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INTRODUCTION 
 

Gastric cancer (GC) is a common digestive tract tumor 

characterized by high incidence and mortality worldwide 

[1, 2]. Due to the lack of specific symptoms, most patients 

are diagnosed at an advanced stage, miss the optimal 

opportunity of surgical resection, and the outcome 

remains dismal [3, 4]. The Surveillance, Epidemiology, 

and End Results database shows that the incidence of 

early gastric cancer is also increasingly rising. [5]. As is 
known to all, even if GC patients are in the early T-stage, 

peritoneal metastasis is not uncommon and its prognosis 

is poor, especially in young people [6–8]. Over the past 

few decades, great advances have been made in diagnosis 

and treatment of GC, and a series of genes have been 

regarded as diagnostic or predictive biomarkers such as 

detection of KRAS, NRAS, ERBB2, mismatch repair 

(MMR) genes [9–11]. However, there are still a large 

number of potential biomarkers need to be further 

explored which can be utilized in the early diagnosis of 

GC, identification of micro-metastasis, detection of 

chemosensitivity and so on. 

 

To examine the effective molecular regulations for 

cancer, although most of researchers have spent long 

time focusing on protein-coding gene, relatively few 
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ABSTRACT 
 

RNA-binding proteins (RBPs) have been reported to be associated with the occurrence and progression of 
multiple cancers, but the role in gastric adenocarcinoma remains poorly understood. The present study aims to 
uncover potential RBPs associated with the survival of gastric adenocarcinoma, as well as corresponding 
biologic properties and signaling pathways of these RBPs. RNA sequencing and clinical data of GC were 
obtained from The Cancer Genome Atlas (n=373) and the Gene Expression Omnibus (GSE84437, n=433) 
database. Tumor samples in TCGA were randomly divided into the training and internal testing group by R 
software. A total of 238 DERBPs were selected for univariate and multivariate Cox regression analyses. Five 
pivotal RBP genes (RNASE2, METTL1, ANG, YBX2 and LARP6) were screened out and were used to construct a 
new prognostic model. Survival relevance and prediction accuracy of model were tested via Kaplan‐Meier (K‐M) 
curves and receiver operating characteristic (ROC) curves in internal and external testing groups. Further 
analysis has also showed that this model could serve as an independent prognosis-related parameter. A 
prognostic nomogram has been eventually developed, and presents a good performance of prediction. 
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studies on the roles of genes coding RBPs in cancers 

have been found. RBPs are a kind of proteins 

accounting for about 7.5% of all protein-coding genes 

which can bind their targets with coding and non-coding 

RNAs to form complexes with the function of 

mediating fundamental biological processes including 

RNA processing, RNA editing, RNA production, 

modification, translation and so on [12, 13]. Once these 

proteins aberrantly alter at the expression level or 

function status, they may facilitate occurrence and 

progression of diverse diseases like carcinogenesis. 

Currently, multiple studies have revealed that RBPs 

play an essential role in cancers such as hematological 

malignancies, lung cancer, and gliomas by integration 

of “big data” and bioinformatics [14–17]. Yet, the 

underlying causes of the dysregulation still remain 

unclear [18]. To date, no studies systematically or 

thoroughly investigate the biological and clinical 

characteristics of RBPs in GC. This study attempts to 

investigate the relationship between RBPs and the 

survival, to obtain beneficial biomarkers and to develop 

an optimal RBP-associated prognostic model using the 

large-sample RNA sequencing dataset from TCGA and 

GEO database. 

 

RESULTS 
 

Identification of differently expressed RBP genes  

for GC 

 

The flow chart of analysis steps was listed in Figure 1 in 

detail. A total of 1495 RBP-associated mRNAs were 

identified in the TCGA dataset. At the lowest level of 

stringency with FDR <0.05 and |log2 FC| >0.5, only 272 

genes (156 up-regulated and 116 down-regulated) were 

regarded as differentially expressed genes (DERBPs) 

between GC tissue and adjacent non-tumor tissue 

(Figure 2). 

 

 
 

Figure 1. Flow chart of constructing the five-RBP risk model. 
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Functional enrichment and PPI analyses of DERBPs 

 

All RBPs were ranked by foldchange values  

above, and were annotated via R package 

ClusterProfiler (Figure 3). The GSEA result of GO 

enrichment analysis indicated that RBPs in GC were 

apparently involved in different pathways and 

biofunctions (P-value<0.05). In biological process 

(BP) category (Figure 3A), RBPs activated mainly 

nucleocytoplasmic transport, ncRNA and rRNA 

processing, ribosome and ribonucleoprotein complex 

biogenesis, methylation, rRNA and tRNA metabolic 

process and gene silencing, meanwhile, RBPs 

significantly suppressed translational termination, 

protein complex disassembly, translational elongation 

and positive regulation of mRNA metabolic process. 

In the cellular component (CC) terms (Figure 3B), the 

main cellular components of activation were 

nucleolus, pre-ribosome, nuclear chromosome part, 

chromosome, nuclear chromosome, nuclear envelope 

and transferase complex. And cellular components of 

inhibition were mainly engaged in organellar and 

mitochondrial ribosome, mitochondrial membrane, 

inner membrane and envelope, ribosomal subunit and 

organelle inner membrane. In terms of the molecular 

function (MF) (Figure 3C), it was mainly to activate 

catalytic, transferase and ribonuclease activities, 

carbohydrate derivative binding, purine nucleotide 

binding, adenyl nucleotide binding, nucleotide 

binding, enzyme and ATP binding, methyltransferase 

activity and small molecule binding, while also mainly 

to inhibit translation factor activity of RNA binding, 

structural constituent of ribosome, structural molecule 

activity, mRNA and mRNA 3'-UTR binding. 

Additionally, KEGG enrichment and PPI analyses of 

these RBPs were also performed. KEGG analysis 

suggested that RBPs in GC mainly promoted ribosome 

biogenesis in eukaryotes and microRNAs in cancer (P-

value<0.05). A key module which had the top score of 

interaction was obtained through using the MODE tool 

of Cytoscape software (version 3.7.2) (Figure 3D, 3E). 

 

Selection of prognosis-related RBPs in the training 

group 

 

A total of 238 DERBPs screened out via PPI analysis 

were assessed using the univariate Cox regression 

analysis, and 11 survival-related genes were determined 

(Figure 4A). In multivariate Cox regression analysis, 

only these mRNAs tested through both forward and 

backward Cox regressions could be outputted. Five 

genes were finally identified, and used to construct a 

prognostic risk regression model (Figure 4B). Based on 

regression coefficients and expression levels, the total 

risk score was calculated: risk score = 

(0.3763*expression level of RNASE2) + (0.5441* 

expression level of METTL1) + (0.2278*expression 

level of ANG) + (-0.2746* expression level of YBX2) + 

(0.3243* expression level of LARP6). RNASE2, 

METTL1, LARP6 and ANG showed positive effect and 

probably revealed high-risk signatures. YBX2 

suggested a low-risk signature. In addition, except for 

ANG (P=0.063), the rest of RBPs were independent 

prognostic factors in GC. 

 

 
 

Figure 2. The differentially expressed RBPs (DERBPs) in gastric cancer using The Cancer Genome Atlas (TCGA) RNA 
sequencing data. (A) Heatmap of DERBPs; (B) Volcano plot. Up- and down-regulated genes are represented in red and green, respectively; 

FDR, false discovery rate. 
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External and internal validation showed the good 

performance of prognostic model for patients with 

GC 

 

According to the median cut-off of risk score in the 

training cohort calculated by the prognostic formula 

above, patients in the training group were separated to 

high- and low- risk groups. Apparently prognostic 

differences were observed between high- and low- risk 

sets in the training group (P<0.001, Figure 5A). To 

verify the truth of the conclusion, the TCGA internal 

testing and GEO cohorts were used to validate survival 

significance, respectively. Similar results of survival 

analyses in the internal (P<0.001, Figure 6A) and 

external testing group (P=0.045, Figure 7A) were 

found. Based on the five-gene risk model, the area 

under the ROC curves (AUCs) for 1-, 2-, and 3-year 

overall survival (OS) were 0.67, 0.72, 0.72 and 0.55, 

 

 
 

Figure 3. GO Enrichment analysis and protein-protein interaction (PPI) network of DERBPs. (A) Biological process; (B) Cellular 
component; (C) Molecular function; (D, E) PPI network of all and core module related DERBPs, respectively. Red and green nodes represent 
up- and down-regulated DERBPs, respectively. 
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0.59, 0.59 in the TCGA training and internal validation 

cohort, respectively (Figure 5B, 6B). The AUCs for 1-, 

2-, and 3-year OS in GEO external cohorts were 0.57, 

0.58 and 0.63, respectively (Figure 7B). The heatmap, 

survival status of patients with GC, and risk score of the 

five-gene biomarker signature were also delineated in 

Figure 5C–7C. 

 

Independent prediction capacity of prognostic model 

 

As shown in Table 1, univariate and multivariate Cox 

regression analyses were conducted again to evaluate 

the independent prediction ability of this model by 

comparing with other traditional clinical variables 

including age, gender, grade classification, tumor stage, 

T stage, N stage and M stage. In the TCGA entire 

cohort, age, tumor stage, T stage, N stage, M stage and 

risk score model had statistical significance in 

univariate analysis. Multivariate analysis further 

indicted that only age (P=0.003) and risk score model 

(P=0.043) were independent parameters related to the 

survival. In the GEO cohort (Table 2), age, T stage, N 

stage and risk score model had statistical significance in 

univariate analysis, while multivariate analysis showed 

that T stage (P<0.001), N stage (P<0.001), and risk 

score model (P<0.001) were regarded as independent 

prognostic factors. 

 

Expression validation of RBP genes 

 

We downloaded the clinical immunohistochemistry 

specimens of GC in the Human Protein Profiles 

(https://www.proteinatlas.org) to observe the expression 

of five RBP-related biomarkers in GC. The expression 

of METTL1 obviously increased in tumor tissue 

compared to normal tissue. Besides, YBX2 tended to 

have a middle-strong expression in normal specimens. 

The expression of RNASE2 and LARP6 was slightly 

elevated in tumor tissue, and ANG was not collected in 

the Human Protein Profiles (Supplementary Figure 1). 

 

Construction and validation of prognostic 

nomogram 

 

In order to explore a prediction tool combined with five 

new RBP markers, we developed a nomogram to 

predict the survival probability of 1-, 2- and 3-year OS 

for GC patients (Figure 8A). We took advantage of the 

 

 
 

Figure 4. Univariate (A) and multivariate (B) Cox regression analyses for identification of key prognosis-related RBPs. X-axis: HR (95% CI); Y-
axis: RBPs. 

https://www.proteinatlas.org/
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bootstrapping method which randomized the original set 

into validation set repeatedly to draw calibration curves 

(Figure 8B), which revealed excellent agreement 

between the predicted and actual survival. 

 

DISCUSSION 
 

Accumulating evidence demonstrated the pivotal role of 

RBPs in the carcinogenesis and progression of multiple 

malignancies [17]. Here, a total of 238 differentially 

expressed RBPs were identified through strict 

screening. Then, we systematically analyzed the 

potential biological pathways and constructed PPI 

network based on these DERBPs. Through univariate 

and multivariate stepwise Cox regression analyses, we 

finally built a five-RBP (RNASE2, METTL1, ANG, 

YBX2, LARP6) predictive risk signature, and its 

clinical performance was further validated in the TCGA 

 

 
 

Figure 5. The performance of the 5-RBP risk model in the training TCGA cohort. (A) Survival curve for low- and high-risk groups; (B) 
Time-ROC curves of overall survival for validation; (C) Risk score distribution (upper), survival status (middle) and expression heatmap 
(bottom). 
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training and testing subgroup by the Kaplan-Meier and 

ROC methods. Moreover, GEO dataset as an independent 

validation group also showed similar results. Taken 

together, these findings may contribute to exploring novel 

indicators for the prognosis of GC patients. 

The function enrichment analysis indicated that 

DERBPs were associated with the activation of 

nucleocytoplasmic transportation, RNA splicing, 

production of different RNA, RNA processing, 

methylation, various enzymatic activities related to 

 

 
 

Figure 6. The performance of the 5-RBP risk model in the testing TCGA cohort. (A) Survival curve for low- and high-risk groups; (B) 

Time-ROC curves of overall survival for validation; (C) Risk score distribution (upper), survival status (middle) and expression heatmap 
(bottom). 
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metabolism, and RNA stability and modification. 

Meanwhile, RBPs in GC could inhibit translational 

termination, protein complex disassembly, translational 

elongation, translation factor activity and so on. Due to 

the critical role in stabilizing mRNAs via formation of 

ribonucleoprotein complexes, RBPs have been shown to 

be implicated in the occurrence and progression of 

various diseases including cancers in recent years. For 

examples, oncogenic RBP Lin28 confers the stemness 

of gastric cancer by directly binding to coding protein 

NRP-1 [19]. As the most prevailing modification of 

RNA, N6-methyladenosine (m6A) is initiated by m6A 

methyltransferases (METTL3, METTL14), processed 

by binding proteins and eliminated by demethylases 

 

 
 

Figure 7. The performance of the 5-RBP risk model in the GEO dataset. (A) Survival curve for low- and high-risk groups; (B) Time-

ROC curves of overall survival for validation; (C) Risk score distribution (upper), survival status (middle) and expression heatmap (bottom). 
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Table 1. Univariate and multivariate Cox regression analyses of the entire TCGA cohort. 

Variables 
Univariate analysis  Multivariate analysis 

HR (95% CI) P-value  HR (95% CI) P-value 

Age 1.024 (1.001-1.042) 0.007  1.029 (1.010-1.049) 0.003 

Gender 0.761 (0.527-1.098) 0.1439  —— —— 

Grade 1.184 (0.849-1.651) 0.317  —— —— 

Stage 1.550 (1.250-1.924) <0.001  1.323 (0.862-2.030) 0.200 

T 1.281 (1.029-1.594) 0.027  1.082 (0.795-1.473) 0.617 

M 2.016 (1.109-3.662) 0.021  1.579 (0.700-3.563) 0.271 

N 1.335 (1.140-1.564) <0.001  1.172 (0.921-1.492) 0.196 

Risk Score 1.216 (1.086-1.362) <0.001  1.157 (1.005-1.333) 0.042 

Abbreviation: HR, hazard ratio. 

Table 2. Univariate and multivariate Cox regression analyses of the GEO cohort. 

Variables 
Univariate analysis  Multivariate analysis 

HR (95% CI) P-value  HR (95% CI) P-value 

Age 1.020 (1.007-1.032) 0.002  1.025 (1.012-1.037) <0.001 

Sex 0.796 (0.588-1.078) 0.141  —— —— 

T 1.740 (1.378-2.198) <0.001  1.649 (1.290-2.110) <0.001 

N 1.676 (1.429-1.967) <0.001  1.505 (1.281-1.768) <0.001 

Risk Score 2.436 (1.526-3.891) <0.001  2.695 (1.621-4.481) <0.001 

Abbreviation: HR, hazard ratio. 

(ALKBH5, FTO). All these proteins or enzymes belong 

to RBPs. METTL3-mediated m6A plays a pivotal role 

in the epithelial mesenchymal transition and metastasis 

of gastric cancer [20]. 

 

Also, we built a PPI network based on these DERBPs 

and obtained a key module consisting of 40 hub 

DERBPs, many of which affect tumor progression. For 

example, BOP1, involved in rRNA processing and gene 

expression, induces gastric, colorectal and liver 

carcinogenesis or metastasis, and correlates with the 

TNM staging, vascular invasion and poor disease-free 

survival in liver cancer [21–23]. DDX27, as RNA 

helicases, is critical for a series of cellular processes 

such as ribosome and spliceosome assembly. Therefore, 

it contributes to the initiation and progression of gastric 

and colorectal cancer, and is associated with the poor 

prognosis of these tumors [24, 25]. 

 

Besides, DERBPs were further identified through 

univariate and multivariate Cox regression analyses. 

Subsequently, only five DERBPs including ANG, 

LARP6, RNASE2, METTL1 and YBX2 were 

incorporated into the predictive risk model. It should be 

noted that METTL1 and YBX2 had been reported to be 

associated with other malignancies in despite of no 

correlation with GC. Interestingly, methyltransferase 

METTL1 served as a tumor suppressor and conferred 

chemosensitivity to cisplatin in colon cancer [26, 27]. 

On the other hand, Tian QH found that METTL1 

facilitated cell proliferation and migration and was 

correlated with poor prognosis of hepatocellular 

carcinoma [28]. Paralleled with the Tian QH’s report, 

the adverse predictive RBP METTL1 seemed to play an 

oncogenic role in our study. As the most important Y-

BOX binding protein, YBX2 binds to not only a Y-

BOX element in the promoter of certain gene but also 

mRNAs transcribed from the parent genes [29]. 

Moreover, YBX2 had been reported to be associated 

with the initiation and progression of oral squamous cell 

carcinoma [29, 30]. 

 

There were inevitably several limitations in this study. 

Firstly, owing to the incompleteness of data from 

TCGA and GEO, many clinical variables cannot be 

enrolled in the present study. Secondly, a small number 

of pathological types samples with extremely poor 

prognosis have not been excluded. In addition, further 

confirmation of the existence of specific regulatory 

mechanism of these five RBPs, and elucidation of the 

clinical application require direct experimental 

verification and a prospective clinical trial. 

 

CONCLUSIONS 
 

In conclusion, we have performed a systematic 

bioinformatics analysis of DERBPs, and constructed a 

5-RBP prognostic model which has better performance 
for survival prediction in GC patients. To the best of our 

knowledge, this is the first report of developing a RBP 

related prognostic model for GC. The present study may 

not only provide novel insight into the role of RBPs in 
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the tumorigenesis and progression of GC, but also 

develop promising diagnostic and therapeutic bio-

markers for GC. 

 

MATERIALS AND METHODS 
 

Data curation and preprocessing 

 

Gene expression information (FPKM, n=373) and 

corresponding survival data of patients with gastric 

adenocarcinoma were downloaded from TCGA 

database  in May 2020, containing 343 tumor samples 

with GC and 30 adjacent non-tumor samples. 

Differentially expressed genes were screened 

followed by deletion of genes at low expression 

(FPKM<0.5). Furthermore, survival analysis was 

conducted after excluding these data with unknown 

survival time and survival time with 0 months (n=25). 

A total of 318 samples combined with the 

corresponding clinical data were randomly divided 

into training (n=192) and internal testing (n=126) 

groups. We also downloaded the GSE84437 cohort 

(n=433) as external validation group from the GEO 

database (https://www.ncbi. nlm.nih.gov/geo/). The 

study did not need the approval from the ethics 

committees because all data were open-access in the 

TCGA or GEO database. 

 

Functional enrichment analysis and PPI analysis 

 

Differentially expressed genes (DEGs) with false 

discovery rate (FDR) cutoff of 0.05 and |log2(fold-

change)|>0.5 were identified using the Limma package. 

The enrichment analyses including the GSEA analyses 

of Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) and protein-protein-

interaction (PPI) analysis were conducted to determine 

the function and signaling pathways related to RBP 

 

 
 

Figure 8. (A) Nomogram to predict the risk of GC patients; (B) Calibration curves for the prediction of 1-, 2- or 3-year overall survival. 
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genes. It should be noted that GSEA analysis was 

performed after all RBPs were ranked though the 

foldchange values. 

 

Screening of key RBP genes and establishment of 

prognostic model 

 

This study carried out univariate and multivariate Cox 

regression analyses to identify prognostic DERBPs. 

Variables with P<0.05 detected in univariate Cox 

regression analysis could be enrolled in multivariate 

Cox regression analysis using forward and backward 

regression analyses to construct a prognostic model. 

Given the linear combination of regression coefficients 

with expression levels, the total risk score combined 

with selected key genes’ features was calculated and 

was used to predict the survival risk (risk score= 

(βgene1*expression level of gene1) + (βgene2* 

expression level of gene2) + (βgene3*expression level 

of gene3) + (βgene4* expression level of gene4) + 

(βgene5* expression level of gene5)). Based on the 

predictive formula, the risk score of each patient was 

calculated in the training and validation cohorts, and 

high- and low-risk groups were defined by the median 

risk score of the training set, respectively. Additionally, 

the predictive ability of new model was tested through 

the Kaplan-Meier (K-M) survival curves and time-

dependent receiver operating characteristic (ROC) 

curves [31]. 

 

RBP-based signature for prediction independent of 

clinical features 
 

The RBP-based model together with other clinical 

variables including age, gender, TNM stage were 

subjected to the univariate Cox regression analysis. 

Variables associated with the survival (P<0.05) were 

then entered into the multivariate Cox regression model 

to determine whether the RBP-based signature was an 

independent prognostic factor of overall survival. 
 

The expression characteristics of identified RBP 

genes 
 

The Human Protein Atlas database, one open-access 

database containing a large amount of immuno-

histochemical data (http://www.proteinatlas.org), was 

employed to analyze the expression results of the hub 

RBPs in GC. 
 

Building a predictive nomogram based on the key 

RBP genes 
 

Nomogram integrating multiple variables to visualize 

the survival probability can provide personalized 

prediction of survival. The current study integrated 

prognosis-associated RBP genes using the TCGA 

training group to develop a nomogram for offering a 

predictive tool for patients with GC [32]. The patient 

can get a risk-score according to each RBP 

corresponding point, and then he/she can find his/her 

probability of the 1-, 2- and 3- overall survival. 

Furthermore, calibration plots (bootstrapping) were 

performed to evaluate the validity and accuracy of the 

nomogram. 

 

Ethics approval and consent to participate 

 

All of data were available from open-access database. 

The use of data does not require additional institutional 

review board approval. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Immunohistochemistry (IHC)-stained results of hub RBPs in GC and paratumor tissues from the HPA 
database. 


