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INTRODUCTION 
 

DKD, one of the main complications of diabetes, 

represents the most important factor leading to end-

stage renal disease (ESRD) and kidney transplantation 

[1]. Although glomerular damage is the main 

pathological feature of DKD, multiple reports have 
shown that tubular injury is critical in DKD, and the 

degree of renal tubular injury is closely related to renal 

function [2, 3]. Loss or reduction of the cell adhesion 

protein E-cadherin constitutes an important initiation 

factor of RTECs shedding, which impairs barrier 

function and results in kidney inflammation and fibrosis 

[4]. In addition, partial EMT of RTECs represents an 

important pathological mechanism of tubulointerstitial 

fibrosis in DKD [5]. Therefore, upregulating cell 

junction proteins and inhibiting partial EMT are key 

events in preventing DKD. 

 

CDX2, a gut nuclear transcription factor, regulates the 

differentiation, proliferation and maintenance of 

intestinal epithelial cells [6]. Studies assessing CDX2 
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ABSTRACT 
 

Renal tubules are vulnerable targets of various factors causing kidney injury in diabetic kidney disease (DKD), and 
the degree of tubular lesions is closely related to renal function. Abnormal renal tubular epithelial cells (RTECs) 
differentiation and depletion of cell junction proteins are important in DKD pathogenesis. Caudal-type homeobox 
transcription factor 2 (CDX2), represents a key nuclear transcription factor that maintains normal proliferation and 
differentiation of the intestinal epithelium. The present study aimed to evaluate the effects of CDX2 on RTECs 
differentiation and cell junction proteins in DKD. The results demonstrated that CDX2 was mainly localized in renal 
tubules, and downregulated in various DKD models. CDX2 upregulated E-cadherin and suppressed partial 
epithelial-mesenchymal transition (EMT), which can alleviate hyperglycemia-associated RTECs injury. Cystic fibrosis 
transmembrane conductance regulator (CFTR) was regulated by CDX2 in NRK-52E cells, and CFTR interfered with β-
catenin activation by binding to Dvl2, which is an essential component of Wnt/β-catenin signaling. CFTR 
knockdown abolished the suppressive effects of CDX2 on Wnt/β-catenin signaling, thereby upregulating cell 
junction proteins and inhibiting partial EMT in RTECs. In summary, CDX2 can improve renal tubular lesions during 
DKD by increasing CFTR amounts to suppress the Wnt/β-catenin signaling pathway. 
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are mainly related to digestive tract tumors, and reveal 

an oncogenic role for CDX2 in esophageal cancer [7], 

but a suppressor function in colorectal [8], gastric [9], 

and breast [10] cancers. Previous evidence shows 

CDX2 inhibits gastric cancer cell invasion and 

metastasis by upregulating cell junction protein E-

cadherin and Claudin-2 [11, 12]. However, CDX2’s 

expression and function in DKD remain undefined. 

 

Cystic fibrosis transmembrane conductance regulator 

(CFTR), a Cl- channel protein induced by cAMP, is 

broadly found in epithelial cells of various tissues [13]. 

Recent evidence shows that CFTR inhibits UUO-

induced renal fibrosis by affecting Wnt/β-catenin 

signaling [14]. Meanwhile, Wnt/β-catenin signaling has 

a critical function in DKD development [15]. Indeed, β-

catenin is activated and undergoes nuclear translocation, 

which promotes the transcription of Snail that can 

directly mediate partial EMT and loss of E-cadherin 

[16], thereby leading to tubulointerstitial fibrosis [17, 

18]. In intestinal epithelial cells, CDX2 interacts with 

the intronic elements of CFTR and enhances its 

transcriptional activity, thereby elevating the protein 

expression of CFTR [19, 20]. Therefore, this work 

aimed to assess CDX2 expression in the kidney and 

explore its possible mechanism in DKD. 

 

RESULTS 
 

CDX2 is downregulated in DKD 

 

In order to assess renal CDX2 expression in DKD, 

kidney CDX2 amounts were determined. Representative 

photomicrographs demonstrated that CDX2 was highly 

expressed in non-diseased mice and human kidney 

tissues, and mainly located in the cytosol and nucleus  

of RTECs (arrow), but decreased in kidney samples 

from T1D and T2D mice as well as DKD patients 

(Figure 1A, 1C–1K). Similarly, CDX2 protein amounts 

were significantly decreased in kidney specimens from 

T1D and T2D animals compared with the 

corresponding controls (Figure 1B–1D). Additionally, 

renal CDX2 mRNA amounts were significantly reduced 

in T1D and T2D mice compared with controls  

(Figure 1F–1H). kidney CDX2 is downregulated in  

IgA nephropathy and in UUO (unilateral ureteral 

obstruction) (Supplementary Figure 1). These results 

suggested that renal CDX2 was reduced in DKD and 

other chronic kidney diseases. 

 

CDX2 is involved in the development of DKD 

 

Both T1D and T2D mice showed the important feature 

of diabetes (hyperglycemia) as well as the characteristic 

manifestation of DKD (microalbuminuria) (Figure 1A–

1D). PAS staining and Sirius Red staining showed 

mesangial matrix expansion, glomerular hypertrophy, 

vacuolar formation of renal tubules, and extracellular 

matrix accumulation (Figure 2E–2G). The renal 

photomicrographs of DKD patients revealed 

glomerulosclerosis and tubulointerstitial fibrosis (Figure 

2I). Compared with control values, E-cadherin protein 

amounts were decreased while Vimentin and Col-III 

levels were increased in the kidneys of T1D and T2D 

mice (Figure 2K–2O). Correlation analysis showed that 

CDX2 protein amounts had a negative correlation with 

the degree of kidney injury (Figure 2F, 2H, 2J). 

 

CDX2 relieves hyperglycemia-associated renal 

tubular injury 

 

Hyperglycemia is the main feature of diabetes. To 

further assess CDX2’s role in DKD, NRK-52E cells 

were cultured with high glucose (HG) media to simulate 

renal tubular cells during DKD. Representative 

immunofluorescence micrographs showed that NRK-

52E cells cultured under NG conditions featured 

abundant E-cadherin, an epithelial cell marker, which 

was decreased under HG conditions alongside the 

production of the mesenchymal-like protein α-SMA 

(Figure 3A). Cells in HG condition lost cell adhesion 

proteins, induced partial EMT and secreted collagen.  

In addition, CDX2 decreased with increasing glucose 

concentration (Supplementary Figure 2), CDX2  

protein expression is negatively correlated with Snail 

expression, but positively correlated with E-cadherin 

expression (Supplementary Figure 3). To further 

investigate the relationship between CDX2 and cell 

phenotype, CDX2 was overexpressed or knockdown in 

cells exposed to NG and HG. Compared with control 

values, the protein levels of E-cadherin were increased 

while Vimentin and Col-III amounts were decreased in 

cells after CDX2 overexpression (Figure 3H, 3J–3M). 

However, after CDX2 silencing, E-cadherin protein 

amounts were decreased, while Vimentin and Col-III 

amounts were elevated in cells with cultured NG; these 

changes were further exacerbated in cells cultured with 

HG (Figure 3I, 3N–3Q). These findings indicated that 

CDX2 supplementation reversed hyperglycemia-

induced loss of cell adhesion proteins and partial EMT 

in renal tubular epithelium, and suppression of CDX2 

weakened cell junctions of renal tubular epithelial  

cells and induced partial EMT. Immunofluorescence 

micrographs showed thatCDX2 overexpression alleviates 

hyperglycemia-induced RTECs damage, and CDX2 

knockdown induces the damages (Supplementary 

Figure 4), and overexpression of CDX2 in vivo can 

alleviate glomerular damage and renal tubular lesions 

during DKD (Supplementary Figure 5). These results 
confirmed that CDX2 inhibited high glucose-induced 

renal tubular injury by maintaining cell phenotype and 

inhibiting partial EMT. 



 

www.aging-us.com 6784 AGING 

CFTR is regulated by CDX2 and decreased in DKD 

 

As demonstrated above, CDX2 could represent a 

protective factor in renal tubular epithelium; however, 

the specific underlying mechanism is unclear. Studies 

have shown that CDX2 positively regulates CFTR by 

binding to CFTR intron elements in intestinal epithelial 

cells [19, 20]. CFTR is a chloride channel protein 

associated with kidney damage. Therefore, in order to 

explore the mechanism of CDX2 in renal tubular 

epithelium during DKD, we designed a luciferase 

reporter assay to test whether CFTR expression in 

NRK52-E cells is regulated by CDX2. We found that 

fluorescence signals were increased after CDX2 

overexpression compared with the control group 

(Vector + pGL3-rno-CFTR group) (Figure 4A). This 

 

 
 

Figure 1. Kidney CDX2 is downregulated in DKD. T1D mice (DM group) and controls were submitted to euthanasia at 16 weeks of age 
(6 weeks after the establishment of the T1D mouse model), and T2D mice (db/db group) and controls were submitted to euthanasia at 18 
weeks of age. (A, B) Immunohistochemical staining (A) and immunoblot (B) for CDX2 detection in T1D mice and controls. (C, D) 
Immunohistochemical staining (C) and immunoblot (D) for CDX2 detection in T2D mice and controls. (E–G) Immunohistochemical-positive 
staining density of CDX2 was analyzed in each group from 6 random fields (200×). Quantitation of mRNA amounts (E), Western blot bands (F) 
and immunohistochemical signals (G) of CDX2 in T1D mice kidney tissues and controls. (H–J) Quantitation of mRNA amounts (H), Western 
blot bands (I) and immunohistochemical signals (J) of CDX2 in T2D mice kidney tissues and controls. (K, L) Immunohistochemical staining (K) 
and quantitative analysis (L) of CDX2 in DKD patients kidney tissues and controls. CDX2 is expressed in the cytoplasm and nucleus of renal 
tubular epithelial cells in the renal cortex (black arrow) (magnification, ×200); enlarged box area (magnification,×400). All data are mean±SD 
from three independent experiments. n=6; *P<0.05. 
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Figure 2. CDX2 is negatively related to the development of DKD. (A, B) Blood glucose (A) and 24h total urine microalbumin (B) were 

significantly increased in T1D mice than controls. (C, D) Blood glucose (C) and 24h total urine microalbumin (D) were significantly increased in 
T2D mice than controls. Positive staining density of PAS and Sirius Red was analyzed in each group from 6 random fields (200×). (E, F) PAS 
staining (E), correlation of CDX2 staining with PAS staining in the kidneys of T1D mice and controls (F, r = 0.7722; P = 0.0002). (G, H) Sirius Red 
staining (G), correlation of CDX2 staining with Sirius Red staining in kidneys of T2D mice and controls (H, r = 0.7501; P = 0.0003). (I, J) Sirius 
Red staining (I), correlation of CDX2 staining and Sirius Red staining in the kidneys of DKD patients and controls (J, r = 0.9635; P = 0.0001). (K–
N) Immunoblot bands of E-cadherin, Vimentin, and Col-III in T1D mice and controls (K), quantitative data are presented (L–N). (O–R) 
Immunoblot bands of E-cadherin, Vimentin, and Col-III in T2D mice and controls (O); quantitative data are presented (P–R). Data are 
mean±SD from three independent assays. n=6; *P<0.05 versus NC group or db/m group or Con group. 
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Figure 3. CDX2 overexpression alleviates hyperglycemia-induced RTECs damage, and CDX2 knockdown aggravates the 
damage. NRK-52E cells were administered NG (5.5 mM) and HG (25 mM) media for 48h, followed by analysis. (A) Immunofluorescence for 

E-cadherin and α-SMA detection in NRK-52E cells of the NG and HG groups, respectively (scale bar, 20μm). (B, C) Immunoblot bands of CDX2 
(B) and quantitative data (C) in NRK-52E cells of the NG and HG groups. (D–G) Immunoblot bands of E-cadherin, Vimentin, and Col-III (D), and 
quantitative data (E–G) in NRK-52E cells of the NG and HG groups. H-Q Immunoblot bands of CDX2, E-cadherin, Vimentin, and Col-III in non-
transfected (NG or HG treated) NRK-52E cells, and NRK-52E cells transfected with Vector (NG+Vector group, HG+Vector  group), or CDX2-
overexpressing (NG+OE-CDX2 group, HG+OE-CDX2 group) or CDX2-knockdown (NG+Sh-CDX2 group, HG+Sh-CDX2 group) (H, I); quantitative 
data are shown (J–Q). Data are mean±SD from three assays performed independently. n=3; *P<0.05 versus NG group; #P<0.05 versus 
NG+Vector group; &P<0.05 versus HG+Vector group. 
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Figure 4. CFTR is a downstream target gene of CDX2, and downregulated in DKD. (A) CFTR promoter activity increased in CDX2-

overexpressing NRK-52E cells. NRK-52E cells were administered non-transfected (Con)/pGL3-rno-CFTR-promoter plasmid (pGL3-rno-CFTR), or 
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co-transfected with CDX2-overexpressing/Vector plasmid and pGL3-rno-CFTR-promoter plasmid. n=3; *P<0.05 versus Con group; #P<0.05 
versus Vector + pGL3-rno-CFTR group. (B) Immunofluorescent staining of CDX2 and CFTR in NRK-52E cells of the NG and HG groups, 
respectively (scale bar, 20μm). C-H Western blot bands (C, D) and protein quantitation (E, F) of CFTR in non-transfected (NG or HG treated) 
NRK-52E cells, and NRK-52E cells transfected with Vector (NG+Vector, HG+Vector), CDX2-overexpressing (NG+OE-CDX2, HG+OE-CDX2) or 
CDX2-knockdown (NG+Sh-CDX2, HG+Sh-CDX2) plasmid, and mRNA levels (G, H). Data are mean±SD from three experiments performed 
independently. n=3; *P<0.05 versus NG group; #P<0.05 versus NG+Vector group; &P<0.05 versus HG+Vector group. (I, J) Immunohistochemical 
staining of CFTR in T1D model mice and controls (J), T2D mice and controls (J). n=6; *P<0.05 versus NC group or db/m group. (K, L) Western 
blot bands of CDX2 in T1D model mice and controls (K), and quantitative data (L). (M, N) Western blot bands of CFTR in T2D model mice and 
controls (M), and quantitative data (N). Data are mean±SD from three independent assays. n=6; *P<0.05 versus NC group or db/m group. 

finding suggested that in NRK-52E cells, CDX2 

enhanced CFTR transcription. In vitro, CDX2 was 

detected in the cytoplasm and nucleus, which was 

consistent with its localization in the kidney tissue 

(Figure 1A, 1C, 1K). Meanwhile, CFTR, a chloride 

channel protein, is localized in the cell membrane and 

cytoplasm, and both CDX2 and CFTR were down-

regulated after exposure to high glucose in renal tubular 

epithelial cells (Figure 4B). We further evaluated the 

effects of CDX2 on CFTR protein and transcription 

levels in NRK-52E cells. In comparison with control 

values, CFTR protein and mRNA amounts were 

increased after CDX2 overexpression, but decreased 

after CDX2 knockdown (Figure 4C–2H). In vivo, we 

found that CFTR was mainly expressed in the membrane 

and cytoplasm of renal tubular cells, and decreased in 

the kidneys of T1D and T2D animals (Figure 4I, 4J). 

Consistently, the protein levels of CFTR were reduced in 

the kidneys of both T1D and T2D animals (Figure 4K–

4N). These results suggested that CDX2 regulated CFTR 

at the transcriptional level in RTEC, and both molecules 

were downregulated in DKD. 

 

CDX2 inhibits β-catenin activity by upregulating 

CFTR that binds to Dvl2 

 

CFTR inhibits UUO-induced renal fibrosis by interfering 

with β-catenin activation [14]. The cytoplasmic protein 

Dvl, a key adapter protein of Wnt/β-catenin signaling, 

possesses a PDZ domain capable of binding to CFTR. 

We found that the protein levels of CFTR were 

decreased while Dvl2 amounts were elevated in DM 

animals in the Input group, in comparison with the NC 

group. Dvl2 was detected in lysates immunoprecipitated 

with anti-CFTR antibodies (Figure 5A). Conversely, 

CFTR was detected in lysates immunoprecipitated with 

anti-Dvl2 antibodies (Figure 5B). In the kidneys of T1D 

and T2D, β-catenin amounts were increased, and the 

protein was translocated into the nucleus (Figure 5C, 

5D). The protein amounts of activated β-catenin and its 

target Snail increased (Figure 5E–5J). β-catenin 

activation and nuclear transfer promoted Snail 

transcription. Snail causes renal tubular-interstitial 

fibrosis in DKD by inhibiting E-cadherin and inducing 

partial EMT [15, 16]. After CDX2 overexpression, 

Active β-catenin (activated β-catenin) and Snail amounts 

were reduced in NRK-52E cells exposed to normal or 

high-glucose (Figure 5K, 5M, 5N). However, CDX2 

downregulation elevated activated β-catenin and Snail 

amounts (Figure 5L–5P). These results suggested that 

CFTR suppressed β-catenin activation by binding to 

Dvl2 to stop signal transmission in DKD. CDX2 

inhibited the increase of activated β-catenin and Snail to 

suppress hyperglycemia-associated RTECs injury and 

renal tubular-interstitial fibrosis, and it’s effects may rely 

on CFTR upregulation. 

 

CDX2 prevents hyperglycemia-associated renal 

tubular lesions by positively regulating CFTR to 

suppress β-catenin activation 

 

In order to confirm that CDX2 inhibits β-catenin 

activation by upregulating CFTR, reducing renal tubular 

epithelial fibrosis, we knocked down CFTR while 

overexpressing CDX2 in NRK-52E cells under HG 

conditions. The results showed that CDX2 and CFTR 

protein amounts were reduced after stimulation with 

HG, while activated β-catenin and Snail amounts were 

elevated; cell junction was reduced but renal tubular 

lesions was induced. After CDX2 overexpression under 

HG conditions, the expression of CFTR increased, and 

Wnt/β-catenin signaling and renal tubular lesions were 

inhibited. However, after CFTR silencing under HG 

conditions, there was no change in CDX2 expression. 

After CDX2 overexpression and knockdown of CFTR 

under HG conditions, CDX2 cannot present the 

suppression of Wnt/β-catenin signaling to inhibit 

hyperglycemia-associated renal tubular lesions (Figure 

6). These evidences revealed that CDX2 interfered with 

β-catenin activation by positively regulating CFTR, 

ultimately inhibiting hyperglycemia-associated renal 

tubular lesions. 

 

DISCUSSION 
 

Cell junction proteins are key to maintaining the 

molecular structure and selective barrier function of 

renal tubules, whose dysfunction allows macro-

molecular protein antigens and toxic substances in the 

urine to cross the epithelial barrier to the sub-epithelial 

area, inducing tubular and interstitial inflammation as 
well as fibrosis [4]. Partial EMT [21] features 

abnormally differentiated RTECs, with loss of epithelial 

cell biomarkers (e.g., the cell adhesion protein 
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Figure 5. Downregulation of CFTR activates β-catenin and causes renal fibrosis. (A, B) Co-immunoprecipitation assay indicated that 

CFTR and Dvl2 interacted with each other in vivo. The Input group was a positive control group. In the CO-IP group, the kidney tissue lysates 
of T1D mice and controls were immunoprecipitated with IgG, anti-CFTR (A) or anti-Dvl2 (B) antibodies, and the resulting immunoprecipitates 
were blotted (IB) with anti-CFTR and anti-Dvl2 antibodies. The protein samples used for co-immunoprecipitation were normalized to β-actin. 
(C, D) Immunohistochemical staining of β-catenin in T1D model mice and controls (C), and T2D mice and controls (D). Positive staining (black 
arrow) (magnification, ×200); enlarged box area (magnification, ×400). (E–J) Western blot bands of Activated β-catenin and Snail in T1D 
model mice and controls (E), and T2D model mice and controls (F); quantitative data are shown (G–J). n=6; *P<0.05 versus NC group or db/m 
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group. (K–P) Western blot bands (K, L) and quantitative data (M–P) of activated β-catenin and Snail in non-transfected (NG group, HG group) 
NRK-52E cells, and NRK-52E cells transfected with Vector (NG+Vector group or HG+Vector group), or CDX2-overexpressing (NG+OE-CDX2 
group or HG+OE-CDX2 group) or CDX2-knockdown (NG+Sh-CDX2 group or HG+Sh-CDX2 group) plasmid. Data are mean±SD from three 
experiments performed independently. n=3; *P<0.05 versus NG group; #P<0.05 versus NG+Vector group; &P<0.05 versus HG+Vector group. 

 

 
 

Figure 6. CFTR knockdown abolishes the effects of CDX2 on resisting hyperglycemia-induced RTECs injury. NRK-52E cells were, 

respectively, non-transfected (NG group or HG group), and transfected with CDX2-overexpressing / Vector1 (HG+OE-CDX2 group / 
HG+Vector1 group) or CFTR-knockdown / Vector2 plasmid (HG+Sh-CFTR group / HG+Vector2 group), or co-transfected CDX2-overexpressing 
+ CFTR-knockdown plasmid (HG+OE-CDX2+Sh-CFTR group). (A–C) Immunoblot bands of CDX2 and CFTR, and quantitative data (B, C). (D–I) 
Immunoblot bands of activated β-catenin, Snail, E-cadherin, Vimentin, and Col-III; quantitative data are shown (E–I). Data are mean±SD from 
three experiments performed independently. n=3; *P<0.05 versus HG+Vector1 group; #P<0.05 versus HG+Vector2 group; &P<0.05 versus 
HG+OE-CDX2 group. 
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E-cadherin) and increased mesenchymal biomarkers 

(e.g., α-SMA and Vimentin), as well as large amounts 

of growth factors such as TGF-β [22], to activate 

fibroblasts and induce kidney fibrosis. 

 

In recent years, it was found that CDX2 suppression is 

associated with tumor invasion and migration, and the 

underlying mechanism involves promoting cell junction 

protein expression and inhibiting EMT [12]. CDX2 is a 

gut-specific tail-type homeobox nuclear transcription 

factor that mainly induces intestinal epithelium 

formation and maintains its normal differentiation [23]. 

The CDX2 protein comprises 311 amino acids, binds to 

the corresponding region of DNA by a helix-loop-helix 

interactions, and plays critical roles in cell proliferation, 

differentiation, adhesion, and apoptosis by regulating 

DNA expression as a transcription factor [24, 25]. 

Previous research assessing CDX2 has basically focused 

on gastrointestinal diseases. However, the pathological 

role of CDX2 remains controversial, and inconsistencies 

may be related to tumor location and type [7–10]. The 

present study demonstrated that CDX2 was abundant in 

non-diseased kidneys of mice and humans, and mostly 

detected in renal tubules. In the kidney tissue of T1D, 

T2D mice and DKD patients, CDX2 was decreased at 

the transcription and protein levels in kidney tissues,  

and kidney CDX2 is downregulated in IgA nephropathy  

and in UUO. Meanwhile, renal CDX2 amounts were 

negatively correlated with the degree of renal fibrosis. 

This finding suggested that reduction of CDX2 might 

represent an important factor involved in the formation 

of renal tubular lesions in DKD. 

 

In gastric cancer, CDX2 inhibits cell invasion and 

metastasis by upregulating the adhesion protein E-

cadherin and inhibiting EMT [12]. Similarly, we found 

that CDX2 could induce E-cadherin production in NRK-

52E cells. E-cadherin represents a transmembrane 

glycoprotein termed adhesion junction, and is important 

in maintaining the normal structure and function of 

normal epithelial tissues [26]. In DKD, loss of E-cadherin 

in RTECs weakened intercellular adhesion; therefore, 

RTECs are detached, which impairs renal tubular barrier 

function, resulting in tubular-interstitial inflammation and 

fibrosis [4, 27]. The phenotype of RTECs and epithelial 

integrity are closely associated with the normal function 

of renal tubules [26]. EMT is considered a sign of tumor 

transformation [28]. In renal fibrosis, EMT is commonly 

described as a process in which epithelial cells 

completely undergo conversion into fibroblasts, but 

increasing evidence has confirmed that instead of direct 

transformation to myofibroblasts, renal epithelial cells 

remain in the tubules, showing partial EMT, which 
promotes tubulointerstitial fibrosis and inflammation [21, 

29–31]. Partial EMT was detected in DKD, down-

regulation of molecular epithelial markers (e.g.  

E-cadherin) co-occurring with upregulated mesenchymal 

biomarkers (Vimentin and Col-III). Most importantly, 

our data showed that CDX2 inhibited partial EMT in 

RTECs. In vitro, both CDX2 silencing and HG treatment 

reduced E-cadherin amounts and induced partial EMT in 

RTECs, while its overexpression of CDX2 inhibited high 

glucose-mediated E-cadherin loss and partial EMT. In 

vivo, overexpression CDX2 improved renal function and 

renal fibrosis in T1D. These data indicated that CDX2 

prevents renal tubular lesions in DKD by promoting cell 

junction protein formation and inhibiting partial EMT. 

 

CFTR is broadly expressed in mammalian kidneys. Its 

dysfunction causes cystic fibrosis (CF), which results in 

lifetime microalbuminuria in >6% of cases [32], 

indicating that CFTR defect is associated with kidney 

damage. MatInspector (https://www.genomatix.de/) 

predictive analysis revealed that CDX2 interacts with 

CFTR enhancer, whose activity is reduced by more than 

60% after mutating these sites [19]. In the context of 

intestinal epithelial cells, CDX2 can enhance CFTR gene 

expression [19, 20]. In this study, we demonstrated that 

CDX2 upregulated CFTR in NRK-52E cells by 

luciferase reporter assy. Moreover, CDX2 increased 

CFTR protein amounts in RTECs. We assessed CFTR in 

the renal tissue, and found that CFTR was also mainly 

distributed in the cell membrane and cytoplasm of renal 

tubules, showing decreased levels in DKD. 

Downregulation of CFTR in DKD may be related to 

reduced CDX2 expression. 

 

Recent studies have reported that CFTR suppresses 

Wnt/β-catenin signaling and inhibits UUO-induced 

kidney fibrosis [14]. Wnt/β-catenin signaling represents a 

critical pathway that has been evolutionarily conserved to 

regulate kidney development, and its aberrant induction 

triggers widespread changes in the kidney, including 

repair and fibrosis of RTECs, podocyte injury, podocyte 

dedifferentiation and mesangium fibrosis, to cause DKD 

[33, 34]. The Wnt/β-catenin signaling pathway is 

relatively silent in non-diseased human kidneys, and 

cytosolic β-catenin is phosphorylated by “the degradation 

complex” and eventually degraded by the proteasome. 

Increased amounts of activated β-catenin (undegraded β-

catenin) and nuclear β-catenin are usually considered an 

activation marker of Wnt/β-catenin signaling [35, 36]. 

Dvl represents a key component of β-catenin’s signal 

transmission, with Dvl2 being the most abundant of its 

three homologous genes. In DKD, Dvl is recruited by 

Frizzled (Fz) and transmits signals through its PDZ 

domain to connect Wnt receptors and downstream 

signaling components, causing the disintegration of the 

degradation complex [37]. Then, β-catenin escapes the 
degradation and accumulates in the cytoplasm in order to 

translocate into the nucleus and interact with transcription 

factors such as lymphoid enhancer factor/T cell factor 

https://www.genomatix.de/
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(LEF/TCF), promoting the transcription of genes (e.g., 

Snail and TWIST) and driving renal tubule-interstitial 

fibrosis [34, 38]. Interestingly, the C terminus of CFTR 

contains a PDZ-binding domain [39], indicating that this 

protein can bind to Dvl. This was confirmed in the renal 

tissue; in normal kidney or DKD, CFTR can interact with 

Dvl2, but CFTR-Dvl2 complex amounts are low due to 

reduced CFTR amounts and increased Dvl2 during DKD; 

in this case, unbound Dvl2 may act as a transmission 

molecule for the Wnt signaling pathway, eventually 

activating β-catenin. This is consistent with findings by 

Jie Ting Zhang in UUO [14]. 

 

Snail family zinc finger 1 (SNAI1/Snail) represents a 

transcription factor produced in various settings of 

kidney injury; SNAI1 modulates multiple biological 

events causing renal fibrogenesis, including destruction 

of cell adhesion, partial EMT of RTECs and renal 

interstitial inflammation [16, 40]. We demonstrated that 

in DKD kidney tissue, activated (undegraded) β-catenin 

was increased; in addition, β-catenin was translocated 

into the nucleus, and its downstream protein Snail was 

upregulated. What’s more, we found that CDX2 over-

expression inhibited high glucose-induced β-catenin 

activation and snail expression, while CDX2 

knockdown promotes β-catenin activation and snail 

expression. This effect of CDX2 on the Wnt/β-catenin 

signaling may be related to CFTR. 
 

To further explore the regulatory associations and roles 

of CDX2, CFTR and Wnt/β-catenin signaling in DKD, 

CDX2 was overexpressed while knocking down CFTR in 

NRK-52E cells. We found that the inhibitory effect of 

CDX2 on high glucose-mediated renal tubular injury was 

significantly reduced after CFTR silencing, with increased 

β-catenin and Snail amounts. These findings further 

confirmed that CDX2 exerts protective effects in DKD 

by regulating CFTR to suppress β-catenin activation. 
 

In summary, CDX2 plays a protective role in DKD 

pathogenesis by promoting cell junction formation and 

inhibiting partial EMT in renal tubular epithelial cells to 

counter tubulointerstitial fibrosis. Its specific mechanism 

involves CDX2 inhibition of β-catenin activation and 

nuclear transfer by upregulating CFTR. These findings 

are important because prevention and treatment of 

tubular damage is essential for early prevention in DKD, 

and CDX2 can maintain the structure and function of 

tubular epithelial cells. 

 

MATERIALS AND METHODS 
 

Human kidney samples 

 

Renal samples were obtained from 6 individuals 

diagnosed with DKD (5 males and 1 female; aged 

48.83±7.80 years) at the Affiliated Hospital of Guizhou 

Medical University. In 6 patients (6 males; aged 

29.33±10.23 years) showing kidney lesions other  

than tumors (e.g., renal trauma), renal tissues  

were pathologically confirmed to be normal, and used 

as normal controls (Patient information is shown  

in Supplementary Table 1). The current study  

had approval from the Ethics Committee of the 

Affiliated Hospital of Guizhou Medical University 

(No.112). 

 

Animal models 

 

All mice were provided by Model Animal Research 

Center of Nanjing University (MARC, China). Male 

db/db mice generated in C57BLKS/JNju background (6 

weeks old) were assessed as type 2 diabetes (T2D) 

model mice (db/db). Meanwhile, age-matched male 

C57BLKS/JNju mice, also from MARC, served as the 

control group (db/m). Both mouse groups were 

submitted to euthanasia at 18 weeks of age. Twelve 

C57BL/6J mice (8 weeks old) were randomized into the 

T1D (DM, n=6) and normal control (NC, n=6) groups 

after one week of adaptive feeding. The DM group was 

intraperitoneally treated with 55 mg/kg streptozotocin 

(STZ, in sterile citrate buffer [pH 4.5]; Sigma) for 5 

days, while the NC group was administered the same 

amount of vehicle. After 2 days, fasting blood glucose 

was measured continuously for 3 times. Successful 

modeling was considered for mice with blood glucose 

levels of 16.7 mmol/L or more. Animal housing was 

performed at 22±2° C under a 12h-12h light/dark cycle, 

with water and food freely available. Mice were killed at 

16 weeks of age (6-weeks after STZ injection). Before 

euthanasia, 24-h urine specimens from all mice were 

obtained using metabolic cages, and total urine volumes 

were assessed. Mice underwent 3–4h fasting prior to 

anesthesia with diethyl ether, followed by femoral artery 

puncture for collecting blood samples employed for 

serum preparation. Urine and serum specimens were 

kept at −20° C for biochemical assays. After sacrifice, 

both kidneys from each animal were extracted, with one 

submitted to 4% formalin fixation for histological 

analysis and the other immediately placed in liquid 

nitrogen and kept at −80° C for molecular studies. 

 

All assays involving animals had approval from the 

Animal Experimental Ethics Committee of Guizhou 

Medical University (No.2000032). 

 

Cell culture and transfection 

 

Normal rat kidney tubular epithelial NRK-52E cells 
(Jennio Biotech, China) underwent maintenance culture 

in Dulbecco's modified Eagle's medium (DMEM; 

Gibco, USA) supplemented with 10% fetal bovine 
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serum (FBS; Gibco) and 5.5 mM glucose, in an 

incubator containing 5% CO2 and maintained at 37° C. 

 

Cell growth was then performed in normal (NG; 5.5 

mM) and high (HG; 25 mM) glucose media, separately, 

supplemented with 2% FBS. NRK-52E cells were 

transiently transfected with Lipofectamine 3000 

(Invitrogen, USA) based on the kit’s protocol. All 

plasmids (CDX2 plasmid, pCMVPuro01-CDX2; CDX2 
shRNA plasmid, CDX2-shRNA-GP; CFTR shRNA 

plasmid, CFTR-shRNA-GP) were purchased from 

Longqian Biotech (China). 

 

Biochemical assays 

 

Serum glucose and urine microalbumin amounts were 

assessed on a Beckman Instruments 1650 automated 

bioanalyzer (Beckman Instruments, USA). 24 hour 

urine microalbumin (mg/24h) was assessed as follows: 

microalbumin (mg/ml) × urine volume (ml)/24h. 

 

Histological analysis and immunohistochemistry 

 

Paraffin-embedding of kidney specimens and sectioning 

were performed via standardized procedures. The 

resulting sections underwent staining with periodic 

acid-Schiff (G1360; Solarbio, China) and Sirius red 

staining (BB-44333; BestBio, China) reagents 

according to respective recommended protocols. 

Immunohistochemical staining was carried out using a 

Two Step Immunoassay assay kit (ZSBIO, China), as 

directed by the manufacturer. The antibodies used 

included rabbit monoclonal anti-CDX2 (YM3057; 

Immunoway Bio, USA), mouse monoclonal anti-CFTR 

(sc-376683; Santa Cruz, USA), and rabbit polyclonal 

anti-β-catenin (bs-1165R; Bioss, Beijing, China). Areas 

of positive staining were quantified by ImageJ in 6 

random fields (200×) per sample, with three individuals 

assessed in each group. 

 

Immunofluorescence 

 

Kidney specimens, stored at -80° C, were thawed at room 

temperature, and kidney cryosections were performed 

according to standard procedures. NRK-52E cells grown 

on coverslips underwent 4% formalin fixation for 1h. 

Upon blocking with 5% bovine serum albumin (BSA) at 

ambient, anti-E-cadherin (14472; Cell Signaling 

Technology, USA), anti-α-SMA (55135; Proteintech, 

China) and anti-collagen type III (22734; Proteintech) 

primary antibodies were added for incubation at 4° C 

overnight. This was followed by staining with FITC– or 

Cy3–linked secondary antibodies (Proteintech). DAPI 
(4′,6-diamidino-2-phenylindole) counterstaining was 

carried out, and samples were assessed under a Leica 

DM4000B fluorescence microscope (Leica, Germany). 

Western blot 

 

Cell or tissue lysis was carried out with RIPA buffer 

(R0020; Solarbio, China), and total protein amounts 

were determined with the BCA kit (PC0020; Solarbio). 

After addition of the corresponding loading buffer 

(P1040 or P1019; Solarbio), the mixture underwent a 

10-min boiling step. Equal amounts of total protein 

were resolved by SDS-PAGE and electro-transferred 

onto PVDF compound membranes (Millipore, USA) 

treated with methanol. Upon blocking with 5% non-fat 

milk, the membranes underwent overnight incubation 

(4° C) with primary antibodies raised against CDX2 

(60243; Proteintech, 1:1000), CFTR (2784; Abcam, 

1:1000), active β-catenin (8814; CST, 1:1000), Snail 

(3879; CST, 1:1000), E-cadherin (14472; CST, 1:1000), 

Vimentin (5741;CST, 1:1000), Collagen type III (Col-

III; 22734; Proteintech, 1:1000, Fibronectin (2413; 

Abcam, 1:1000) and β-actin (Pumei, China, 1:4000), 

respectively. Then, secondary antibodies were added at 

ambient for 1h. Finally, the ECL solution was added, 

and a Bio-Rad gel imaging system (Bio-Rad, USA) was 

employed for analysis. 

 

Real time-quantitative PCR (qRT-PCR) 

 

Total RNA was purified from tissue and cell specimens 

with TRIzol reagent (Invitrogen) as directed by the 

manufacturer. Reverse transcription was carried out with 

reverse transcription kit (K1622; Thermo Scientific, USA), 

and the Real-Time PCR kit (FP209-02; TIANGEN, China) 

was used for qRT-PCR on an ABI 7500-Fast Real-Time 

PCR System (Applied Biosystems, USA). The data were 

normalized to β-actin expression, and analyzed by the 

2−ΔΔCt method. Primers are described in Table 1. 

 

Co-immunoprecipitation 

 

The tissue lysis method was the same as described for 

Western blot. The lysate was incubated with immuno-

globulin G (IgG; negative control), and anti-CFTR (2784; 

Abcam) or Dvl2 (3224; CST) antibodies, respectively. 

DynabeadsTM Protein G Immunoprecipitation Kit 

(10007D; Thermo scientific) was employed for sample 

precession, as described by the manufacturer. 

 

Luciferase reporter assay 

 

The CFTR-promoter luciferase reporter was constructed 

by Longqian Biotech (China). Actively growing 

NRK52E cells were trypsinized and seeded in 24-well 

plates at a suitable density for routine culture. After 24h, 

transfection was carried out with Lipofectamine 3000 
(Invitrogen) as directed by the manufacturer for 48h. This 

was followed by cell lysis and sample analysis with a 

Dual-Luciferase Reporter Assay System (E1960; 
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Table 1. Primers used in qRT-PCR. 

Gene Sequence 

CDX2 (NM 007673.3)-mouse Forward: 5’-CCAAGTGAAAACCAGGACAAAA-3’ 

 Reverse: 5’-TGCTGCTTCTTCTTGATTTTCC-3’ 

CFTR (NM 007673.3)-mouse Forward: 5’-AAAAGAATCCCCAGCTTATCCA-3’ 

 Reverse: 5’-TTGGTGACTTCCCCTAGGTATA-3’ 

β-actin (NM 007393.5)-mouse Forward: 5’-CTACCTCATGAAGATCCTGACC-3’ 

 Reverse: 5’-CACAGCTTCTCTTTGATGTCAC-3’ 

CDX2 (NM 023963.1)-Rat Forward: 5’-AGCGGCTGGAGCTGGAGAAG -3’ 

 Reverse: 5’-TGCTGCTGCTGCTGCTGTTG-3’ 

CFTR (NM 031506.1)-Rat Forward: 5’-CGCTGGTTGCACAGTAGTCCTC-3’ 

 Reverse: 5’-AGGGCTCGCTGGAAGACACTC-3’ 

β-actin (NM 031144.3)-Rat Forward: 5’-CAGCCTTCCTTCCTGGGTATG -3’ 

 Reverse: 5’-AGGGTGTAAAACGCAGCTCA-3’ 

 

Promega, USA). Renilla and Firefly luciferase activities 

were read, and the ratio of Renilla luciferase activity to 

that of Firefly luciferase was derived. Triplicate 

experiments were repeated 3 times independently. 

 

Co-immunoprecipitation 

 

The tissue lysis method was the same as described for 

Western blot. The lysate was incubated with immuno-

globulin G (IgG; negative control), and anti-CFTR (2784; 

Abcam) or Dvl2 (3224; CST) antibodies, respectively. 

DynabeadsTM Protein G Immunoprecipitation Kit 

(10007D; Thermo Scientific) was employed for sample 

precession, as described by the manufacturer. 

 

Luciferase reporter assay 

 

The CFTR-promoter luciferase reporter was constructed 

by Longqian Biotech (China). Actively growing NRK52E 

cells were trypsinized and seeded in 24-well plates at a 

suitable density for routine culture. After 24h, transfection 

was carried out with Lipofectamine 3000 (Invitrogen) as 

directed by the manufacturer for 48h. This was followed 

by cell lysis and sample analysis with a Dual-Luciferase 

Reporter Assay System (E1960; Promega, USA). Renilla 

and Firefly luciferase activities were read, and the ratio of 

Renilla luciferase activity to that of Firefly luciferase was 

derived. Triplicate experiments were repeated 3 times 

independently. 

 

Statistical analysis 

 

Assays were performed at least 3 times independently, 

and animal experiments had 6 samples per group. Data 

are mean±standard deviation (SD). Unpaired Student t-

test and one-way analysis of variance (ANOVA) were 

carried out for group pair and multiple group 

comparisons, respectively. Spearman (nonparametric) 

correlation analysis was performed to evaluate the 

association of CDX2 expression with pathology in 

DKD. SPSS 22 was used for data analysis. P<0.05 

indicated statistical significance. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 

Supplementary Figure 1. Kidney CDX2 is downregulated in IgA nephropathy and in UUO. (A, B) Immunohistochemical staining (A) 

and quantitation (B) for CDX2 in IgA nephropathy patients kidney tissues and controls. CDX2 is expressed in the cytoplasm and nucleus of 
renal tubular epithelial cells in the renal cortex (magnification, ×200); enlarged box area (magnification, ×400). Immunohistochemical-positive 
staining density of CDX2 was analyzed in each group from 6 random fields (200×). All data are mean±SD from three independent 
experiments. n=6; *P<0.05 versus Con group. (C–E) The mouse kidneys were harvested 3 days after unilateral ureteral obstruction (UUO)(n = 
6 per group).Immunoblot (C) and quantitation (D, E) for CDX2 and Fibronectinin UUOmice and controls. All data are mean±SD from three 
independent experiments. n=6; *P<0.05 versus NC group. 
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Supplementary Figure 2. The expression of CDX2 decreases with increasing glucose concentration. (A, B) The protein expression 

of CDX2 in NRK-52 cells cultured at a glucose concentration of 5.5-60mmol/L 48h was detected by Western blot. Immunoblot (A) and 
quantitation for CDX2 (B), E-cadherin (C) and α-SMA (D). All data are mean±SD from three independent experiments. n=3; *P<0.05 versus 5.5 
mmol/L group. 
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Supplementary Figure 3. CDX2 protein expression is negatively correlated with Snail expression, but positively correlated 
with E-cadherin expression. (A, B) Correlation of CDX2 protein with E-cadherin protein (A,r= 0.4882; P = 0.0115) and Snail protein (B, r= 

0.6236; P= 0.0023) in the kidneys of T1D mice and controls. (C, D) Correlation of CDX2 protein with E-cadherin protein (C,r= 0.5999; P = 
0.0031) and Snail protein (D, r= 0.6348; P= 0.0019) in the kidneys of T2D mice and controls. (E–G) Immunohistochemical staining (E) and 
quantitative analysis (F) of E-cadherin in T2D mice and controls. E-cadherin is expressed in the cytomembrane of renal tubular epithelial cells 
in the renal cortex (magnification, ×200); enlarged box area (magnification, ×400). Correlation of CDX2 protein with E-cadherin staining (G,r= 
0.7150; P = 0.0005) in T2D mice kidney tissues and controls. All data are mean±SD from three independent experiments. n=6; *P<0.05 versus 
db/m group. 
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Supplementary Figure 4. CDX2 overexpression alleviates hyperglycemia-induced RTECs damage, and CDX2 knockdown 
induces the damage. Immunofluorescence of α-SMA in non-transfected (NG or HG treated) NRK-52E cells, and NRK-52E cells transfected 

with CDX2-overexpressing (NG+OE-CDX2 group, HG+OE-CDX2 group) or CDX2-knockdown (NG+Sh-CDX2 group, HG+Sh-CDX2 group), 
respectively (scale bar, 20μm). CDX2 overexpression alleviates hyperglycemia-induced RTECs damage.CDX2 overexpression inhibits the 
increase in α-SMA expression induced by high glucose, thereby inhibiting partial EMT of RTECs (A). CDX2 overexpression alleviates 
hyperglycemia-induced RTECs damage. CDX2 knockdown induces the damage of RTECs, and aggravates partial EMT of RTECs under high 
glucose condition (B). Data from three experiments performed independently. 
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Supplementary Figure 5. CDX2 can improve renal fibrosis during DKD. After successfully replicating the T1D model by 
intraperitoneal injection of STZ, the mice were injected with 15 ug (diluted with Ringer's solution) through the tail vein, and were 
continuously injected for 6 weeks once a week. Mice were submitted to euthanasia at 14 weeks of age (n= 6 per group). Overexpression of 
CDX2 in T1D mice cannot improve their hyperglycemia (A) but can reduce their 24h total urine microalbumin (B). (C, D) Positive staining 
density of Sirius red was analyzed in each group from 6 random fields (200×). Sirius red staining (C) and quantitative analysis (D) in each 
group.CDX2 can improve renal fibrosis induced by DKD. All data are mean±SD from three independent experiments. n=6; *P<0.05 versus NC 
group; #P<0.05 versus DM group. 
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Supplementary Table 
 

Supplementary Table 1. Pathological diagnosis information of human kidney samples. 

Patient ID Gender Age Diagnosis 

K180388 male 53 Tuberous sclerotic diabetic nephropathy(Tervaert classification III) 

K180430 male 53 Tuberous sclerotic diabetic nephropathy(Tervaert classification III) 

K180692 male 43 Tuberous sclerotic diabetic nephropathy(Tervaert classification III) 

K1900006 male 35 Tuberous sclerotic diabetic nephropathy(Tervaert classification III) 

K1900048 male 50 Tuberous sclerotic diabetic nephropathy(Tervaert classification III)Subacute tubular-

interstitial injury 

K1900025 female 59 Tuberous sclerotic diabetic nephropathy(Tervaert classification III) 

K1804010 male 45 Splenic rupture and bleeding, left kidney rupture and bleeding (renal trauma) 

K1835669 male 24 Left kidney rupture and bleeding (renal trauma) 

K1912839 male 38 Right kidney rupture and bleeding (renal trauma) 

K1924782 male 30 Left kidney rupture and bleeding (renal trauma) 

K2001748 male 26 Left kidney rupture and bleeding (renal trauma) 

K2008184 male 13 Right kidney rupture and bleeding (renal trauma) 

 


