drug metabolizing 

enzymes (DMEs) and pathways (Figure 3). Comparing 

the high- and low-MetS groups with multiple pathways, 

MetS-gene score was proven strongly associated with 

the mTOR pathway and VEGFR pathway. Moreover, 

IL-6 was also found to be highly associated with the 

drug sensitivity and resistance of mTOR inhibitors in 

CRC patients. We speculate that drug resistance is a 

crucial cause contributing to the poor prognosis of CRC 

caused by MetS, and inhibiting the expression of IL-6 

can increase drug susceptibility. 

 

Drug metabolizing enzymes (DMEs), including uridine 

diphospho-glucuronosyltransferases (UGTs), glutathi-

one-S-transferases (GSTs), and cytochromes, can 
degrade molecular drugs and convert some antitumor 

drugs into inactive metabolites, causing resistance 

against chemotherapeutic agents  and drug inefficiency   
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[12, 13]. Thus, less sensitivity or efficiency of antitumor 

drugs (e.g., irinotecan, rapamycin, 5-FU, cisplatin) are 

owed in treating the corresponding tumors on account 

of the metabolism of DMEs [14]. mTOR-S6k is one of 

the most common deregulated pathways in various 

cancers, and overactivation of the mTOR pathway is 

closely related to cell growth, metabolism, aging, 

insulin resistance and obesity, of which are the 

 

 
 

Figure 5. IL6 promotes oncogenic growth in CRC by stimulating mTOR signaling. (A). GSEA of IL6 in the TCGA CRC cohort; (B). 

Immunohistochemical staining of IL6 in MetS and non-MetS CRC patients; IL6 promotes growth-factor-induced migration (C) and invasion of 
CRC cells (D). Cancer cells with or without IL6 overexpression were treated with or without PP242; (E) IL6 promoted mTOR signaling in 
colorectal cancer cells. SW480 and DLD1 expressing ectopic IL6 or vector were analyzed for mTOR signaling by immunoblotting for P-mTOR 
and P-S6K. GAPDH was used as a loading control; (F) Pharmacological inhibition of mTOR signaling by PP242 abrogated IL6 overexpression-
induced activation of mTOR signaling. SW480 and DLD1 cells were transfected with IL6 shRNAs or a control shRNA and then treated with 
PP242. Their effect on mTOR signaling was analyzed by immunoblotting. 
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most common risk factors resulting in MetS [15, 16]. 

Based on these findings, rapamycin, as an allosteric 

inhibitor of mTOR, was approved for the treatment of 

various cancers by forming a complex with FKBP12 to 

inhibit mTORC1 activity [17]. However, many cancers, 

including CRC, demonstrated resistance to the 

antitumor effects of rapamycin [18, 19]. In our study, 

we found that IL-6 could promote the malignant 

biological properties of CRC via mTOR-S6K signaling, 

which provided a good therapeutic suggestion for 

clinical practice. CRC patients with high expression of 

IL-6 would be more applicable to inhibitors of the 

mTOR pathway. 

 

IL-6, a pleiotropic cytokine, can induce a chronic state 

of low-degree inflammation and insulin resistance, 

which is also positively related to CRC tumorigenesis. 

Excessive fat tissue in obese people can secrete more 

IL-6, adiponectin and leptin to promote metabolic 

homeostasis [20]. EGFR-induced mTOR can stimulate 

the expression of IL6 through the classic pathway and 

reprogram IL-6 nonresponsive cells into IL-6 responder 

cells, to further affect the sensitivity of the tumor cells 

to IL-6 [21]. The results of the combined analysis of IL-

6 and tyrosine kinase inhibitors (TKI) showed that high 

levels of IL-6 can upregulate the mTOR signaling 

pathway and induce tumor cell resistance to TKI 

therapy [13]. Inhibiting the expression of IL-6 or 

blocking the IL-6 pathway would alleviate tumor cell 

resistance to TKI therapy and enhance the antitumor 

efficiency of TKI, which was consistent with the 

founding of our study. However, the precise mechanism 

behind this enhancement is still unknown and further 

study is needed. 

 

IL-6 was also involved in other drug-metabolizing 

enzymes and anticancer pathway activities. IL-6 can 

manipulate the expression of CYP2E1 and CYP1B1 

to induce tumorigenesis by activating carcinogens 

and causing DNA damage through the JAK/STAT 

and PI3K/AKT pathways [22]. The STAT-3 signaling 

pathway was also found to play a key role in 

meditating the effect of IL-6 on promoting tumor 

progression and treatment resistance by inhibiting 

cancer cell apoptosis and stimulating tumor-

associated factors among various signaling pathways 

[20, 23]. IL-6 can inhibit the chemotherapeutic 

efficacy of 5-FU, the most commonly used 

chemotherapy for CRC, by activating the IL-

6R/GP130 signaling pathway and the levels of P-

AKT, P-ERK and P-STAT3 [24]. The use of the 

antihuman IL-6 receptor monoclonal antibody can 

weaken the tumor phenotype and 5-FU resistance 
[25]. In conclusion, IL-6 mediates a series of 

reactions in the development of CRC and drug 

resistance. 

In our study, another gene that attracts our attention 

most is IGF2, which was found to be closely associated 

with drug tolerance in CRC. IGF2 has been found to be 

a mitogen that is mainly expressed in the cell 

cytoplasm and vesicles, and significantly drives cell 

proliferation and promotes tumorigenesis [26, 27]. 

Insulin/IGF system can regulate cell proliferation, 

differentiation, apoptosis, glucose transport and energy 

metabolism [28]. Insulin/IGF system is also a decisive 

factor in the development of CRC malignancy and 

metastasis and promised to be a therapeutic target of 

this disease [29]. Some researches hold that IGF2 

participated in the regulation of the cancer cell 

secretion of VEGF and further impacted the power of 

VEGFA antibody [30]. In the study of CRC for 

cetuximab efficacy, EGFR inhibition was found in a 

part of patients with IGF2 overexpression, which could 

also weaken the efficacy of cetuximab in functional 

studies [31, 32]. IGF2 has been proven to function 

through the PI3K-AKT-mTOR signaling pathway [33]. 

Using mTOR inhibitors could weaken the promoting 

effect of IGF on the proliferation and viability of tumor 

cells, while combining IGF2 inhibitors could provide a 

better curative effect on patients with adrenocortical 

carcinoma [34]. Therefore, anti-IGF2 treatments are 

very promising for reversing drug resistance and 

inhibiting tumorigenicity. 
 

The strengths of this research include exploring and 

verifying the relationship between MetS and the 

prognosis and survival of CRC from the perspective of 

epidemiology and molecular mechanisms. We further 

explored the possible mechanism by which MetS leads 

to the poor prognosis of CRC, and partially verified it 

with in vitro experiments. Nevertheless, there were still 

several limitations. First of all, the sample size was 

small in some of the analyses, which may have limited 

the statistical accuracy. Secondly, this article was a 

monocenter study; therefore, to avoid bias and 

deviations, our findings should be validated using 

multicenter prospective studies. Thirdly, it was difficult 

to estimate the effect of MetS treatment on the 

prognosis of CRC patients, for whom comprehensive 

data on MetS treatment could be obtained, which may 

confuse the causal relationship between MetS and CRC 

prognosis. Fourth, some confounding factors were not 

assessed in this study, such as the history of smoking, 

drinking, occupation, and other cancers. 
 

In conclusion, the current study reveals that MetS is a 

risk factor for a poor CRC prognosis and promises to be 

a potential prognostic indicator. IL-6 and IGF2 affect 

mainly the chemosensitivity and drug resistance of 

tumors through the mTOR pathway, resulting in a poor 

CRC prognosis for patients with MetS. Further study 

demonstrated that the combined treatment of inhibition 
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of IL6 and mTOR pathway is expected to become a new 

treatment for CRC patients with MetS, which will be 

verified in future experiments. 

 

MATERIALS AND METHODS 
 

Patients and clinical outcome assessment 

 

This study utilized data from the First and the Second 

Affiliated Hospital of Wenzhou Medical University and 

public databases. We performed a retrospective study of 

colorectal cancer patients in these two institutions in 

Wenzhou, China (Wenzhou Medical University), from 

January 2010 to January 2016. The inclusion criteria 

were as follows: 1. histopathological diagnosis of 

colorectal cancer; 2. all data for patients diagnosed with 

colorectal cancer for the first time without any treatment; 

3. complete pathology, laboratory, and follow-up data. 

Patients with unknown included variables were excluded. 

The following demographic, clinical, and pathology data 

were used: T stage, N stage, M stage, pathological stage, 

tumor history, laboratory test results (age, sex, body-mass 

index (BMI), TG, HDL-C, CEA, creatinine). Pathologists 

assessed the tumor stage according to the 7th edition of 

the AJCC TNM staging guidelines. Patients who 

received only neoadjuvant chemotherapy or surgery or 

those with unknown included variables were excluded. 

Metabolic syndrome was internationally defined as 

included more than three criteria: 1) BMI greater than or 

equal to 25.0 kg/m2; 2) diagnosed with diabetes; 3) 

diagnosed with hypertension, SBP/DBP >140/90 mmHg; 

4) blood HDL-C < 0.9 mmol/L, 5) blood TG > 1.7 

mmol/L. Totally, there were 716 eligible cases selected in 

our study, 15.1% were diagnosed with MetS. All of these 

patients were followed up, and recurrent and dead 

patients were recorded during the follow-up. The time 

was cut off in March 2020. The study protocols were 

approved by the Wenzhou Medical University Ethics 

Committee. All procedures adhere to the BRISQ 

Guidelines for reporting research on human 

biospecimens. 

 

We also retrospectively selected colorectal cancer gene 

expression and relative clinicopathological data from 

the TCGA database (https://portal.gdc.cancer.gov/). 

Raw microarray data Affymetrix were downloaded and 

normalized using the limma package. The detailed 

working algorithm was demonstrated in the Figure 6.

 

 
 

Figure 6. Flow chart of the experimental design and main process. 

https://portal.gdc.cancer.gov/
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Construction nomogram models 

 

An OS nomogram was constructed based on the 

prognostic factors derived from multivariate Cox 

regression analysis to predict 1-, 3- and 5-year survival 

rate. Each patient could sum up corresponding variable 

score and finally establish predictive measures of OS. 

The nomogram was generated using ggplot packages 

together with R software. The calibration curve for 

predicting 1-, 3- and 5-year OS indicated that the 

nomogram-predicted survival was closely corresponded 

with actual survival outcomes. The survival analysis 

was conducted using rms, survivalROC, survcomp and 

survival package. Hazard ratios (HRs) and 95% 

confidence intervals (CIs) were recorded. 

 

Evaluation of TCGA gene metabolic score 

 

R language survival package was used to perform the 

Cox regression model analysis. The key metabolic gene 

lists were obtained from literature investigation the 

molecular mechanism of MetS from Pubmed [10, 35], 

and then applied to multivariate Cox regression 

analysis. The MetS score of each patient was calculated 

with the expression level and its relative coefficient. On 

the basis of the median score as the cut-off setline, these 

patients were divided into high- and low-MetS 

subgroups. Log-rank test was performed to calculate the 

corresponding hazard ratios (HRs) and 95% confidence 

interval (CI). 

 

Weighted gene co-expression network analysis 

 

The weighted gene co-expression network analysis 

(WGCNA) hierarchically clustered module eigengenes 

of the clinical features based on co-expression 

relationships, thoroughly explored the biological 

processes and molecular mechanisms behind cancer 

metabolic disorders [36]. In this study, we constructed 

WGCNA to explore the colorectal cancer dataset to 

identify gene modules associated with expression 

patterns of MetS score and pathology factors. The co-

expression network was constructed by the R package 

WGCNA. The connectivity degree of each node of the 

network was calculated by STRING database and 

reconstructed via Cytoscape software. 

 

Functional annotation 

 

The signaling pathway and molecular function 

underlying MetS score were explored with GSEA 

(Version 4.0.1). The number of permutations was set 

at 1000, and P < 0.05 and an FDR < 0.25 were 
considered statistically significant. Gene ontology 

(GO) enrichment analysis was performed with the 

DAVID platform. 

GDSC (Genomics of drug sensitivity in cancer) 

 

GDSC, a large-scale drug screening data screened on a 

panel of 990 human cancer cell lines, concentrates on 

providing publicly available tumor treatment genome 

data and identifying potential tumor treatment targets.  

(http://www.cancerrxgene.org/gdsc1000/) [37–39]. Gene 

mutations of the cancer genomes greatly affect clinical 

outcomes and drug targets respond. To analyze the 

correlation of expression and drug sensitivity, the 

Pearson correlation coefficient of transcript levels was 

calculated. 

 

Immunohistochemistry 

 

Above-mentioned 20 CRC specimens were collected, 

including 10 MetS and 10 non-MetS CRC tissues. Two 

researchers evaluated the staining results independently 

and scored the staining intensity of immunostaining as: 

0 (negative), 1 (weakly positive), 2 (moderately 

positive) and 3 (strongly positive). The primary 

antibody against P-S6 and IL6 was used at a 

concentration of 1:200. For quantitative analysis, a 

Histo (H) score was calculated based on the staining 

intensity and percentage of stained cells using Aperio 

ScanScope system (Vista, CA, USA). 

 

Colony formation and transwell migration assay 

 

A number of 1 × 103 DLD1 and SW480 were inoculated 

in six-well plates and incubated at 37° C for 5-7 days. 

Then, we treated the colonies with PP242 or vector for 

5 days. Colonies were fixed with 4% paraformaldehyde 

formaldehyde (Solarbio, Beijing, China) followed by 

staining with crystal violet (Sigma-Aldrich). The 

number of colonies with more than 50 cells was 

calculated. Transwell migration experiments were used 

to confirm the migration ability of DLD1 and SW480, 

and 5 × 104 cells were added to the upper chamber 

placed in a 24-well plate, with serum-free medium. 

Meanwhile, medium containing 15% serum was added 

to the lower chamber. Taking cell images at 100× 

magnification 5 random microscopic fields of view 

were selected to count the number of migrated cells. 

 

Antibodies and western blot analysis 

 

An equal amount of protein was subjected to SDS-

PAGE. Proteins were transferred into PVDF 

membranes, and the blots were incubated with the 

following different primary antibodies: Rabbit mTOR, 

p-mTOR (S2448), S6K, p-S6K (T389), p-S6 from Cell 

Signaling Technology, and IL6 from Proteintech. HRP-
labeled GAPDH, anti-mouse and anti-rabbit antibodies 

were purchased from Santa-Cruz Biotechnology. All 

primary antibodies were confirmed to be reactive only 

http://www.cancerrxgene.org/gdsc1000/
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to the targets by the manufacturer and used at 1:1000, 

and secondary antibodies were used at 1:5000. 

 

Statistical analysis 

 

R software and Stats were used for statistical analyses. 

Continuous variables were exhibited for means, 

medians, range, and standard deviation (SD) and 

compared using an independent t test or Wilcoxon test; 

Spearmen correlation coefficient was used for variable 

correlation; Chi-square test was used to analyze 

categorical variables. The log-rank survival test and the 

results were shown in the forest plot. All statistical tests 

were two-sided and P <0.05 was considered statistically 

significant. 

 

Date accessibility 

 

The data are available in the TCGA datasets. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. GSEA of MetS Score. High-MetS Score group was closely associated with drug metabolism 
pathway. 
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Supplementary Figure 2. The effect of metabolic variables on survival in CRC chemotherapy subgroups. The effects of MetS, 

diabetes, obesity, dyslipidemia weight and hypertension on survival in CRC chemotherapy subgroups. 
 

 
 

Supplementary Figure 3. The metabolic –related gene expression in low- and high- MetS score group. 
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Supplementary Table 
 

Supplementary Table 1. Baseline clinicopathological  
parameters of CRC patients. 

 Characteristics Number(%) 
Age (range)  
    Median (range) 24-85 
    < 60 281 
    ≥60 433 
Gender  
    Male 427 
    Female 289 
Chemotherapy  
    No 361 
    Yes 355 
CEA  
    <5 426 
    ≥5 290 
T stage  
    T1 34 
    T2 68 
    T3 84 
    T4 531 
N stage  
    N0 369 
    N1 181 
    N2 166 
M stage  
    M0 601 
    M1 115 
Pathological Stage  
    1 87 
    2 260 
    3 252 
    4 118 
BMI  
    ≤18.5 75 
    18.5-25 494 
    ≥25 147 
Hypertension  
    No 519 
    Yes 197 
Diabetes  
    No 630 
    Yes 86 
HDL  
    <0.9 365 
    ≥0.9 349 
TG  
    <1.7 521 
    ≥1.7 193 
Renal failure  
    No 593 
    Yes 123 
MetS  
    0 187 
    1 247 
    2 174 
    3-5 108 


