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INTRODUCTION 
 

Glioma is the most common primary intracranial tumor 

and represents approximately 50% of primary brain 

tumors that cause significant mortality and morbidity [1–
3]. Despite very intensive treatments, glioblastoma 

multiforme (GBM), which is the most aggressive and 

devastating glioma histology, has a median overall 

survival of less than 2 years [4]. Surgery, chemotherapy 

and radiotherapy are the conventional treatments for 

GBM, and chemoresistance is a common limitation of 

successful GBM treatment [5, 6]. Recently, studies have 

indicated that virus infection-associated chemoresistance 

has been reported in several cancers [7, 8] but their role 

in GBM treatment has not been clearly demonstrated. 

Hence, exploring the roles and mechanisms of virus 
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ABSTRACT 
 

Chemoresistance is a common limitation for successful treatment of glioblastoma multiforme (GBM). Recently, 
virus infections have been demonstrated to be associated with tumorigenesis and chemoresistance in tumors. 
However, the role of infection-related genes in GBM haven’t been clearly demonstrated. Here, we explored the 
roles and mechanisms of human T-lymphotropic virus type-1 (HTLV-1) infections in tumorigenesis and 
chemoresistance in GBM. Four candidate genes, CDKN1A, MSX1, MYC and CHEK2, were identified to be the 
codifferentially expressed genes between three temozolomide (TMZ) chemotherapy datasets and one HTLV-1 
infection gene set. Next, comprehensive bioinformatics data from several databases indicated that only 
CDKN1A was significantly upregulated in both GBM tissues and cells and showed the greatest prognostic value 
in GBM patients. Clinical data identified the correlations between CDKN1A expression and clinicopathological 
parameters of GBM patients. Moreover, CDKN1A was found to be involved in AKT-mediated TMZ resistance of 
glioma cells. In addition, KEGG analysis of CDKN1A-associated coexpression genes showed that CDKN1A was 
potentially involved in complement and coagulation cascades pathways in GBM. Finally, TISIDB database was 
used to investigate the role of CDKN1A in tumor-immune system interactions in GBM. These findings enhanced 
our understanding of the roles of CDKN1A in tumorigenesis and therapy response in GBM. 
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infection-associated chemoresistance in GBM is a critical 

need and may offer promise for a novel therapeutic 

biomarker in GBM. 

 

Cyclin dependent kinase inhibitor 1A (CDKN1A), a 

cell cycle inhibitor, is directly controlled by p53-

dependent or independent pathways and is involved 

in terminal differentiation, stem cell renewal, 

apoptosis and cell migration. It has become 

increasingly clear that CDKN1A can function as an 

oncogene or as a classic tumor suppressor [9]. 

Serving as an oncogene, cytoplasmic CDKN1A was 

reported to promote oncogenic transformation of 

HER-2-positive breast cancer cells [10]. In contrast, 

CDKN1A inhibition by LincRNAFEZF1-AS1 

promoted cell proliferation in gastric cancer [11]. 

Moreover, CDKN1A was also reported to play a 

critical role in the immune microenvironment in 

tumors. Price JG et al. demonstrated that CDKN1A 

can regulate Langerhans cell survival and promote 

Treg cell generation upon exposure to ionizing 

radiation in cutaneous tumors [12]. However, the 

detailed function and mechanism of CDKN1A in the 

tumorigenesis and immune infiltration of GBM have 

not yet been investigated. 

 

Several studies have reported that some key factors 

related to the immune response were obviously altered 

in GBM and subsequently resulted in tumor immune 

evasion [13–15]. In addition to the classic treatments 

(e.g. surgery, chemotherapy and radiotherapy), immune 

therapy is increasingly considered a particularly 

promising treatment modality for tumors that stimulates 

the immune system and activates specific immune cells 

to attack tumor cells [16, 17]. Several parameters 

related to the immune system have been identified to 

predict prognoses for some glioma histologies [18, 19]. 

However, comprehensive research on the immune 

microenvironment of GBM is still rare and needs 

further exploration. 

 

The purpose of the present study was to investigate the 

detailed roles and mechanisms of human T-

lymphotropic virus type-1 (HTLV-1) infection-related 

genes for GBM chemotherapy. By analyzing the 

available data from several public databases, the 

HTLV-1 infection-related gene, CDKN1A, was found 

to influence the GBM chemotherapy response. 

Moreover, higher expression of CDKN1A was 

identified in GBM tissues and cell lines and was 

correlated with poor prognoses of GBM patients. 

Furthermore, by colony formation assay, transient 

transfection assay and western blot, we found that 
CDKN1A was highly expressed in TMZ-resistant 

glioma cells and involved in AKT-mediated TMZ 

resistance of glioma cells. 

RESULTS 
 

Identification of differentially expressed genes 

between the cases and controls 

 

Recently, the development of resistance to TMZ has 

become a common limitation for successful GBM 

treatment [20]. To screen the co-DEGs between the 

untreated group and TMZ-treated group, we analyzed the 

gene expression profiles from three publicly available 

datasets regarding TMZ chemotherapy from the GEO 

platform, namely, GSE43452, GSE65363 and GSE80729. 

Using the screening criteria of p-value < 0.05, we 

identified 1659 genes in GSE43452, 3962 genes in 

GSE65363 and 1858 genes in GSE80729 (Table 1). Next, 

using the Venn analysis provided by FunRich, 74 genes 

were found to be significantly codifferentially expressed 

in all three datasets (Figure 1A, Supplementary Table 1). 

The co-DEGs from three datasets were presumed to have 

an impact on the chemotherapy response of GBM. 
 

Virus infections have been reported to be involved in the 

development of GBM [21, 22]. Next, we explored the 

roles of HTLV-1 infections on the development and 

chemoresistance of GBM. The HTLV-1 infection-related 

gene set was extracted from the MalaCards database and 

four HTLV-1 infection-related genes, namely, CDKN1A, 

MSX1, MYC and CHEK2, were identified in the 

aforementioned co-DEGs of the three datasets (Figure 1B). 

These four genes were hypothesized to have an influence 

on virus infection-associated chemoresistance in GBM. 

 

CDKN1A shows the greatest prognostic value in 

GBM 

 

The associations between the expression levels of 

CDKN1A, MSX1, MYC and CHEK2 and prognosis in 

GBM patients were analyzed using the GEPIA database. 

Notably, high CDKN1A expression was marginally 

associated with poor prognosis in GBM patients (Figure 

2A), but the other three genes did not exhibit significant 

prognostic value (Figure 2B, 2C). Similar findings were 

identified by the GlioVis database. As shown in 

Supplementary Figure 1, CDKN1A expression levels 

significantly impacted prognosis in GBM but MSX1, 

MYC and CHEK did not have obvious associations with 

survival in GBM. Based on these results, CDKN1A, as 

the only gene that showed obvious prognostic 

significance in GBM, was selected for further study. 
 

We then analyzed the correlation between CDKN1A 

expression levels and clinicopathological parameters of 

GBM patients. The clinical data of GBM patients were 
downloaded from the Wanderer database. As shown in 

Table 2, CDKN1A expression was significantly associated 

with age (p = 0.030) and vital status (p = 0.011). 
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Table 1. The main characteristics of 3 selected studies on gene expression profiling by microarray. 

GEOa 

datasets 
Platform 

Samples size 
DEGsb Co-DEGs 

Submission 

date 
References 

Control Treatment 

GSE43452 GPL10558 2 2 1659  Jan 11, 2013 [46] 

GSE65363 GPL570 3 3 3962 74 Jan 28, 2015 N/A c 

GSE80729 GPL10558 3 3 1858  Apr 27, 2016 [47] 

Note: aGEO: Gene Expression Omnibus datasets. 
  bDEGs: differentially expressed genes. 
  cFurther information can be found at https://www.ncbi.nlm.nih.gov/geo/. 

CDKN1A is upregulated in GBM tissues and cell 

lines and impacts the treatment outcomes of GBM 

patients 

 

The expression profiles of CDKN1A were analyzed 

using two independent bioinformatics databases, 

GEPIA and GlioVis. First, the analysis results from the 

GEPIA database indicated that CDKN1A mRNA 

expression was higher in GBM tissues than that in 

noncancerous tissues (Figure 3A). Next, data from the 

GlioVis database revealed that CDKN1A mRNA 

expression levels were significantly upregulated in 

GBM tissues (Figure 3B), which was consistent with 

those obtained using the GEPIA database. Both 

databases demonstrated that CDKN1A mRNA 

expression levels were upregulated in GBM tissues. 

Meanwhile, we evaluated the protein expression levels 

of CDKN1A in GBM patients by analyzing the 

immunohistochemical data from the Human Protein 

Atlas. As shown in Figure 3C, significantly elevated 

levels of CDKN1A was found in the glioma tissues. 

Further analysis using the CCLE database to study 

CDKN1A expression profiles in GBM cell lines and the 

heatmap revealed elevated CDKN1A expression levels 

in most GBM cell lines (Figure 3D). 

 

To further determine the effect of CDKN1A on the 

treatment outcomes of GBM patients, we checked the 

expression level of CDKN1A in three microarray datasets 

related to TMZ chemotherapy. The data from these three 

datasets, GSE43452, GSE65363 and GSE80729, all 

showed that treatment with the anticancer agent TMZ 

clearly upregulated CDKN1A expression in human GBM 

cells (Figure 4A–4C). In addition, the expression levels of 

CDKN1A might be negative correlation with TMZ 

activity in 79 glioma cells from CellMinerCDB [23] 

(Figure 4D, Supplementary Table 4). 

 

The above results indicated that CDKN1A expression 

levels were upregulated in both GBM tissues and cell 

lines and may influence the chemotherapy responses of 

GBM patients. 

 

 
 

Figure 1. Venn diagrams of gene expression microarray datasets. (A) The 74 co-DEGs in three publicly available datasets including 

GSE43452, GSE65363 and GSE80729. (B) CDKN1A, MSX1, MYC and CHEK2 were consistently identified between 74 co-DEGs and one HTLV-1 
infection-related gene set. Each rectangle represents a dataset. The number in each overlapping region represents the number of 
differentially expressed genes. The intersection in the middlemost area represents the number of genes that were consistently differentially 
expressed in all these datasets. 

https://www.ncbi.nlm.nih.gov/geo/
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CDKN1A was involved in TMZ resistance of glioma 

cells 

 

To verify the promoting effect of CDKN1A on cell 

chemoresistance, we detect CDKN1A expression in 

TMZ-resistant glioma cell lines (U87-R and T98G-R 

cells) and their parental cell lines (U87 and T98G cells). 

First, using the colony formation assay, we proved that 

U87-R and T98G-R cells were indeed significantly 

more resistant to the therapy of TMZ compared with 

U87 and T98G cells, respectively (Figure 5A–5D). 

After this, CDKN1A and p-CDKN1A expression was 

further found to be higher in U87-R and T98G-R cells 

compared with that in U87 and T98G cells, respectively 

(Figure 5E–5G). These data thus suggested that 

CDKN1A may played a critical role in TMZ resistance 

of GBM cells. 

 

Studies have shown that AKT signaling pathway plays 

an important role in chemoresistance of GBM [24]. 

Thus, we then investigated whether the effect of 

CDKN1A on cell chemoresistance was associated with 

AKT activity. Western blot analysis showed that the 

expression of p-AKT, a constitutively active form of 

AKT, was significantly higher in TMZ-resistant glioma 

cells compared with that in their parental cells, whereas 

the expression of total AKT has no change, indicating 

that AKT played a critical role in chemoresistance of 

 

 
 

Figure 2. Prognostic values of CDKN1A, MSX1, MYC and CHEK2 in GBM. (A–D) Kaplan-Meier analysis of overall survival between the 

samples with high expression of the four genes and those with low expression in GBM by using the GEPIA database. 
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Table 2. Correlation of CDKN1A with clinicopathological parameters in GBM. 

Characteristics Case  
CDKN1A 

Mean ± SD P-value 

Gender    

  Female 20 11.35 ± 1.27  

  Male 26 11.20 ± 0.94 0.451b 

Age    

  ≥ 50 39 11.43 ± 0.92  

  < 50 7 10.34 ± 1.51 0.030b 

Race    

  White 44 11.26 ± 1.03  

  Black or African American 2 11.40 ± 2.60 0.829b 

Ethnicity    

  Not Hispanic or Latino 30 11.20 ± 1.15  

  Hispanic or Latino 1 11.30 ± 0.00 0.955b 

Vital status     

  Alive 22 10.78 ± 1.11  

  Dead 24 11.71 ± 0.86 0.011b 

Tumor status    

  With tumor 36 11.30 ± 1.18  

  Tumor free 5 11.28 ± 0.68 0.858b 

Performance status timing    

  Pre-adjuvant therapy 20 11.29 ± 1.20  

  Post-adjuvant therapy 2 10.52 ± 2.19  

  Pre-operative 5 11.39 ± 0.52 0.828a 

Significant P values are underlined. 
aKruskal–Wallis rank test. 
bMann–Whitney U test. 

GBM (Figure 6A). We then treated TMZ-resistant 

glioma cells with the specific inhibitor to AKT, 

MK2206, and found that MK2206 treatment 

significantly suppressed phosphorylation of CDKN1A 

at Ser473 (Figure 6B). However, the down-regulated 

expression of CDKN1A had no effect on AKT 

expression in TMZ-resistant glioma cells, suggesting 

that CDKN1A was a downstream regulatory molecule 

of AKT (Figure 6C). Next, we treated TMZ-resistant 

glioma cells with both MK2206 and siCDKN1A, as 

shown in Figure 6D, 6E, the inhibitory effect on p-

CDKN1A expression was remarkably increased by 

combinational treatment. We performed a colony 

formation assay and observed that TMZ-resistant 

glioma cells treated with both MK2206 and siCDKN1A 

had a significantly lower number of colony formation 

compared with the control group and either of the 

individual treatment groups (Figure 6F, 6G). The above 

results indicated that CDKN1A was involved in AKT-

mediated TMZ resistance of glioma cells. 

 

Functional enrichment analysis of CDKN1A-

associated coexpression genes 

 

To further understand the potential role of CDKN1A in 

GBM development, we performed functional enrichment 

annotation analysis of its coexpressed genes. We 

extracted the datasets (TCGA-GBM) from TCGA to 

screen DEGs that interact with CDKN1A from the 

GlioVis database. As shown in Figure 7A and 

Supplementary Table 3, 99 genes were acquired using 

screening criteria of |LogFC| ≥1.3 and P≤0.05. Then, a 

PPI network of the genes that coexpressed with 

CDKN1A was created with the STRING database and 

Cytoscape software (Figure 7B). To further understand 

the biological functions of these coexpressed genes, 

KEGG pathway analyses were conducted by using the 

DAVID database. The results showed that these 

coexpressed genes were functionally enriched in several 

pathways which were mostly those involving 

complement and coagulation cascades (Figure 7C). 

 

Regulation of immune molecules by CDKN1A 

 

Guglietta S et al. reported that the complement and 

coagulation cascade pathways were associated with 

protumorigenic phenotypes of immune cells and 

protection of tumor cells from immune attack which 

ultimately favor the development and metastasis of 

tumors [25]. Therefore, we investigated the associations 

between CDKN1A expression and lymphocytes and 

immunomodulators using the TISIDB database. Figure 
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8A shows the positive correlation between CDKN1A 

expression and tumor-infiltrating lymphocytes (TILs) in 

GBM patients. Additionally, the lymphocytes that 

exhibited the most significant correlations included 

central memory CD4 T cells (Tcm_CD4, Spearman: ρ= 

0.543), plasmacytoid dendritic cells (pDC, Spearman: 

ρ= 0.508), activated dendritic cells (Act_DC, Spearman: 

ρ= 0.508) and type-1 T helper cells (Th1, Spearman: ρ= 

0.454) (Figure 8B). Immunomodulators have been 

classified into three types of molecules which include 

immunoinhibitors, immunostimulators and major 

histocompatibility complex (MHC) molecules. Figure 

8C shows the correlation between CDKN1A expression 

and immunostimulators; the immunostimulators 

displaying the most significant correlations included 

TNFSF13 (Spearman: ρ= 0.429), CD276 (Spearman: ρ= 

0.420), TNFRSF14 (Spearman: ρ= 0.420) and CD86 

(Spearman: ρ= 0.351) (Figure 8D). Figure 8E shows the 

correlations between CDKN1A expression and 

immunoinhibitors; those immunoinhibitors displaying 

the most significant correlations included TGFB1 

(Spearman: ρ= 0.498), PVRL2 (Spearman: ρ= 0.451), 

CD274 (Spearman: ρ= 0.420) and IL10RB (Spearman: 

ρ= 0.417) (Figure 8F). Figure 8G shows the correlations 

between CDKN1A expression and MHC molecules; the 

MHC molecules that showed the most significant 

correlations included HLA-A (Spearman: ρ= 0.507), 

HLA-B (Spearman: ρ= 0.488), TAP1 (Spearman: ρ= 

0.438), and TAPBP (Spearman: ρ= 0.437) (Figure 8H). 

We speculate that since CDKN1A was significantly 

correlated with various types of tumor-infiltrating 

lymphocytes, immunoinhibitors, immunostimulators 

and MHC molecules in GBM, it might exert a more 

significant effect on immune fingerprinting in GBM. 

 

 
 

Figure 3. Analysis of the CDKN1A expression levels in GBM tissues and cell lines. (A, B) The mRNA expression of CDKN1A in GBM 

tissues was detected by using the GEPIA and GlioVis databases. (C) the Human Protein Atlas project showed representative 
immunohistochemical images of CDKN1A in GBM tissues compared with surrounding normal tissues. (D) The expression levels of CDKN1A in 
GBM cell lines was detected by using the CCLE database. 
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DISCUSSION 
 

Our research group aimed to investigate critical and 

novel biomarkers involved in the development of  

virus infection-associated chemoresistance of GBM. 

Intriguingly, four genes including CDKN1A, MSX1, 

MYC and CHEK2 were identified by screening co-

DEGs in three TMZ chemotherapy-related databases 

and one HTLV-1 infection-related gene set. However, 

only CDKN1A expression showed a significant 

correlation with poor prognosis in GBM patients with 

remarkable consistency between two independent 

bioinformatics platforms. CDKN1A, which was also 

found to be upregulated in GBM tissues and cell lines 

and impacted treatment outcomes of GBM patients, was 

selected for further in-depth investigations of its 

biological processes and signaling pathways as well as 

its correlations with immune regulation. 

 

 
 

Figure 4. The effect of CDKN1A on the therapeutic response of GBM patients. (A–C) GSE43452, GSE65363 and GSE80729 are three 

microarray datasets related to TMZ chemotherapy and are employed to identify the impacts of CDKN1A expression levels on GBM therapy. 
(D) the expression levels of CDKN1A might be negative correlation with TMZ activity in 79 glioma cells from CellMinerCDB. 
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Figure 5. CDKN1A and p-CDKN1A were highly expressed in TMZ-resistant glioma cells. (A, B) Compared with U87 cells, U87-R cells 

were significantly more resistant to the therapy of TMZ by using the colony formation assay. (C, D) Compared with T98G cells, T98G-R cells 
were significantly more resistant to the therapy of TMZ by using the colony formation assay. (E–G) Compared with U87 and T98G cells, the 
protein expression levels of CDKN1A and p-CDKN1A were significantly higher in U87-R and T98G-R cells, respectively. The results were 
presented as means ± SD (n = 3 for each panel). Statistical significance was concluded at *P < 0.05. 
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Figure 6. CDKN1A was involved in TMZ resistance of glioma cells. (A) Western blot for phospho-Akt (Ser-473), Akt in U87, U87-R 

T98G, and T98G-R cells. (B) Western blot for phospho-Akt (Ser-473), Akt, phospho-CDKN1A, and CDKN1A in U87-R or T98G-R cells treated 
with DMSO and the specific inhibitor to AKT MK2206. (C) Western blot for phospho-Akt (Ser-473), Akt, phospho-CDKN1A, and CDKN1A in 
U87-R or T98G-R cells treated with siCtrl and siCDKN1A. (D) Western blot for phospho-Akt (Ser-473), Akt, phospho-CDKN1A, and CDKN1A in 
U87-R cells treated with DMSO, MK2206, siCDKN1A and MK2206 plus siCDKN1A. (E) Western blot for phospho-Akt (Ser-473), Akt, phospho-
CDKN1A, and CDKN1A in T98G-R cells treated with DMSO, MK2206, siCDKN1A and MK2206 plus siCDKN1A. (F, G) Colony formation assay of 
U87-R or T98G-R cells treated with DMSO, MK2206, siCDKN1A and MK2206 plus siCDKN1A. The results were presented as means ± SD (n = 3 
for each panel). Statistical significance was concluded at *P < 0.05, **P < 0.01. 
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CDKN1A is a cyclin-dependent kinase inhibitor [26, 

27], and an important versatile cell cycle regulator that 

is involved in cell migration and autophagy and is often 

deregulated in various cancers [9]. CDKN1A appears to 

exhibit dual-role behavior and acts either as an 

oncogene or tumor suppressor depending on the cell 

types or cellular localization [28]. A complex of 

cytoplasmic CDKN1A together with ectopic expressed 

cytosol-resided p53/CDKN1A complex suppressed cell 

invasion by targeting Bcl-2 family proteins in non-small 

cell lung cancer [29]. It has also been shown that the 

wild-type p53/CDKN1A complex can induce slug 

protein degradation and further suppress cell invasion 

[30]. In an opposite manner, Akt-activated CDKN1A 

was found to accelerate tumor onset and promote lung 

metastasis in vivo [31]. Cytoplasmic CDKN1A was 

reported to promote cell migration and invasion abilities 

in gastric cancer [32]. Similarly, Kreis NN et al. 

revealed that suppression of CDKN1A could inhibit 

migration and invasion in various cancer cell lines [33]. 

In some cases, CDKN1A phosphorylation by activated 

AKT1 prevents the nuclear translocation of CDKN1A 

and retains it in the cytoplasm, which is crucial for the 

pro-survival functions of CDKN1A [34, 35]. 

Cytoplasmic CDKN1A exhibits its oncogenic function 

might be dependent on non-traditional cytoplasmic 

 

 
 

Figure 7. Functional enrichment analysis of CDKN1A-associated coexpression genes. (A) The coexpression genes of CDKN1A were 
shown as a heatmap via GlioVis. (B) The PPI network of CDKN1A-associated coexpression genes was created by the STRING and Cytoscape 
software. (C) The significant KEGG pathways associated with the CDKN1A coexpression genes were identified using the DAVID database. 
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targets of the protein. However, the detailed roles of 

CDKN1A in human brain tumors, especially GBM, 

have rarely been studied. In this study, we first 

demonstrated the prognostic value and potential roles of 

CDKN1A in GBM biology. We found that CDKN1A 

was involved in AKT-mediated TMZ resistance of 

glioma cells. 

 

Recently, increasing evidence has indicated that tumor 

microenvironments and immune infiltration play a vital 

role on tumor development and chemoresistance [36–

39]. Immunotherapy has emerged as a powerful tool for 

tumor treatment that targets and attacks tumor cells by 

stimulating the body's own immune system to recognize 

tumor cells and activate specific immune cells [40]. 

Glioblastoma is a very lethal form of human brain 

cancer with an extremely poor prognosis, which makes 

the development of novel therapeutic strategies 

targeting GBM of paramount importance. Immune 

therapy with the combination of conventional treatment 

(such as surgery, chemotherapy, and radiation) 

represents a particularly promising approach [41]. In 

this study, the correlation between CDKN1A and the 

immune system was assessed with the TISIDB 

database, and the results revealed that CDKN1A had the 

highest correlation with tumor-infiltrating lymphocytes 

including Tcm_CD4, pDC, Act_DC and Th1. 

Furthermore, CDKN1A had the most significant 

correlations with immunostimulators (such as 

TNFSF13, CD276, TNFRSF14 and CD86), immuno-

inhibitors (such as TGFB1, PVRL2, CD274 and 

IL10RB) and MHC molecules (such as HLA-A, HLA-

B, TAP1 and TAPBP). DC-based vaccination is a basic 

form of immunotherapy and is critical for initiating and 

boosting anti-GBM immunity. Audencel, a DC-based 

cancer vaccine, was found to significantly upregulate 

Th1-related immunovariables and had effects on the 

immune system of GBM patients [42]. CD276 (B7-H3) 

is an immune checkpoint molecule and plays critical 

roles in T-cell suppression in GBM, which leads to 

better understanding of target pathways for 

immunotherapy in GBM [43]. As the most well-known 

recent biomarker in the cancer research field, PD-L1, 

also named CD274, was found to be upregulated in 

IDH1/2 wild-type GBM [44]. Blockade of the PD-

L1/PD-1 axis has been reported to reduce Treg 

expansion and further improve T cell function and thus 

prevent immunosuppression in GBM [45]. Together, 

these findings suggest that CDKN1A, which is 

associated with these immune molecules, plays a vital 

 

 
 

Figure 8. Correlation of CDKN1A expression with lymphocytes and immunomodulators in GBM. (A) The correlation between 
CDKN1A expression and TILs. (B) The top four TILs showing the most significant correlations with CDKN1A expression. (C) The correlation 
between CDKN1A expression and immunostimulators. (D) The top four immunostimulators showing the most significant correlations with 
CDKN1A expression. (E) The correlation between CDKN1A expression and immunoinhibitors. (F) The top four immunoinhibitors showing the 
most significant correlation with CDKN1A expression. (G) The correlation between CDKN1A expression and MHC molecules. (H) The top four 
MHC molecules showing the most significant correlation with CDKN1A expression. 
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role in immune escape in GBM microenvironments and 

can potentially serve as an immunotherapeutic target for 

GBM. 

 

Nevertheless, there were several limitations in the present 

study that need to be mentioned. First, patient ethnicities 

in the TCGA database were mainly white and black, and 

more studies including other ethnic groups should be 

investigated further. Additionally, most of the datasets 

analyzed here were collected retrospectively, so further 

prospective studies are needed. Moreover, although 

attractive findings were identified in this study, more 

functional and mechanistic experiments and large-scale 

clinical trials are still required to confirm the clinical 

application value of CDKN1A. 

 

In summary, this is the first report that CDKN1A is 

associated with the HTLV-1 infection-related 

chemoresistance of GBM and shows a significant 

correlation with poor prognosis. Moreover, CDKN1A is 

upregulated in GBM and might serve as a promising 

biomarker in the treatment of GBM patients. 

Furthermore, CDKN1A was found to be involved in 

AKT-mediated TMZ resistance of glioma cells. In 

addition, CDKN1A expression is related to tumor-

infiltrating lymphocytes and immunomodulators. 

Therefore, our findings suggest that CDKN1A likely 

plays a critical role in immune cell infiltration and is a 

promising prognostic biomarker in patients with GBM. 

 

MATERIALS AND METHODS 
 

Data acquisition and reanalysis using different 

bioinformatics tools 

 

The roles of HTLV-1 infection-associated 

chemoresistance of GBM were explored using several 

bioinformatics resources which are summarized in Table 

3. Three temozolomide (TMZ) therapeutic transcriptome 

microarray datasets, GSE43452 [46], GSE65363 and 

GSE80729 [47], were downloaded from the gene 

expression omnibus (GEO) database (Table 1) [48]. 

Codifferentially expressed genes (co-DEGs) were 

identified in these three datasets using a Venn diagram. 

Next, we downloaded a comprehensive HTLV-1 

infection related gene set from the MalaCards database 

(Supplementary Table 2) [49]. CDKN1A and other three 

HTLV-1 infection related genes were identified in the co-

DEGs of the three GEO datasets and a corresponding 

Venn diagram was created by FunRich software [50]. 

 

Gene expression profiling interactive analysis (GEPIA) 

and GlioVis were used to explore the relationships 

between the values of the four HTLV-1 infection-

related genes and GBM prognoses. GEPIA, an 

interactive web server, can analyze RNA sequencing 

expression from TCGA and the GTEx projects [51]. 

GlioVis is a web-based tool and contains a large 

collection of brain tumor entries [52]. We then 

estimated the relevance among the CDKN1A 

expression and clinicopathological parameters of GBM 

patients using clinical data downloaded from Wanderer, 

which is an interactive viewer containing gene 

expression profiles from TCGA [53]. 

 

The expression levels of CDKN1A in GBM tissues and 

cell lines were analyzed in the following four databases. 

The GEPIA and GlioVis databases were also used to 

analyze the mRNA expression levels of CDKN1A in 

GBM tissues. The Human Protein Atlas (HPA) was used 

to analyze the protein expression levels of CDKN1A in 

GBM tissues [54]. An encyclopedia of cancer cell lines 

(CCLE) [55] was used to analyze CDKN1A expression 

in different GBM cell lines. Chemotherapy-related 

datasets, including GSE43452, GSE65363 and 

GSE80729, were used to explore the impact of CDKN1A 

expression on the chemotherapy response of GBM. 

 

Next, CDKN1A-associated coexpression genes in GBM 

pathology were downloaded from GlioVis. We 

constructed a protein-protein interaction (PPI) of these 

coexpression genes from STRING which is a database 

that integrates known and predicted PPI networks from 

many organisms [56, 57]. Then, Cytoscape software, a 

tool that visually integrates networks with phenotypes and 

gene expression profiles was used to perform detailed 

visualization [58, 59]. Moreover, we utilized the database 

for annotation, visualization and integrated discovery 

(DAVID) to conduct a KEGG pathway analysis of the 

coexpression genes with CDKN1A in GBM [60]. 

 

The TISIDB database is an integrated repository portal 

for tumor-immune system interactions [61]. In this 

study, using the TISIDB database, we analyzed the 

correlation between CDKN1A expression in GBM 

patients and tumor-infiltrating lymphocytes (TILs) and 

immunomodulators. 

 

Cells and reagents 

 

The TMZ-resistant glioma cell lines (U87-R and T98G-

R) and their parental cell lines (U87 and T98G) were 

established and cultured as previously described [20]. 

MK2206 was purchased from Selleck Chemicals and 

dissolved in dimethylsulfoxide (DMSO) (Sigma, USA). 

The exposed concentrations of TMZ, MK2206 were 

200 and 5mM, respectively. 

 

Colony formation assay 

 

For the colony formation assay, the methods were 

described previously [62]. 
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Table 3. The main bioinformatics tools used to analyze the role of CDKN1A in GBM. 

Database Samples URL References 

MalaCards Tissues https://www.malacards.org/ [49] 

FunRich – http://www.funrich.org [50] 

GEPIA Tissues http://gepia.cancer-pku.cn/ [51] 

GlioVis Tissues http://gliovis.bioinfo.cnio.es/ [52] 

Wanderer Tissues http://maplab.imppc.org/wanderer/ [53] 

THPA Tissues http://www.proteinatlas.org/ [54] 

CCLE Cell lines https://portals.broadinstitute.org/ccle/ [55] 

STRING – http://string-db.org/ [56] 

Cytoscape – https://cytoscape.org/ [58] 

DIVID Tissues https://david.ncifcrf.gov/ [60] 

TISIDB Tissues http://cis.hku.hk/TISIDB [61] 

 

Protein extraction and quantification 

 

Protein extraction was carried out as previously 

described [63]. Protein concentration was determined 

by DC (detergent compatible) protein assay (Bio-Rad 

Laboratories, USA) according to manufacturer’s 

instructions. 

 

Western blot 

 

Protein samples were resolved by SDS-PAGE, 

transferred to polyvinylidene difluoride membrane, and 

hybridized with antibodies specific to CDKN1A (2946; 

Cell Signaling Technology, USA), p-CDKN1A (PA5-

37519; Invitrogen), AKT (9272s, Cell Signaling 

Technology, USA), p-AKT (4060, Cell Signaling 

Technology, USA), GAPDH (sc-47724; Santa Cruz, 

USA). The blots were developed by the enhanced 

chemiluminescence reagent (Thermo Scientific Pierce 

ECL, USA), visualization of the protein bands was con-

ducted in the ChemiDoc XRS system (Bio-Rad, USA). 

 

Transient transfection 

 

For transient transfections, the two TMZ-resistant 

glioma cell lines (U87-R and T98G-R) were transfected 

with siRNAs for CDKN1A (siCDKN1A, 5, - GAUGUC 

CGUCAGAACCCAUGCGGCA-3’) using Lipofecta 

mine 3000 reagent (Invitrogen, USA) according to the 

manufacturer's instruction. After the indicated 

incubation times, the cells were harvested and analyzed. 

 

Statistical analyses 

 

Statistical analyses were performed with SPSS 12.0 

software (IBM Analytics, USA). All experiments were 

performed in at least triplicate with mean ± SD subjected 
to Student’s t-test. Kaplan-Meier analysis was performed 

to analyze survival rates for GBM. The differential 

mRNA expression between cancer and noncancer tissues 

or between the control group and treatment group were 

analyzed using Student’s t-test. The associations  

between CDKN1A expression and clinicopathologic 

characteristics in GBM patients were assessed using the 

Kruskal–Wallis rank test or Mann–Whitney U test. 

Correlations between genes were analyzed using 

Pearson's correlation coefficient. *p < 0.05, and **p < 

0.01 were defined as statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Prognostic values of CDKN1A, MSX1, MYC and CHEK2 in GBM. (A–D) Kaplan-Meier analysis of overall 
survival among the samples with high expression levels of the four genes and those with low expression levels in GBM by using GlioVis 
database. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 4. 

 

Supplementary Table 1. The 74 co-differentially expressed genes (co-DEGs) in all three GEO datasets. 

GDF15 HSPA4L CYP26B1 DOCK7 IRS1 RRM2B CHEK2 BOLA2 GAB1 SLC25A45 

CDKN1A ACTA2 AEN TRIM22 CYFIP2 ERCC6L CA9 CSF3 NTPCR CDK5RAP2 

BTG2 PLXNB2 SNAI2 SYNCRIP TNFRSF10B SPATA18 TMEFF2 SERPINE1 BNIP3 DUSP5 

HIST1H2BK STOM FST UNG CYP1B1 RBM4 NRG1 MYLK RALGDS GAS6 

SESN1 SUGCT KIF2C DDIT4 TIGAR MYC COL12A1 PLOD2 C10orf88 ARPP21 

DDB2 IP6K2 ZMAT3 CDH4 TIMELESS MCL1 ZNF337 TNFRSF14 GPER1 SGK223 

TP53INP1 XPC SOCS3 SDC1 FAM111A CMBL CBLL1 MSMO1 PTPRR NHS 

CBX4 AHNAK MSX1 PARVB       

 

Supplementary Table 2. The Genes in the Human T-cell leukemia virus 1 infection. 

AKT3 CDK2 CDK4 CDKN1A CDKN2A CDKN2B CDKN2C ANAPC10 CREB3 KAT5 

ADCY2 ADCY3 ADCY5 CHEK1 ADCY6 CHEK2 ADCY7 ADCY8 CHUK ADCY9 

ATF2 CREBBP ATF6B CSF2 CREB3L4 DLG1 E2F1 E2F2 E2F3 EGR1 

CRTC2 ELK1 ELK4 EP300 AKT1 AKT2 ETS1 ETS2 FDPS CRTC1 

KAT2A GPS2 SLC25A4 SLC25A5 SLC25A6 ANAPC2 ANAPC4 HLA-A HLA-B HLA-C 

HLA-DOA HLA-DOB HLA-DPA1 HLA-DPB1 HLA-DQA1 HLA-DQA2 HLA-DQB1 HLA-DRA HLA-DRB1 HLA-DRB3 

HLA-E HLA-F HLA-G HRAS XIAP ICAM1 IKBKB IL1R1 IL2 IL2RA 

IL6 IL15 IL15RA ITGAL ITGB2 JAK1 JAK3 JUN KRAS TBPL2 

LTBR MAD2L1 SMAD2 SMAD3 SMAD4 MAP3K1 MAP3K3 MMP7 MSX1 MSX2 

ATM NFATC1 NFATC2 NFATC3 NFATC4 NFKB1 NFKB2 NFKBIA NFYB NRAS 

ANAPC11 PIK3CA PIK3CB PIK3CD PIK3R1 PIK3R2 POLB ATR PPP3CA PPP3CB 

PPP3R2 PRKACA PRKACB PRKACG VAC14 MAPK1 MAPK3 MAPK8 MAPK9 MAPK10 

B2M PTEN BAX RAN RANBP1 RB1 CCND1 RELA RELB BCL2L1 

CREB3L2 CRTC3 SLC2A1 SPI1 SRF STAT5A STAT5B TBP TCF3 BUB1B 

TGFB2 TGFB3 TGFBR1 TGFBR2 TSPO TLN1 TNF TNFRSF1A TP53 VDAC1 

XPO1 ZFP36 IL1R2 FOSL1 CALR CANX TRRAP SLC25A31 TLN2 MAD1L1 

PIK3R3 IKBKG CDC23 NRP1 KAT2B CDC16 CCNA2 CCNA1 CCND2 CCND3 

CREB3L1 CCNB2 CCNE2 CD3D CD3E CD3G BUB3 CD4 PTTG1 TBPL1 

ESPL1 CDC20 CDC27 MAP2K2 ANAPC1 TGFB1 VDAC3 RANBP3 MAP3K14 CREB5 

ADCY1 TNFRSF13C EGR2 FOS HLA-DMA HLA-DRB4 IL2RB LCK MYC ANAPC5 

PPP3CC MAP2K1 MAP2K4 TERT VDAC2 CREB3L3 CCNE1 CD40 PPP3R1 ANAPC7 

PTTG2 CREB1 ADCY4 CDC26 HLA-DMB HLA-DRB5 IL2RG LTA ATF4 
 

 

Supplementary Table 3. The 99 differentially expressed genes that interact with CDKN1A from GlioVis database. 

CHI3L1 SERPINE1 TIMP1 IL8 CHL1 EFEMP2 ANXA2 HRH1 LOXL1 INA 

PTX3 FCGBP TNFAIP6 ABCC3 DDB2 SOD2 FCGR2B S100A10 C5AR1 SH3GL2 

LTF EMP3 C21orf62 IGFBP2 SERPINA1 ANXA1 ARSJ PIPOX EMP1 FGF13 

CDKN1A CA12 DPYD NAMPT STEAP3 NR2E1 MAOB PTRF ANXA2P2 FERMT1 

CXCL14 NNMT MOXD1 DIRAS3 CD44 TREM1 FZD7 S100A8 PLTP SNAP91 

CHI3L2 PLA2G2A OXTR CLEC5A TAGLN LIF PYGL WWTR1 KIAA0226L CD24 

PLA2G5 F13A1 SERPINA3 EFEMP1 HAMP SCG2 CSTA FAM129A VSIG4 DCX 

PDPN ADM SRPX SERPING1 ANGPTL4 C1S RNASE2 COL5A1 PLAU LPPR1 

CCL2 CD163 C1R IGFBP3 POSTN PLAUR C1RL FABP7 CA10 TOX3 

LOX LGALS3 CFI TRIM22 ACSS3 ALOX5AP TGFBI UPP1 DLL3  

 

Supplementary Table 4. The correlation of CDKN1A expression and TMZ activity. 


