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INTRODUCTION 
 

Acute myeloid leukemia (AML) is a hematopoietic 

malignancy with high heterogeneity. The incidence of 

AML is approximately 4.3 per 100,000 per year in  

the United States according to the Surveillance, 

Epidemiology, and End Results database. The mortality 

of patients with AML is still relatively high, despite the 

application of advanced therapy methods such as 

intensive chemotherapy, bone marrow transplantation, 

and targeted therapy. In the past decades, through  

novel high-throughput sequencing techniques, multiple 

somatic mutations have been identified as associated 

with AML initiation or prognosis. For example, 

DNMT3A, ASXL1, IDH1, and IDH2 are frequently 

mutated in patients with AML. These gene mutations 

are considered to be acquired early in AML. In contrast, 

mutations in FLT3, RAS, and NPM1 are regarded as 

secondary events in leukemogenesis. Nevertheless, 

these findings cannot fully explain why and how AML 

occurs. Hence, bioinformatic analysis is also used to 
decipher the molecular mechanisms of leukemogenesis 

and AML progression, which could provide new 

therapeutic targets for AML treatment. 
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ABSTRACT 
 

Acute myeloid leukemia (AML) is a malignancy of hematopoietic stem cells. Although many candidate genes 
such as CEBPA, FLT3, IDH1, and IDH2 have been associated with AML initiation and prognosis, the molecular 
mechanisms underlying this disease remain unclear. In this study, we used a systemic co-expression analysis 
method, namely weighted gene co-expression network analysis (WGCNA), to identify new candidate genes 
associated with adult AML progression and prognosis. We identified around 5,138 differentially expressed 
genes (DEGs) between AML samples (from The Cancer Genome Atlas database) and normal control samples 
(from the Genotype-Tissue Expression database). WGCNA identified nine co-expression modules with 
significant differences based on the DEGs. Among modules, the turquoise and blue ones were the most relevant 
to AML (P-value: turquoise 0, blue 4.64E-77). GO term and KEGG pathway analyses revealed that pathways that 
are commonly dysregulated in AML were all enriched in the blue and turquoise modules. A total of 15 hub 
genes were identified to be crucial for AML progression. PIVOT analysis revealed non-coding RNAs, 
transcriptional factors, and drugs associated with the hub genes. Finally, survival analysis revealed that one of 
the hub genes, CEACAM5, was significantly associated with AML prognosis and could serve as a potential target 
for AML treatment. 
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Various bio-informatic methods have been used to 

uncover the mechanisms underlying AML progression 

or to construct prognosis signatures for patient risk 

stratification [1–3]. Previously, we had also constructed 

a 4-microRNA signature to predict the prognosis of 

pediatric and adolescent AML [4]. Weighted gene co-

expression network analysis (WGCNA) is a type of bio-

informatic method applied to discover the relationship 

between genes and phenotypes. It provides a 

comprehensive method to determine the key regulators, 

crucial pathways, and potential drug targets associated 

with AML. In this study, we aimed to identify 

differentially expressed genes (DEGs) between adult 

patients with AML and healthy control subjects by using 

information from The Cancer Genome Atlas (TCGA) 

and Genotype-Tissue Expression (GTEx) database, 

respectively. Our purpose was to provide a new 

perspective on genes associated with AML that could be 

used as potential diagnostic and therapeutic targets. 

 

RESULTS 
 

Differentially expressed genes between AML and 

normal control samples 

 

After screening and filtration of RNA-seq data in 

TCGA [5] and GTEx [6] databases, a total of 19,148 

genes were obtained, of which 5,166 DEGs were 

identified between AML and whole-blood normal 

control samples. Fifty-nine additional genes associated 

with AML from the NCBI GENE and OMIM [7] 

databases were also included for further co-expression 

network construction. Subsequently, a total of 5,225 

genes were put forth for the WGCNA.  

 

Co-expression network construction 

 

By carrying out the WGCNA package in R 

Bioconductor, we constructed a co-expression network 

for AML. In order to ensure average connectivity and 

high independence, we screened the power value for the 

modules, which ranged from 1 to 30. The power value 

in this study was set at 28 when the scale free R2 

reached 0.9 at this moment of time (Figure 1). Nine 

modules were identified, and the number of genes in 

each module was as follows: 41 in the black, 568 in the 

blue, 134 in the brown, 66 in the green, 3111 in the 

gray, 26 in the pink, 45 in the red, 1017 in the turquoise, 

and 130 in the yellow module. Detailed gene 

information for each module is provided in 

Supplementary Table 1. The cluster tree is shown in 

Figure 2A. Among modules, the turquoise and blue 

ones were the most relevant for AML (P = 4.64E-77 
and 0, respectively; Figure 2B). Network heat-map was 

used to depict the correlation of genes in and among 

modules. The depth of the red color correlated with the 

strength of the relationship between the pairs of 

modules. As illustrated in Figure 2C, genes within the 

same module strongly correlated with each other, while 

genes in different modules were almost independent of 

each other. This indicated that the modules had great 

scale independence.  

 

A heat-map was drawn for the modules in 115 AML and 

755 control samples. As shown in Figure 2D, genes in 

the blue module were highly expressed in AML samples, 

while those in the turquoise module were expressed at 

lower levels compared to the respective levels in the 

control samples, suggesting that these two modules were 

strongly associated with the AML phenotype. 

 

Next, we performed gene significance (GS) and module 

membership (MM) analyses for genes in the blue and 

turquoise modules to examine whether they were well 

correlated with the AML phenotype. As shown in 

Figure 2E, 2F, genes in both these modules showed 

strong correlations with the AML phenotype, with P-

values < 1e-200.  

 

Hub genes were considered as genes with connectivity 

> 5 in both blue and turquoise modules. The 15 hub 

genes that were identified as associated with AML 

progression in the present study were: BDP1, RFX7, 

LARP4, TCEGR1, MPHOSPH9, CCDC18, PDS5A, 

FANCL, and ICE2 in the turquoise module; and 

SERPINB7, CEACAM5, MUC2, RHOV, ALDH3A1, and 

CBLC in the blue module. Visualization of the co-

expression network for the turquoise and blue modules 

are depicted in Figure 3. 

 

GO and KEGG analysis for the turquoise and blue 

modules 

 

In order to obtain a comprehensive understanding of the 

biological functions of genes in the turquoise and blue 

modules, we carried out GO and KEGG pathway 

enrichment analyses. According to GO analysis, genes in 

the turquoise module were most enriched in DNA 

replication, chromosome segregation, microtubule 

cytoskeleton organization, and nuclear division (Figure 

4B). In contrast, genes in the blue module were enriched 

in neutrophil activation, neutrophil degranulation, and 

neutrophil mediated immunity (Figure 4A). According 

to KEGG analysis, genes in the turquoise module were 

most enriched in pathways associated with herpes 

simplex virus 1 infection, cell cycle, Fanconi anemia 

pathway, homologous recombination, and DNA 

replication (Figure 4D), while those in the blue module 

were enriched in pathways associated with Salmonella 
infection, phagosome, tuberculosis, and chemokine 

signaling (Figure 4C). The results of genes in black and 

red modules were shown in Supplementary Tables 3, 4. 
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PIVOT analysis for identifying non-coding RNAs, 

transcription factors, and drugs associated with 

AML in the turquoise and blue modules 

 

Transcription factors are a variety of proteins 

participating in the initiation of transcription. Mutations 

or functional dysregulation of transcription factors  

may result in the transformation of hematopoietic 

precursors into leukemic stem cells. For example, 

CCAAT/enhancer binding protein alpha (CEBPA) 

deficiency inhibits the differentiation of myeloid cells 

both in vitro and in vivo [8]. A total of 9,395 

transcription factor pairs were enrolled in the present 

study. PIVOT analysis revealed eight transcription 

factors (CHD8, CTBP1, E2F1, E2F4, E4F1, TP53, 

TP53BP1, and ZNF143) in the turquoise module (P < 

0.01) and four (CEBPA, DEDD, IRF8, and SPI1) in the 

blue module as significantly correlated with AML 

(Figure 5A, 5B). 

Non-coding RNAs are important post-transcriptional 

regulators. Their dysregulation has been tightly correlated 

to AML progression in a post-transcriptional level. For 

example, transcriptional activation of some long non-

coding RNAs, such as GAS6-AS2, has been reported to 

lead to chemotherapy resistance in AML [9]. In the 

present study, 40 and 25 non-coding RNAs in the 

turquoise and blue module, respectively, were highly 

associated with AML (Supplementary Table 2 and Figure 

5A, 5B). We further investigated drugs associated with 

hub genes. After screening the DrugBank database, 

PIVOT analysis identified nine drugs in the blue module 

[(2S)-2-(3-bromophenyl)-3-(5-chloro-2-hydroxyphenyl)-

1,3-thiazolidin-4-one, artenimol, capecitabine, dasatinib, 

dextromethorphan, interferon-gamma-1b, morniflumate, 

N-[2-(2-methyl-1H-indol-3-yl)ethyl]thiophene-2-carbox-

amide, and sargramostim] and three drugs (caffeine, 

methionine, and thimerosal) in the turquoise module as 

significantly associated with AML (P < 0.01 for both). 

 

 
 

Figure 1. Effects of different soft-threshold values for adult AML co-expression network. 
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Figure 2. Characterization of adult AML co-expression network. (A) Cluster dendrogram and colored display of the network.  

(B) Relationship between modules and phenotypes. Turquoise and blue module are the top two modules related with AML phenotype 
according to P-value. (C) Network heatmap plot for genes in the modules in hierarchical clustering dendrograms. The deeper the red, the 
more correlated between the genes. (D) Gene expression differences between AML samples and normal control in modules. (E) Gene 
Significance (GS) and Module Membership (MM) analyses in turquoise and (F) blue module. 
 

 
 

Figure 3. Visualization of hub genes network in (A) turquoise and (B) blue modules. 
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Prognostic significance of hub genes in blue and 

turquoise modules 

 

The prognostic value of the 15 identified hub genes was 

assessed using OS and expression data in TCGA 

database. We found that high expression of CEACAM5 

was significantly associated with worse OS for patients 

with AML (Figure 6). Other hub genes were not 

statistically significantly associated with the survival of 

these patients. 

 

DISCUSSION 
 

The molecular mechanisms underlying AML 

progression and initiation are still not well understood, 

although advanced progress has been made in the past 

decades. With the development of high-throughput 

sequencing technologies, a large amount of genomic 

data can be acquired from patient samples. In this study, 

by using published adult AML RNA-seq data from 

TCGA-AML project and the GTEx database, we 

constructed a co-expression network by the WGCNA 

method. A total of nine independent modules were 

identified, and 15 hub genes were selected from two 

modules mostly associated with the AML phenotype. 

Among all hub genes, only CEACAM5 was significantly 

associated with the OS of patients with AML, indicating 

its role as biomarker for AML prognosis and treatment. 

 

WGCNA is a bio-informatic method used to identify 

clusters of biologically relevant genes associated with a 

particular disease [10]. It has been widely used to 

 

 
 

Figure 4. Visualization of part of GO bio-functional analysis results in (A) blue and (C) turquoise module. Visualization of part of KEGG 

analysis results in (B) blue and (D) turquoise module. 
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Figure 5. PIVOT analysis revealed TFs and ncRNAs associated with (A) blue and (B) turquoise module. 

 

 
 

Figure 6. Kaplan-Meier curve for CEACAM5 low and high expression patients in TCGA database. 
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reveal the molecular mechanisms underlying cancer 

progression and initiation. Bao et al. reported four hub 

genes (FOXC1, BCL11A, FAM171A1, and RGMA) as 

positively correlated with the triple-negative breast 

cancer subtype using the WGCNA method [11]. Chen 

et al. conducted WGCNA and identified the long non-

coding RNA LOC646762 as a biomarker for the 

prognosis of AML in adult patients [12]. According to 

WGCNA, biologically relevant genes are classified into 

the same module. In the present study, the turquoise and 

blue modules were the ones mostly associated with the 

AML phenotype; hence, genes in these two modules 

were used to perform GO and KEGG analyses. For the 

turquoise module, the identified biological processes, 

i.e., DNA replication [13], chromosome abnormalities 

[14], and microtubule cytoskeleton organization [15], 

have been reported to have a great impact on AML 

progression and drug resistance. For the blue module, 

the identified biological processes, i.e., neutrophil 

activation, neutrophil degranulation [16], and neutrophil 

mediated immunity [17], are all AML oncogene-related 

processes. Dysregulation of these processes would lead 

to cell differentiation disorder and ultimately result in 

AML. Regarding our results of the KEGG pathway 

analysis, we found that genes in the turquoise and blue 

modules were highly enriched in cell cycle, homologous 

recombination [18], DNA replication [19], chemokine 

signaling, and leukocyte transendothelial migration 

pathways, which were highly correlated with the AML 

progression and initiation. 

 

Regarding the identified hub genes, the functions of 

BDP1, RFX7, LARP4, TCEGR1, MPHOSPH9, 

CCDC18, ICE2, SERPINB7, RHOV, and CBLC are 

understudied in leukemia. It was reported that the 

deletion of RFX7, encoding for a transcriptional factor, 

decreases natural killer (NK) cell maintenance and 

immunity [20]. The dysfunction of NK cells is common 

in human tumors, and activation of these cells has 

become a promising strategy to prevent relapse and 

induce remission when treating AML [21]. MPHOSPH9 

was reported as a susceptible locus for multiple sclerosis 

[22]. CDCC18 was reported as a susceptibility gene for 

familial colorectal cancer. PDS5A is a cell cycle-related 

gene and precocious dissociation of PDS5A is a 

translocation partner of MLL in AML [23]. FANCL is a 

family member of DNA repair molecules and is 

frequently mutated in myelodysplastic syndrome 

(MDS), a pre-malignant hematopoietic disease; patients 

with MDS have increased risk of AML [24]. Moreover, 

hypermethylation of the FANCL promoter region was 

also suggested to be associated with sporadic acute 

leukemia [25]. MUC2 belongs to the mucin family, is 
located on 11p15.5, and is associated with childhood 

AML [26]. CEACAM5 has been widely studied in 

various kinds of cancers, including breast cancer [27], 

colorectal cancer [28, 29], pancreatic cancer [30], gastric 

cancer [31], and carcinoma of the tongue [32]. It is an 

adhesion molecule and its aberrant expression is always 

associated with tumor metastasis and poor prognosis. 

However, its function in AML has not been studied yet. 

In the present study, we reveal that CEACAM5 is not 

only one of the hub genes in AML but is also associated 

with unfavorable prognosis. ALDH3A1 was reported to 

be important in metabolizing reactive aldehydes and 

reactive oxygen species in hematopoietic stem cells. Its 

loss was associated with drug resistance and poor 

prognosis in AML [33].  

 

Further, we investigated transcription factors and non-

coding RNAs associated with AML. CEBPA mutations 

[34, 35] and GAS6-AS2 dysregulation [9] were 

previously reported to be strongly associated with AML 

prognosis and chemotherapy resistance. These results 

indicate that the hub genes identified in the present 

study are highly associated with the AML phenotype 

and could be used as potential therapeutic targets and 

biomarkers for AML. 

 

MATERIALS AND METHODS 
 

TCGA and GTEx datasets 

 

RNA-seq data of 151 samples from adult patients with 

AML were downloaded from TCGA (https://portal.gdc. 

cancer.gov/) database. The age of the patients ranged 

from 18 to 88 years, and 45.0% of the patients were 

females. Control data from whole-blood samples  

of healthy subjects were obtained from GTEx 

(https://www.gtexportal.org/home/) database. A total of 

755 control samples were included in the present study. 

For each sample, probe data less than 25% were 

excluded from the study. After annotating a probe name 

to each gene symbol according to the annotation files, 

RNA-seq data from different sources were unified by 

realigning raw reads, removing degraded samples, and 

performing batch effect correction to correct non-

biological variation. Batch effect correction was 

performed using the SVAseq R package. AML-related 

genes in the NCBI GENE and OMIM databases were 

also downloaded for co-expression network construction. 

 

Identification of DEGs and co-expression network 

construction 

 

The DEGs between AML and control samples were 

identified using the edgeR package in R Bioconductor. 

Genes with log fold change |logFC| > 2 and P-value < 

0.05 were considered as DEGs. The co-expression 

network was subsequently constructed based on the DEGs 

using the WGCNA package. The normalized count was 

used when WGCNA was conducted and was standardized 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.gtexportal.org/home/
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by the TMM method of the R package edgeR. The 

parameters used for WGCNA were as follows: 

minModuleSize = 25, mergeCutHeight = 0.25, corType = 

“pearson”. To identify which co-expression module had 

the highest relevance to the clinical phenotype, we applied 

the module-trait association method. Genes were 

clustered, and a heat-map was drawn to illustrate the 

association between modules and phenotype. All analyses 

were conducted using R Bioconductor. 

 

Gene ontology (GO) and Kyoto encyclopedia of 

genes and genomes (KEGG) enrichment analysis for 

co-expression modules 

 

To get a comprehensive understanding of the function 

of genes associated with AML, a functional annotation 

was carried out for the two most relevant modules using 

Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) (https://david.ncifcrf.gov/). GO 

and KEGG analyses were accordingly applied. Results 

with P-value < 0.05 were considered as significant 

terms and pathways, respectively. 

 

PIVOT analysis for identifying transcription factors, 

non-coding RNAs, and drugs associated with modules 

 

To investigate the gene transcription and post-

transcriptional regulations in the co-expression modules, 

we carried out PIVOT analysis. Non-coding RNA-gene 

interactions and transcription factor target data were 

downloaded from RAID and TRRUST databases, 

respectively. P-value < 0.01 indicated a significant 

interaction between the PIVOT regulator and the 

module. R Bioconductor was used for predicting the 

target non-coding RNAs/transcriptions factors associated 

with the modules. Module-related drugs were also 

screened by the same method. Drugs associated with 

AML were extracted from the DRUGBANK Database. 

 

Survival analysis 

 

By considering patients with available gene expression 

data and clinical data, a total of 132 samples were 

enrolled in the survival analysis. Hub genes identified 

from the two most relevant modules were selected for 

the survival analysis. Survival data including the overall 

survival (OS) time and the living status were 

downloaded from TCGA database. Survival analysis 

was performed using the Kaplan-Meier method using R 

Bioconductor. Adjusted P values <0.05 were considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3, 4. 

 

Supplementary Table 1. Detailed gene information for each module. 

 

Supplementary Table 2. TFs and ncRNAs related to blue and turquoise modules. 

module ncRNA connection pvalue 

blue AC058791 56 0.000861 

blue AFAP1-AS1 590 5.31E-06 

blue ANCR 795 1.31E-07 

blue BANCR 311 0.003088 

blue CASC15 120 0.000202 

blue CISTR 2883 2.80E-18 

blue CRNDE 1984 6.75E-14 

blue FBXL19-AS1 30 0.007103 

blue FENDRR 2672 1.39E-28 

blue FMR1-AS1 619 3.66E-06 

blue GAS5 1067 0.000113 

blue LINC00673 157 0.005009 

blue LINC01242 24 0.003754 

blue MALAT1 1569 1.04E-10 

blue MEG3 12 0.000459 

blue MIR17HG 800 4.69E-07 

blue NORAD 1028 0.001439 

blue NRAV 622 1.91E-09 

blue NRCP 221 4.35E-05 

blue RAD51-AS1 905 7.89E-08 

blue RP5-1039K5 27 0.005269 

blue SBF2-AS1 275 0.000336 

blue SLC25A25-AS1 169 0.00741 

blue SNHG16 723 0.003953 

blue TFAP2A-AS2 620 0.00071 

turquoise AC005618.1 4 0.004255 

turquoise AC007563 5 0.006965 

turquoise AC012593 4 0.004255 

turquoise AQP4-AS1 5 0.006965 

turquoise BANCR 311 0.000969 

turquoise CISTR 2883 3.52E-14 

turquoise CRNDE 1984 6.87E-25 

turquoise CTA-212A2 30 0.001183 

turquoise CTD-3099C6 4 0.004255 

turquoise DLX6-AS1 14 0.005798 

turquoise DNAJC27-AS1 4 0.004255 

turquoise DRAIC 386 5.07E-11 

turquoise FENDRR 2672 2.57E-18 

turquoise FMR1-AS1 619 5.27E-16 

turquoise GAS5 1067 5.20E-09 
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turquoise HELLPAR 138 0.000106 

turquoise LINC01247 3 0.002167 

turquoise LOC100996455 3 0.002167 

turquoise LOC101927450 3 0.002167 

turquoise LOC101927497 237 1.12E-13 

turquoise LOC101928404 3 0.002167 

turquoise MALAT1 1569 3.33E-35 

turquoise MIR17HG 800 4.93E-05 

turquoise MIR663AHG 15 0.007103 

turquoise NORAD 1028 1.83E-05 

turquoise NRCP 221 0.000128 

turquoise RAD51-AS1 905 2.39E-12 

turquoise AC103702.1 65 0.001888 

turquoise RP11-438D14 2 0.000736 

turquoise RP11-539I5 2 0.000736 

turquoise RP11-96C23 3 0.002167 

turquoise RP4-669H2 3 0.002167 

turquoise RP5-1039K5 27 0.000717 

turquoise SBF2-AS1 275 2.84E-09 

turquoise SENCR 123 0.006505 

turquoise SNHG16 723 4.00E-11 

turquoise STXBP5-AS1 284 1.27E-05 

turquoise TFAP2A-AS2 620 1.50E-23 

turquoise TRG-AS1 2 0.000736 

turquoise TUG1 228 8.76E-22 

 

Supplementary Table 3. The results of GO and KEGG biofunctional analysis in black module. 

 

Supplementary Table 4. The results of GO and KEGG biofunctional analysis in red module. 


