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INTRODUCTION 
 

Dementia is one of the most serious problems facing a 

global aging population. Diagnosis of dementia is 

important for early intervention of the disease. 

However, many diagnostic methods are invasive  

or are time-consuming. For example, psychological 

assessment takes time, examination of cerebrospinal 

fluid is invasive and amyloid positron emission 

tomography is costly. Thus, there is demand for a 

Research Paper 

Screening of Alzheimer’s disease by facial complexion using artificial 
intelligence 
 

Yumi Umeda-Kameyama1, Masashi Kameyama2, Tomoki Tanaka3, Bo-Kyung Son3,6,  
Taro Kojima1, Makoto Fukasawa4, Tomomichi Iizuka5, Sumito Ogawa1, Katsuya Iijima3,6, 
Masahiro Akishita1 
 
1Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan 
2Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 
Tokyo, Japan 
3Institute of Gerontology, The University of Tokyo, Tokyo, Japan 
4Department of Nuclear Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Japan 
5Center for Dementia, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Japan 
6Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan 
 
Correspondence to: Masashi Kameyama; email: kame-tky@umin.ac.jp 
Keywords: artificial intelligence, face, dementia, machine learning 
Received: November 3, 2020 Accepted: December 10, 2020  Published: January 25, 2021 

 
Copyright: © 2021 Kameyama et al. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 
 

ABSTRACT 
 

Despite the increasing incidence and high morbidity associated with dementia, a simple, non-invasive, and 
inexpensive method of screening for dementia is yet to be discovered. This study aimed to examine whether 
artificial intelligence (AI) could distinguish between the faces of people with cognitive impairment and those 
without dementia. 
121 patients with cognitive impairment and 117 cognitively sound participants were recruited for the study. 5 
deep learning models with 2 optimizers were tested. The binary differentiation of dementia / non-dementia 
facial image was expressed as a “Face AI score”.  
Xception with Adam was the model that showed the best performance. Overall sensitivity, specificity, and 
accuracy by the Xception AI system and AUC of the ROC curve were 87.31%, 94.57%, 92.56%, and 0.9717, 
respectively. Close and significant correlations were found between Face AI score and MMSE (r = −0.599, p < 
0.0001). Significant correlation between Face AI score and chronological age was also found (r = 0.321, p < 
0.0001). However, MMSE score showed significantly stronger correlation with Face AI score than chronological 
age (p < 0.0001). 
The study showed that deep learning programs such as Xception have the ability to differentiate the faces of 
patients with mild dementia from that of patients without dementia, paving the way for future studies into the 
development of a facial biomarker for dementia. 
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simple, noninvasive, and inexpensive method for 

screening for dementia. 

 

The perceived age of older adults was shown to be a 

robust biomarker of aging that is predictive of 

survival, telomere length [1], DNA methylation [2], 

carotid atherosclerosis [3], and bone status [4]. It was 

demonstrated that perceived age reflects cognitive 

function more closely than chronological age [5]. 

Furthermore, in the authors’ experience, advanced 

Alzheimer’s disease (AD) patients display a specific 

complexion. Thus, it was postulated that cognitive 

decline may be expressed in a patient’s face. 

 

Deep learning, a major branch of machine learning in 

artificial intelligence (AI), has remarkably improved 

the performance and detection capabilities of AI 

programs since convolutional neural network (CNN) 

was first developed [6]. The authors have previously 

reported how CNN could be used to discern AD and 

dementia with Lewy bodies (DLB) perfusion single 

photon emission tomography (SPECT) images. The 

differentiation was made using cingulate island sign 

[7]. Based on this information, it was hypothesized 

that AI software may be able to classify patients as 

having cognitive impairment or not using facial 

recognition. 

 

The present study aimed to examine whether AI can 

distinguish facial traits of cognitive impairment patients 

from that of non-dementia patients. The findings of this 

study lay the foundations for the development of a non-

invasive, inexpensive and rapid screening tool for 

cognitive impairment using AI. 

 

RESULTS 
 

Demographics 

 

3 patients from the Department of Geriatric Medicine 

were diagnosed as cognitively normal after several 

tests and were thus included in the non-dementia arm 

of the study. Although the participants from the 

Kashiwa cohort live self-sufficiently in the 

community, one participant showed declining MMSE 

over the past few years and was thus classified into 

the cognitive impairment arm of the study. Two 

patients were diagnosed to be dementia with Lewy 

bodies (DLB), two were diagnosed to idiopathic 

normal pressure hydrocephalus (iNPH), one had 

aphasia due to cerebral infarction. The rest of the 

participants were diagnosed to be Alzheimer’s 

disease. The five non-AD patients were excluded from 

the analyses. 

 

Table 1 summarizes the demographics of participants. 

Models examined 

 

Learning curves for models, Xception, SENet50, 

ResNet50, VGG16, and simple CNN with SGD and 

Adam optimizer are shown in Figure 1. Xception with 

Adam showed the best performance with a peak 

validation accuracy of more than 94% and a bottom 

validation loss of less than 0.21. Xception with Adam 

optimizer showed slightly better performance, therefore 

Adam appeared to be the preferred optimizer for 

Xception. ResNet, SENet showed fast learning, 

however validation cross entropy loss did not drop 

adequately. VGG16 with Adam showed good accuracy, 

however cross entropy loss could not be calculated in an 

early epoch. VGG16 with SGD showed successful 

learning with the peak validation accuracy being 

approximately 91%. Simple CNN with Adam also 

showed learning with the peak validation accuracy 

being approximately 92%. However, validation cross 

entropy loss of simple CNN did not show stability. 

 

From these results, Xception with Adam applied as an 

optimizer was chosen for use in this study. 28 epochs 

was chosen as this was where the bottom of loss was 

seen in the model. 

 

Evaluation of the AI model 

 

Sensitivity, specificity, and accuracy by the AI system 

(boundary: Face AI score = 0) and area under the curve 

(AUC) of receiver operating characteristic (ROC) curve 

of the 10 groups were 87.52±11.91%, 94.57±10.88%, 

92.56±8.22%, and 0.9827±0.0201, respectively (± 

denotes standard deviation). The best sensitivity and 

specificity according to ROC analysis were 

97.80±3.36%, 96.00±3.43%, respectively. 

 

Overall sensitivity, specificity, and accuracy of the 

Xception AI system (boundary: Face AI score = 0) and 

AUC of ROC curve were 87.31%, 94.57%,92.56%, and 

0.9717, respectively (Table 2). The ROC curve is 

displayed in Figure 2A. Sensitivity and specificity 

according to ROC analysis were 96.27%, 91.42% 

(boundary: Face AI score = −1.51). 

 

Median age of the participants was 76. Sensitivity, 

specificity, accuracy and AUC of ROC curve for the 

aged (>76) were 83.33%, 94.89%, 89.96%, and 0.9687, 

respectively; those for the relatively young (≤76) were 

100%, 94.37%, 95.10%, 0.9805, respectively (Figure 

2B) (Table 2). 

 

Correlation between face AI score and MMSE/age 

 

Significant close correlations were found between Face AI 

score and MMSE (r = −0.599, t = −16.40, p = 2.47 × 10−48; 
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Table 1. Demographic features of study participants. 

 
Cognitive impairment Normal 

p 
Male Female Male Female 

Participants 121 117  

Sex 46 75 50 67 0.509 a 

Age 80.6±6.5 81.5±6.2 75.8±6.0 75.7±5.1 1.20 × 10−9 b 

MMSE score 21.9±5.0 21.3±5.1 28.8±1.8 29.0±1.3 4.23 × 10−34 b 

photographs 54 80 155 195  

hypertension (+/−) 26/19 57/19 31/19 38/29 0.139a 

hyperlipidemia (+/−) 13/33 30/46 25/24 37/30 0.00603a 

diabetes (+/−) 13/33 15/61 20/30 25/42 0.0114a 

osteoporosis (+/−) 9/37 33/43 19/31 25/33 0.112a 

Data are shown as numbers or means ± standard deviation. MMSE, mini-mental state examination; a, Fisher’s exact test 
comparing cognitive impairment and normal; b, one-way analysis of variance. 

Figure 3A). Significant correlation between Face AI 

score and chronological age was also found (r = 0.321, t 

= 7.44, p = 4.57 × 10−13; Figure 3B). However, MMSE 

score showed a significantly stronger correlation with 

Face AI score than chronological age (t = 13.45, p = 3.25 

× 10−35; Steiger’s test [8]). 

 

The correlation coefficient between MMSE and Face AI 

score in female (r = −0.661) was significantly stronger 

than that in male (r = −0.501) (p = 0.00833) when 

evaluated using Fisher’s Z-transformation method [9]. 

 

The difference in the correlation coefficient between 

age and Face AI score by sex (male: r = 0.229, female: r 
= 0.388) when assessed using the same method was not 

significant (p = 0.0565). 

 

Analysis of upper and lower half faces 

 

44 epochs was chosen for upper half and 41 epochs for 

lower half, as these were where the bottom of loss was 

seen in the model. 

 

Sensitivity, specificity, accuracy and AUC of ROC 

curve for upper half faces were 85.07%, 93.14%, 

90.91%, and 0.9635, respectively; those for the lower 

half faces were 91.04%, 95.14%, 94.01%, 0.9803, 

respectively (Figure 2C) (Table 2). 

 

DISCUSSION 
 

The deep learning network implemented in this study 

successfully discerned faces of participants with 

cognitive impairment from those without dementia. 

With an accuracy of 92.56% and AUC of ROC being 

0.9717, this method is reliable enough for 

implementation as an initial screening test for dementia. 

The relatively low sensitivity (87.31%), which may be 

attributable to the fewer number of dementia participant 

facial images, could be improved to 96.27% by 

employing ROC analysis. Face AI score correlated 

significantly more strongly with MMSE than with age. 

The weaker correlation between Face AI score and age 

(r = 0.321) would imply that the significant difference 

between age of dementia participants with and without 

dementia is unlikely to have affected the AI system. If 

the AI system relied on participants age, limiting the 

age range would worsen the results. However, limiting 

the age did not impair the accuracy (Figure 2B). 

 

The AI system is too complicated and has so-called 

“black box” nature. Although both upper and lower half 

faces showed excellent performance, lower half showed 

slightly better performance than upper half contrary to 

our expectation (Figure 2C). The system may get more 

information from mouths or wrinkles than eyes or hair. 

 

The correlation coefficient between Face AI score and 

MMSE was significantly higher in females than in 

males. A previous study by the authors demonstrated a 

significantly stronger correlation between MMSE and 

perceived age than with chronological age but only in 

female participants [5], which may be attributable to the 

tendency for cognitively healthy older women to pay 

more attention to their appearances relative to their 

cognitively impaired counterparts, resulting in a marked 

difference in perceived age. 

 

The fact that SENet50, ResNet50, and simple CNN 

models were unable to reduce loss during 

discriminating facial images of dementia and non-

dementia participants suggests that the task is more 

difficult for AI software than discerning differences in 
SPECT images [7]. This is understandable given that 

while SPECT images can be classified by trained 

nuclear medicine physicians, diagnosis of dementia 
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Figure 1. Learning curves of the deep learning models. Xception, SENet50, ResNet50, VGG16, and simple CNN with SGD and Adam 
optimizers were tested. The thin lines denote mean ± standard deviation of 10 groups. blue: accuracy, red: loss, green: validation accuracy, 
yellow: validation loss. 
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Table 2. Performance of AI. 

 Sensitivity  Specificity  Accuracy  AUC Best sensitivity Best specificity  Threshold  

total  0.8731 0.9457 0.9256 0.9717 0.9627 0.9143 -1.51  

aged (>76) 0.8333 0.9489 0.8996 0.9687 0.9510 0.8978 -1.51 

young (≤76) 1 0.9437 0.9510 0.9805 1 0.9484 0.04  

upper face 0.8507 0.9314 0.9091 0.9635 0.9030 0.8971 -0.65 

lower face 0.9104 0.9514 0.9401 0.9803 0.9776 0.9171 -1.2  

 

 
 

Figure 2. (A) ROC curve for the overall facial images used. The red dot denotes the sensitivity and specificity calculated by the AI software 

(boundary: Face AI score = 0). The blue dot denotes the sensitivity and specificity calculated by ROC analysis (boundary: Face AI score = 
−1.51). (B) ROC curve for the aged (>76) and the relatively young (≤76). (C) ROC curve for upper half and lower half faces. 



 

www.aging-us.com 1770 AGING 

from facial images alone cannot be done manually. 

Suitable deep learning networks such as Xception are 

required to accomplish the complex task of detection of 

dementia through facial images. 

 

This study has several limitations. Firstly, the study 

comprised only 484 images as it was performed at a 

single institution with a single cohort. Moreover, this 

study may be affected by institutional biases. Although 

pretraining assisted AI system learning with limited 

images, further studies employing a larger number of 

images from multicenter will be needed to confirm the 

results. Secondly, the non-dementia participants of this 

study may have had undetected dementia that did not 

require nursing care. Similarly, though the majority of 

dementia participants were assumed to have Alzheimer’s 

disease, this was not confirmed using pathology or 

 

 
 

Figure 3. Association of Face AI score with (A) MMSE and (B) 

chronological age. Face AI score correlated closely with (a) MMSE 
(r = −0.599, t = −16.40, p = 2.47×10−48) and relatively weakly with 
(b) age (r = 0.321, t = 7.44, p = 4.57 × 10−13). The Steiger’s test 
found the difference in correlation coefficients to be significant (p 
= 3.25 × 10−35). 

amyloid positron emission tomography, and one 

participant from Kashiwa cohort did not underwent 

sufficient tests. Thus, some participants may have been 

suffering other forms of dementia such as DLB, 

vascular dementia or normal pressure hydrocephalus. 

The facial differentiation of DLB and AD patients may 

be an interesting study in the future. Finally, the facial 

images included in this study were only front facing 

images of Japanese participants with neutral 

expressions. The ability to use images from various 

angles, of people from varied ethnicities and with a 

variety of facial expressions would improve the 

robustness of the AI system. 

 

CONCLUSIONS 
 

The study showed that deep learning software such as 

Xception has the ability to differentiate facial images 

of people with mild dementia from those of people 

without dementia. This may pave the way for the 

clinical use of facial images as a biomarker of 

dementia. 

 

MATERIALS AND METHODS 
 

Participants 

 

Dementia patients were recruited mainly from the 

Department of Geriatric Medicine, The University of 

Tokyo Hospital. Many of them also participated in a 

previous perceived age study [5]. The majority of 

participants without dementia were recruited from the 

Kashiwa cohort organized by the Institute of 

Gerontology, The University of Tokyo. Patients from 

the Department of Geriatric Medicine who were 

diagnosed as cognitively normal after several tests 

were included in the non-dementia arm of the study. 

Participants from the Kashiwa cohort who showed 

declining MMSE over the past few years were 

classified into the cognitive impairment arm of the 

study. The non-AD patients were excluded from the 

analyses. The rest of the participants were diagnosed 

to be Alzheimer’s disease based on DSM-IV criteria 

and their Hachinski ischemic scale [10] were no more 

than 4.  

 

Most of the patients were diagnosed using 

psychological tests, information from family, laboratory 

data, brain structural imaging (X-ray computed 

tomography or nuclear magnetic resonance imaging) 

and perfusion single photon emission tomography by 

dementia specialist, except for participants from 

Kashiwa cohort. 
 

All procedures were approved by the Ethical Review 

Board at The University of Tokyo Hospital and The 
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University of Tokyo. The clinical study guidelines of 

the University of Tokyo, which conform to the 

Declaration of Helsinki (2013), were strictly adhered to. 

Healthy volunteers, dementia patients and their families 

were provided with detailed information about the 

study, and all provided written informed consent to 

participate. 

 

Image preparation 

 

Front-on portrait images were taken of participants 

wearing a neutral expression. The images were cropped 

to a square with the face in the middle of the image. 

Backgrounds were removed so that the AI does not use 

the background to differentiate cognitive impairment 

patients from non-dementia patients. 

 

Images of cognitive impairment and healthy participants 

were divided into 10 groups (group0 ... group9). All 

images taken of the same participant were included in 

the same group. 

 

Selection of models 

 

The network was built using an open-source neural 

network library, Keras with symbolic tensor 

manipulation framework, TensorFlow (Google, 

Mountain View, CA, USA) as a back-end. 5 deep 

learning models (Xception [11], SENet50 [12], 

ResNet50 [13], VGG16 [14], simple CNN) with 2 

optimizers (SGD, Adam) were tested. Simple CNN 

was the same network used for the SPECT image 

study [7]. VGG16, ResNet50, SENet50 were 

pretrained with VGG-Face [15], and Xception was 

pretrained with ImageNet [16]. The default settings 

and parameters for SGD (learning rate = 0.01, 

momentum=0.9, decay=0.0, nesterov=False) and 

Adam (learning rate = 0.001, β1= 0.9, β2= 0.999, 

=None, decay =0.0, amsgrad=False) were used when 

being used as optimizers for the simple CNN, but the 

learning rate was reduced when using the other 

pretrained models; SGD (learning rate=0.0002, 

momentum=0.9, decay=0.0, nesterov=False), Adam 

(learning rate=0.00001, β1=0.9, β2=0.999, =None, 

decay=0.0, amsgrad=False). Earlier (about 2/3) layers 

of Xception, SENet50, ResNet50, and VGG16 except 

batch normalization layers were frozen. All the layers 

of simple CNN were trainable. Training image data 

were augmented (rotation range=15, height shift 

range=0.03, width shift range=0.03, shear range=5, 

zoom range=0.1, horizontal flip=True, vertical 

flip=False, brightness range=[0.3, 1.0], channel shift 

range=5). 
 

5 models with 2 optimizers were tested with group-base 

10-fold cross validation. Learning curves were depicted 

for 200 epochs. The best model was chosen and the 

optimum number of epochs determined by considering 

the accuracy / loss and stability of each model. 

 

Statistics 

 

The diagnostic and predictive accuracy of the best CNN 

model was calculated using the group-base 10-fold 

cross validation. The binary differentiation of cognitive 

impairment / non-dementia facial images were 

expressed as “Face AI score”. The scores were obtained 

by applying an inverse sigmoid function to the output 

predictive value. Face AI score was evaluated using the 

ROC curve analysis and AUC on the image-base. 

Correlations between Face AI score and MMSE / 

chronological age were assessed. Difference by sex was 

also examined. 

 

All statistical analyses were performed with python and 

scipy.stat library. 

 

Analysis of upper and lower half faces 

 

The faces were divided into upper and lower half faces. 

Upper half faces and lower half faces were separately 

trained with the same model as the total faces using the 

same group-base 10-fold cross validation and the 

optimum number of epochs determined. The 

performance was analyzed as described above. 
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