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INTRODUCTION 
 

Aging is a complex trait that is influenced by individual 

genetics, diet, lifestyle, and environmental factors. The 

increase in life expectancy is often accompanied with 

additional years of susceptibility to chronic disorders 

such as obesity, insulin resistance, and cognitive 

impairment [1–4]. Furthermore, aging is increasingly 

recognized as being associated with a pro-inflammatory 

state that promotes the development of chronic 

diseases, hence the term “inflammaging” [5]. During 

the past decade, accumulating evidence suggests  
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ABSTRACT 
 

The interplay between microbiota and host metabolism plays an important role in health. Here, we examined 
the relationship between age, gut microbiome and host serum metabolites in male C57BL/6J mice. Fecal 
microbiome analysis of 3, 6, 18, and 28 months (M) old mice showed that the Firmicutes/Bacteroidetes ratio 
was highest in the 6M group; the decrease of Firmicutes in the older age groups suggests a reduced capacity of 
gut microflora to harvest energy from food. We found age-dependent increase in Proteobacteria, which may 
lead to altered mucus structure more susceptible to bacteria penetration and ultimately increased intestinal 
inflammation. Metabolomic profiling of polar serum metabolites at fed state in 3, 12, 18 and 28M mice 
revealed age-associated changes in metabolic cascades involved in tryptophan, purine, amino acids, and 
nicotinamide metabolism. Correlation analyses showed that nicotinamide decreased with age, while allantoin 
and guanosine, metabolites in purine metabolism, increased with age. Notably, tryptophan and its microbially 
derived compounds indole and indole-3-lactic acid significantly decreased with age, while kynurenine increased 
with age. Together, these results suggest a significant interplay between bacterial and host metabolism, and 
gut dysbiosis and altered microbial metabolism contribute to aging. 
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that the gut microbiota impacts body weight, energy 

homeostasis, innate immune system and aging [6–8]. 

For example, epidemiological studies show that loss of 

diversity in the core microbiota groups is associated 

with increased frailty [9, 10]. It is important to note that 

gut microbiota do not age per se, but people growing 

older may experience comorbidities associated with the 

gut and with gut bacteria [11]. How the microbiota in 

the gut affect the aging process, or whether gut 

microbiota simply change as a function of age, remain 

unclear. 

 

Recently, advances in analytical platforms have 

accelerated metabolomics studies, which aim to 

systematically identify and quantify a global set of 

metabolites or low-molecular-weight intermediates 

(molecular weight < 1.5 kDa) in a given biological 

system in response to pathophysiological stimuli, genetic 

modification, or environmental factors [12]. Several 

metabolomics studies reported age-related changes  

in metabolite levels and found strong correlation 

between metabolomics profiles and chronological age as 

well as longevity [13–18]. Signature metabolites that are 

associated with aging include amino acids, lipids, 

carbohydrate, TCA cycle, and redox metabolism; 

however, how these diverse metabolites regulate the 

aging process and its complex networks remains unclear. 

Furthermore, most of the serum metabolome studies 

assess the fasting state, using blood samples collected 

after overnight fasting [13–17]. Interestingly, a previous 

study comparing plasma metabolomes of conventional 

and germ-free mice at the fed state demonstrates a 

significant effect of the gut microbiome on mammalian 

blood metabolites [19]. For example, the bacterial-

mediated production of bioactive indole-containing 

metabolites derived from tryptophan is significantly 

impacted, and colonization of bacterium Clostridium 
sporogenes restores the production of indole-

metabolites. Hence, these results suggest a significant 

interplay between bacterial and host metabolism, when 

plasma profile was assessed at the fed state. 

 

In this study using mice at different ages, we first 

defined the core microbiota changes associated with 

aging, followed by serum metabolome profiling at the 

fed state. We found age-dependent changes in microbial 

taxa associated with gut dysbiosis and pro-inflammatory 

signaling, and age-associated decrease in circulating 

levels of the gut microbe-dependent metabolites  

indole and indole-3-lactic acid. Signature pathways 

associated with aging include tryptophan metabolism, 

purine metabolism, amino acids, and nicotinate and 

nicotinamide metabolism. Together, these data suggest 
that gut dysbiosis and altered gut microbial metabolism 

may contribute to the metabolic dysfunction and 

inflammation in aging. 

RESULTS 
 

Age-associated changes in microbial biodiversity and 

composition 

 

To examine the impact of age on mouse gut microbiota, 

the variable region 4 (V4) of bacterial 16S rRNA genes 

in fecal samples from 3M, 6M, 18M and 28M C57BL/6J 

male mice were amplified by PCR and sequenced using 

the Bio Scientific NEXTFlexTM platform. These mice 

were born and raised in house, and fecal samples were 

collected on the same day and stored at -80° C until 

processing. To investigate how aging affects the 

microbiota phylogenetic richness and diversity in each 

fecal sample, we analyzed the α-diversity (Figure 1A). 

The Observed index is a richness-based measure which 

calculates the actual number of unique taxa observed in 

each sample, while Chao1 analysis predicts the number 

of taxa in a sample by extrapolating the number of rare 

organisms that may have been missed due to under 

sampling [20]. Shannon diversity index is a hybrid 

measure of the richness of a sample and the evenness of 

taxa in the sample. Interestingly, the evenness index of 

Shannon and the richness measures of Observed index 

and Chao1 index all showed significant age-dependent 

increases from 3M to 28M.  

 

To compare the group differences in bacterial 

communities, the β-diversity of microbial composition 

was calculated by using principal coordinate analysis 

(PCoA). A clear age-dependent separation between the 

communities was observed at the first principal 

coordinate (PC1 axis), which explained 25.4% of the 

variance (Figure 1B). Moreover, there is an age-

dependent shift in the 4 age groups, from left to right, on 

the PC1 axis; the 18M and 28M groups overlapped on 

the PC1 axis. Interestingly, 6-months old mice showed a 

greater individual variance as suggested by the larger 

green eclipse in Figure 1B, and larger box-whisker in 

Figure 1A. Analysis of microbial composition at the 

phylum level indicated that the fecal microbiota was 

dominated by 5 major phyla: Bacteroidetes, Firmicutes, 

Proteobacteria, candidatus Saccharibacteria and 

Deferribacteres (Figure 1C). Correlation analysis  

showed that there were age-associated increases in 

Verrucomicrobia and Proteobacteria, and age-associated 

decreases in Bacteroidetes and Deferribacteres  

(Figure 1D). Interestingly, the abundance of Firmicutes 

and Candidatus peaked at 6M, then age-dependently 

decreased in 18M and 28M groups.  

 

Next, we compared microbial differences at the genus 

level (Figure 2A). To identify specific bacterial taxa or 

genus-level phylotype that contributes to age, we applied 

Linear discriminant analysis Effect Size (LEfSE); 17 

significant genera were identified as shown in Figure 2B. 
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Figure 1. Alteration in gut microbiota diversity and composition at different ages. Mice at 3-, 6-, 18- and 28 months of age  

(3M, 6M, 18M, 28M) were used (n=8, 9, 10 and 6, respectively). (A) Box-and-whisker plot showing the bacterial α-diversity measurements, 
including richness (observed species and chao1), and overall sample diversity measured according to Shannon metrics. One-way ANOVA with 
age as an independent factor. (B) PCoA analysis plot representing microbial β-diversity. (C) Microbiome composition at the level of major 
phyla. (D) Correlation analysis of the abundance of the major phyla with age. Heatmap shows the abundance-fold-change of bacteria with 
age. In red: bacteria which are more abundant, in blue: bacteria which are less abundant. Scale: Log2 (Fold change) = -1 (blue) < 0 (white) < 1 
(red). 
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Figure 2. Taxonomic distribution of fecal microbiome by genera. (A) Microbiome composition at the level of genera. (B) The left 

histogram shows the Linear discriminant analysis (LDA) effect size (Lefse) scores computed for features (on the OTU level) differentially 
abundant between the different age groups. The right heatmap shows the relative abundance (log10 transformation) of OTUs. “unc”: 
unclassified. 
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There were age-dependent increases in Proteobacteria, 

Parabacteroides, Allistipes and Akkermansia. On the 

other hand, there were age-dependent decreases in 

Porphyromonadaceae, Mucispirillum, and Prevotellaceae. 

 

Age-associated changes in serum metabolome  

 

To identify metabolites whose abundances may be 

associated with aging, we profiled serum metabolites at 

the fed state from 3M, 12M, 18M and 28M male mice, 

using untargeted LC-MS metabolomics. We obtained 

abundance measurements for 9482 metabolite features, 

1820 of which were annotated with Compound 

Discoverer (Supplementary Table 1).  

 

We first analyzed the data using Principal Component 

Analysis (PCA), which is an unsupervised method to 

interpret the variance in a dataset (X) without referring 

to class labels (Y). PCA showed that 12 and 18M age 

groups clustered together, while there was clear 

difference between the 3M, 12-18M and 28M age 

groups in the first two principal components, PC1 

(24.3%) and PC2 (16.6%). This suggested that there 

were age-associated changes in metabolites in serum 

(Figure 3A). Next, for each of these metabolites, we 

computed the mean fold change (in log 10 space) and the 

statistical significance between the 4 age groups using 

one-way ANOVA followed by Tukey’s post-hoc tests. 

This resulted in 510 metabolites with a log(p-value) 

above 1.8 (FDR-adjusted p value < 0.05, Supplementary 

Table 2). To explore the potential pathways disturbed in 

aging, the metabolites and p-values were analyzed using 

MetaboAnalyst 4.0 to identify differentially altered 

pathways. The MS Peaks to Pathways analysis predicts 

biological activity directly from peak list data, thereby 

bypassing metabolite identification. This analysis 

identified 6 pathways that are impacted by aging 

(Gamma values < 0.05, Figure 3B and Table 1). The top 

ranked pathways include tryptophan metabolism, purine 

metabolism, and amino acids metabolism (Table 1).  

 

We further assessed the data for correlations of 

metabolites to age, using the pattern-hunter algorithm 

in MetaboAnalyst. This pattern search identified  

372 significant features with positive or negative 

correlation coefficients between 1 and 0.6. We 

extracted the relative abundance of metabolites in 

tryptophan, purine, arginine and proline metabolism 

identified in the pathway analysis to show the direction 

of change. Of note, tryptophan and indole were 

positively identified by matching the spectra from pure 

standards and chromatographic retention time, while 

the other metabolites are putatively annotated by 

matching to either the spectral library (mzCloud) or 

accurate mass (ChemSpider). We found that guanosine 

and allantoin, two metabolites in the purine 

metabolism, showed significant age-associated increase 

in abundance (Figure 4A, 4B). Hydroxyproline and  

 

 
 

Figure 3. Fed-state serum metabolome and enriched pathways impacted by aging. Serum samples from 3-, 12-, 18- and 28 months 

old (3M, 12M, 18M and 28M) mice at the fed state were analyzed (n=4, 5, 4 and 4, respectively). (A) PCA analysis shows the grouped 
discriminations of the different age groups. 12M and 18M groups clustered together on the PC1 axis. (B) Mummichog pathway analysis plot, 
using peaks-to-pathway analysis module in MetaboAnalyst 4.0. The color and size of each circle corresponds to its p-value and enrichment 
factor, respectively. The enrichment factor of a pathway is calculated as the ratio between the number of significant pathway hits and the 
expected number of compound hits within the pathway [69]. The corresponding pathways are listed in Table 1. 



 

www.aging-us.com 6335 AGING 

Table 1. Results of the mummichog pathway analysis. 

Pathway 
Pathway 

total 

Hits 

total 

Hits 

sig 
Expected FET EASE Gamma 

Pathway 

Number 
Compound Hits 

Tryptophan 

metabolism 

41 20 7 1.309 0.019 0.057 0.002 P1 C00078;C05635;C03824;C04409;

C00328;C05653;C05647;C00108 

Purine metabolism 66 18 4 2.108 0.284 0.516 0.010 P2 C00294;C00387;C00147;C02350 

Cysteine and 

methionine 

metabolism 

33 6 2 1.054 0.227 0.622 0.016 P3 C01137;C00073 

Arginine and 

proline metabolism 

37 21 4 1.182 0.398 0.630 0.016 P4 C01137;C05147;C01157;C03440;

C03912;C01165;C00884 

Alanine, aspartate 

and glutamate 

metabolism 

28 7 2 0.894 0.288 0.679 0.020 P5 C01042;C03912 

Aminoacyl-tRNA 

biosynthesis 

22 10 2 0.702 0.465 0.805 0.038 P6 C00073;C00078 

Pentose phosphate 

pathway 

22 12 2 0.702 0.569 0.860 0.052 P7 C00345;C00279 

Caffeine 

metabolism 

12 12 2 0.383 0.569 0.860 0.052 P8 C16361;C07481 

Steroid hormone 

biosynthesis 

77 12 1 2.459 0.868 1.000 1.000 P9 C11133 

Arginine 

biosynthesis 

14 4 1 0.447 0.485 1.000 1.000 P10 C00437 

Glycine, serine and 

threonine 

metabolism 

31 8 1 0.990 0.737 1.000 1.000 P11 C00430 

Lysine degradation 19 6 1 0.607 0.631 1.000 1.000 P12 C03366 

Histidine 

metabolism 

16 8 1 0.511 0.737 1.000 1.000 P13 C01262 

Tyrosine 

metabolism 

42 22 1 1.341 0.977 1.000 1.000 P14 C00355 

Phenylalanine 

metabolism 

12 7 1 0.383 0.689 1.000 1.000 P15 C00166;C02763 

Phenylalanine, 

tyrosine and 

tryptophan 

biosynthesis 

4 2 1 0.128 0.281 1.000 1.000 P16 C00166 

beta-Alanine 

metabolism 

21 6 1 0.671 0.631 1.000 1.000 P17 C01262 

D-Arginine and D-

ornithine 

metabolism 

4 3 1 0.128 0.391 1.000 1.000 P18 C01110 

Vitamin B6 

metabolism 

9 7 1 0.287 0.689 1.000 1.000 P19 C00847 

Nicotinate and 

nicotinamide 

metabolism 

15 5 1 0.479 0.564 1.000 1.000 P20 C00153 

List of pathways that are enriched in the aging metabolome dataset, ranked by the gamma-adjusted p-values. The table 
includes the total number of hits per pathway (all, significant, and expected), the raw p-values (FET), and the gamma-
adjusted p-value (for permutations) per pathway. 
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Figure 4. Top metabolic alterations in aging. (A, B) Guanosine and allantoin, metabolites in the purine metabolism pathway. (C, D) 

Hydroxyproline and N-acetylornithine, metabolites in the arginine and proline metabolism pathway. (E, F) Erythrose phosphate and 
nicotinamide, metabolites in the pentose phosphate and nicotinamide pathways, respectively. n=4, 5, 4 and 4 for the 3-, 12-, 18- and 28 
months old (3M, 12M, 18M, 28M) groups, respectively. 
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N-acetylornithine, metabolites in arginine and prolife 

metabolism, also showed age-associated increase in 

abundance (Figure 4C, 4D). Erythrose phosphate, 

metabolite in the pentose phosphate pathway (P7 in 

Table 1), showed significant age-associated decrease  

in abundance (Figure 4E). On the other hand, 

nicotinamide, a metabolite in the nicotinamide pathway 

(P20 in Table 1) and a significant feature identified  

by the correlation pattern hunter algorithm, showed 

significant age-associated decrease in abundance 

(Figure 4F). 

 

Regarding tryptophan metabolism, we found age-

associated decrease in serum levels of tryptophan, while 

L-kynurenine, a metabolite in the tryptophan catabolism 

pathway, showed age-associated increase in abundance 

(Figure 5A, 5B). Notably, indole and indole-3-lactic 

acid, metabolites in the bacterial tryptophan catabolism 

pathway, showed significant age-associated decreases in 

serum abundance levels (Figure 5C, 5D).  

DISCUSSION 
 

Here we explored, under controlled environmental 

conditions, changes in mouse gut microbiome and serum 

metabolome with age. We found that aging was 

associated with increased alpha diversity, a measure of 

the richness of species present. This is consistent with 

previous studies reporting greater alpha diversity with 

age in mouse gut microbiome [21–24]. On the other 

hand, human microbiome has higher complexity, due to 

the myriad of external factors influencing microbial 

populations between aging individuals [25, 26]. Jeffery 

et. al [10] applied an iterative bi-clustering algorithm to 

microbiota composition data from the ELDERMET 

cohort to identify 4 subpopulations within the microbiota 

that are associated with biological phenotypes; 

moreover, loss of diversity in the core microbiota groups 

is associated with increased frailty, but not significantly 

associated with chronological aging [11]. Notably, the 

Clostridiales subpopulation is significantly associated 

 

 
 

Figure 5. Tryptophan metabolism was altered in aging. (A) Tryptophan and (B) L-kynurenine, metabolite from tryptophan catabolism 
by host. (C, D) indole and indole-3-lactic acid, metabolites from tryptophan catabolism by gut bacteria. n=4, 5, 4 and 4 for the 3-, 12-, 18- and 
28 months old (3M, 12M, 18M, 28M) groups, respectively. 
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with increased frailty, to a much greater extent than the 

loss of gut microbiota diversity. Our data showed age-

associated increase in Clostridiales from 3 to 18M, then 

decreased in the 28M group. A previous study has 

shown that centenarians have a microbiota that differs 

from those of older adults [9]. Our data also showed that 

Alloprevotella peaked at 6M, then age-dependently 

decreased in the 18M and 28M group. Interestingly, 

Alloprevotella has been associated with a decreased 

lifetime cardiovascular disease risk in the participants of 

the Bogalusa Heart Study [27]. 

 

At the phylum level, we observed that the Firmicutes/ 

Bacteroidetes (F/B) ratio is highest in the 6M group, and 

age-dependently decreased in the 18M and 28M groups. 

Previous study showed that the F/B ratio evolves during 

different life stages: the ratios were 0.4, 10.9 and 0.6 for 

infants, adults and elderly individuals, respectively [28]. 

Increased F/B ratio has been associated with excess 

energy harvest from food in obese patients [29, 30]. The 

phylum Firmicutes includes Clostridium cluster XIVa, 

which contains many butyrate producing species [30]. 

We speculate that the decrease in Firmicutes in the 28M 

group may reflect a decreased capacity of the gut 

microflora at the extreme old age to harvest energy from 

food.  

 

The age-dependent increase in Proteobacteria is 

consistent with a previous study showing significantly 

higher levels of Proteobacteria in the centenarian 

population [9]. Interestingly, Proteobacteria have been 

associated with altered mucus structure that is more 

penetrable by bacteria, leading to increased intestinal 

inflammation [31]. Furthermore, transferring aged 

microbiota to young germ-free (GF) mice lead to 

inflammation in the small intestine in the GF  

mice, increased leakage of inflammatory bacterial 

components into the circulation, and promoted increased 

T cell activation in the systemic compartment; these 

effects are associated with higher abundance of 

Proteobacteria in the aged microbiota after transfer [32]. 

 

In contrast to previous reports showing decreased 

abundance of Akkermansia in aging [23], here we 

found age-associated increase. Akkermansia are 

typically linked to health beneficial and anti-

inflammatory effects [33], such as improving glucose 

homeostasis in diet-induced obesity [34], and slowing 

progression of dextran sulfate sodium-induced colitis 

[35], although the mucin degradation properties  

of the members of this genus may also exacerbate 

certain types of infection [36]. Future studies are 

needed to further explore these differing findings. 
Taken together, our results indicate that older mice 

demonstrated several bacterial markers of gut dysbiosis 

and inflammation. 

We found age-dependent decrease in serum nicotinamide, 

consistent with previous studies showing age-related 

decline in nicotinamide adenine dinucleotide (NAD+) 

levels [37]. Emerging evidence suggests that NAD+ is a 

critical signaling molecule and essential substrate for 

sirtuins, a class of enzymes that mediate several of the 

beneficial effects of calorie restriction in model 

organisms, including the maintenance of cardiovascular 

function [38]. Thus, the age-related decline in the cellular 

bioavailability of NAD+ and related metabolites in 

animals and in humans may contribute to physiological 

aging by reducing sirtuin activity [37, 39–41]. NAD+ can 

be synthesized de novo from the amino acid tryptophan, 

or from a salvage pathway for regenerating NAD+ from 

other intracellular intermediates, which are primarily 

made available through dietary sources [42]. Importantly, 

supplementation of nicotinamide intermediates has been 

shown to improve cardiac health in older humans [43] 

and in aged mice [44]. Furthermore, a study of 12 adult  

men, ranging from 80-90 years of age, showed an  

anti-inflammatory effect of nicotinamide riboside 

supplement [45].  

 

One of the significant pathways associated with aging 

identified in our metabolome data is purine metabolism. 

We found significant increases in allantoin and guanosine 

levels in older mice. Purines are endogenous organic 

molecules that are essential for all cells; they are 

structural constituents of nucleic acids, and acts as second 

messengers in intracellular signaling pathways [46]. 

Purines consist of the two-ring nitrogenous bases 

adenine, guanine, and their derivatives such as adenosine 

and guanosine. Interestingly, in a study profiling the 

metabolome of mouse brain at different stages of the life 

cycle (12, 18 and 24 months) and across different 

anatomical regions (hippocampus, frontal cortex and 

caudoputamen) revealed metabolic imbalance in the 

aging brain, characterized by NAD+ decline, increased 

AMP/ATP, and purine/pyrimidine accumulation [47]. 

Thus, while the physiological significance of elevated 

levels of allantoin and guanosine in circulation is 

currently not clear, our metabolome data may reflect a 

metabolic imbalance in the aging mice. 

 

Pathway analysis of our metabolome data showed 

tryptophan metabolism to be a major pathway altered in 

aging. Correlation analyses revealed that, while there is 

age-associated increase in kynurenine levels, there are 

significant age-associated decreases in tryptophan, 

indole and indole-3-lactic acid levels. The regulation of 

tryptophan concentration is critical for the maintenance 

of systemic homeostasis, since it is involved in several 

pathways including nutrient sensing, metabolic stress 
response, and immunity [48, 49]. The majority (>95%) 

of dietary tryptophan is fed into the host kynurenine 

pathway, giving rise to a number of downstream 
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metabolites, while approximately 4–6% of tryptophan  

is available to the microbiota for biotransformation  

[48, 50, 51]. In addition to tryptophan being important as 

a precursor for the synthesis of the neurotransmitter 

serotonin, several catabolites along the kynurenine axis 

are neuroactive [52]. Furthermore, aging affects 

tryptophan metabolism, giving rise to higher kynurenine 

and lower tryptophan concentrations that are associated 

with neuropsychiatric symptoms [52]. On the other 

hand, indole is produced by a variety of both gram-

positive and gram-negative bacteria with tryptophanase 

activity, a bacteria-specific enzyme that catabolizes 

tryptophan to indole, pyruvate, and ammonia [50, 51]. 

Indoles have been reported to regulate virulence in 

pathogenic bacteria [53, 54], protect hosts from 

infection, and limit colitis induced by pathogens or 

chemical stressors [55–57]. The effects of indole and 

metabolites are thought to proceed largely via the aryl 

hydrocarbon receptor, and IL-22 signaling [58, 59]. 

Interestingly, indoles have been shown to extend 

healthspan in worms, flies and mice via the aryl 

hydrocarbon receptor, without significantly altering 

lifespan [60]. In addition, indole enhances barrier 

functions of gut epithelium by inducing the expression 

of genes involved in tight junction, adherens junctions, 

actin cytoskeleton and mucin production [57, 61]. Taken 

together, our metabolome data showing age-associated 

decrease in indole and its metabolite levels may reflect 

changes in gut microbial metabolism, and compromised 

gut barrier function in aging.  

 

Pathway analysis showed several amino acid metabolism 

pathways to be significantly impacted by aging; however, 

correlation analyses identified limited metabolites in 

these pathways. Interestingly, we found age-associated 

increases in hydroxyproline. Hydroxyproline is one of the 

most abundant amino acids found in collagen, and 

increased levels of hydroxyproline in blood has been 

associated with connective tissue degradation [62]. At 

cellular level, hydroxyproline may also scavenge 

oxidants and regulate the redox state of cells [63]. Hence, 

metabolome analyses at tissue levels are required to 

complement and confirm the findings from serum 

metabolome. Furthermore, our serum metabolome data, 

at fed state, reflects systemic metabolites from both host 

and microbiome, and causal links between gut 

microbiome and serum metabolome cannot be inferred 

from our current data. Future interventional studies, such 

as fecal transplantation from young or old mice into 

microbiota-depleted old or young mice, are required to 

decipher the causal relationship between gut microbiome 

and metabolome changes in aging. For future follow-up 

study, we plan to transplant fecal pellets collected from 
18 months-old donor mice, into 3 months-old recipient 

mice that have been treated with a cocktail of broad 

spectrum antibiotics as described [64], and assess fecal 

microbiome and metabolome before and after fecal 

transplantation. 

 

In summary, here we showed that gut microbiome 

composition is altered by primary aging in mice, 

including changes in microbial taxa associated with gut 

dysbiosis and pro-inflammatory signaling. We showed 

that aging is associated with a decrease in circulating 

levels of the gut microbiota-dependent metabolites 

indole and indole-3-lactic acid, which may reflect 

compromised gut barrier function and pro-inflammatory 

state. Collectively, these data suggest that gut dysbiosis 

and altered gut microbial metabolism may contribute to 

the metabolic imbalance in the aging mice. Our findings 

support the development of gut microbiome-targeted 

agents and interventions to promote healthy aging. 

 

MATERIALS AND METHODS 
 

Animal 

 

Male C57BL/6J mice at different ages were used in the 

study. Mice belonging to the same age group were 

housed together (3-5 mice/cage). Animals were housed 

under controlled temperature and lighting (75 ± 1° F; 

12-hour light–dark cycle, lights on at 6:00 AM) with 

free access to food and water. All diets were from 

Harlan Teklad (2920X, 16% of calories from fat, 60% 

from carbohydrates, and 24% from protein). All 

experiments were approved by the Animal Care 

Research Committee of the Baylor College of Medicine. 
 

For feces collection, mice were singly housed for 4 

days, transferred to fresh cages just before the 

beginning of dark phase, and fecal pellets produced 

overnight were collected the next morning before 10:00 

AM. Fecal pellets were flash frozen and stored at  

−80° C. At end of collection the mice were returned to 

group housing with previous littermates.  
 

Serum samples were collected under fed condition in 

the morning between 8-10:00 AM. Animals were 

anaesthetized with isoflurane, blood collected via retro-

orbital bleeding, then mice were euthanized by cervical 

dislocation. Blood samples were centrifuged at 3000 g 

for 15 min at 4° C for serum collection, which were 

stored at -80° C until metabolome analysis.  
 

16S rRNA sequencing analysis 
 

Fecal microbiome analysis was performed as we previous 

described [65]. Briefly, fecal pellets were homogenized, 

and microbial DNA was extracted from the homogenate 

using the PowerSoil DNA extraction kit (MO BIO 

Laboratories, Carlsbad, CA). The V4 region of 16S 

rRNA was sequenced on a MiSeq platform (Illumina, 
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San Diego, CA) with a minimum of 800 and an average 

of 7500 sequences generated per sample. Sequence data 

were processed as previous described [66]. Taxonomic 

assignment was performed with RDP as the classifier, 

and HitDB and SILVA as the selected databases. 

Bacterial operation taxonomic units (OTUs) were 

counted for each sample to express the richness of 

bacterial species with an identity cutoff of 97%. Alpha 

diversity and beta diversity were calculated using the 

web-based tool MicrobiomeAnalyst [67]. Comparisons 

between groups were made at various taxonomic levels. 
 

Metabolome sample analysis 
 

Untargeted liquid chromatography high resolution 

accurate mass spectrometry (LC-MS) analysis was 

performed on a Q Exactive Plus Orbitrap mass 

spectrometer (Thermo Scientific, Waltham, MA) 

coupled to a binary pump HPLC (UltiMate 3000, 

Thermo Scientific) [68]. Full MS spectra were obtained 

at 70,000 resolution (200 m/z) with a scan range of 50-

750 m/z. Full MS followed by ddMS2 scans were 

obtained at 35,000 resolution (MS1) and 17,500 

resolution (MS2) with a 1.5 m/z isolation window and a 

stepped NCE (20, 40, 60). Samples were maintained at 

4° C before injection. The injection volume was 10 µL. 

Chromatographic separation was achieved on a Synergi 

Fusion 4µm, 150 mm x 2 mm reverse phase column 

(Phenomenex, Torrance, CA) maintained at 30° C using 

a solvent gradient method. Solvent A was water (0.1% 

formic acid). Solvent B was methanol (0.1% formic 

acid). The gradient method used was 0-5 min (10% B to 

40% B), 5-7 min (40% B to 95% B), 7-9 min (95% B), 

9-9.1 min (95% B to 10% B), 9.1-13 min (10% B). The 

flow rate was 0.4 mL min-1. Sample acquisition was 

performed using Xcalibur (Thermo Scientific, Waltham, 

Ma, USA). Data analysis was performed with 

Compound Discoverer 2.1 (Thermo Scientific) and the 

web-based tool MetaboAnalyst 4.0 [69]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. List of annotated metabolite features. 

 

Supplementary Table 2. List of metabolite features that were significantly altered in the 4 age groups. 


